ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/devel_omp/src/parallel/ForceMatrixDecomposition.cpp
Revision: 1608
Committed: Tue Aug 9 01:58:56 2011 UTC (13 years, 9 months ago) by mciznick
File size: 50130 byte(s)
Log Message:
First OpenMP version.

File Contents

# User Rev Content
1 gezelter 1539 /*
2     * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 chuckv 1538 *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Redistributions of source code must retain the above copyright
10     * notice, this list of conditions and the following disclaimer.
11     *
12     * 2. Redistributions in binary form must reproduce the above copyright
13     * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31     *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35     *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37     * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38     * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39     * [4] Vardeman & Gezelter, in progress (2009).
40     */
41 gezelter 1549 #include "parallel/ForceMatrixDecomposition.hpp"
42 gezelter 1539 #include "math/SquareMatrix3.hpp"
43 gezelter 1544 #include "nonbonded/NonBondedInteraction.hpp"
44     #include "brains/SnapshotManager.hpp"
45 gezelter 1570 #include "brains/PairList.hpp"
46 mciznick 1598 #include "primitives/Molecule.hpp"
47 chuckv 1538
48 gezelter 1541 using namespace std;
49 gezelter 1539 namespace OpenMD {
50 chuckv 1538
51 mciznick 1598 ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) :
52     ForceDecomposition(info, iMan) {
53     // In a parallel computation, row and colum scans must visit all
54     // surrounding cells (not just the 14 upper triangular blocks that
55     // are used when the processor can see all pairs)
56 gezelter 1593 #ifdef IS_MPI
57 mciznick 1598 cellOffsets_.push_back( Vector3i(-1, 0, 0) );
58     cellOffsets_.push_back( Vector3i(-1,-1, 0) );
59     cellOffsets_.push_back( Vector3i( 0,-1, 0) );
60     cellOffsets_.push_back( Vector3i( 1,-1, 0) );
61     cellOffsets_.push_back( Vector3i( 0, 0,-1) );
62     cellOffsets_.push_back( Vector3i(-1, 0, 1) );
63     cellOffsets_.push_back( Vector3i(-1,-1,-1) );
64     cellOffsets_.push_back( Vector3i( 0,-1,-1) );
65     cellOffsets_.push_back( Vector3i( 1,-1,-1) );
66     cellOffsets_.push_back( Vector3i( 1, 0,-1) );
67     cellOffsets_.push_back( Vector3i( 1, 1,-1) );
68     cellOffsets_.push_back( Vector3i( 0, 1,-1) );
69     cellOffsets_.push_back( Vector3i(-1, 1,-1) );
70 gezelter 1593 #endif
71 mciznick 1598 }
72 gezelter 1593
73 mciznick 1598 /**
74     * distributeInitialData is essentially a copy of the older fortran
75     * SimulationSetup
76     */
77     void ForceMatrixDecomposition::distributeInitialData() {
78     snap_ = sman_->getCurrentSnapshot();
79     storageLayout_ = sman_->getStorageLayout();
80     ff_ = info_->getForceField();
81     nLocal_ = snap_->getNumberOfAtoms();
82 gezelter 1593
83 mciznick 1598 nGroups_ = info_->getNLocalCutoffGroups();
84     // gather the information for atomtype IDs (atids):
85     idents = info_->getIdentArray();
86     AtomLocalToGlobal = info_->getGlobalAtomIndices();
87     cgLocalToGlobal = info_->getGlobalGroupIndices();
88     vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
89 gezelter 1586
90 mciznick 1598 massFactors = info_->getMassFactors();
91 gezelter 1584
92 mciznick 1598 PairList* excludes = info_->getExcludedInteractions();
93     PairList* oneTwo = info_->getOneTwoInteractions();
94     PairList* oneThree = info_->getOneThreeInteractions();
95     PairList* oneFour = info_->getOneFourInteractions();
96 gezelter 1569
97 gezelter 1567 #ifdef IS_MPI
98 chuckv 1538
99 mciznick 1598 MPI::Intracomm row = rowComm.getComm();
100     MPI::Intracomm col = colComm.getComm();
101 gezelter 1541
102 mciznick 1598 AtomPlanIntRow = new Plan<int>(row, nLocal_);
103     AtomPlanRealRow = new Plan<RealType>(row, nLocal_);
104     AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_);
105     AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_);
106     AtomPlanPotRow = new Plan<potVec>(row, nLocal_);
107 gezelter 1551
108 mciznick 1598 AtomPlanIntColumn = new Plan<int>(col, nLocal_);
109     AtomPlanRealColumn = new Plan<RealType>(col, nLocal_);
110     AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_);
111     AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_);
112     AtomPlanPotColumn = new Plan<potVec>(col, nLocal_);
113 gezelter 1567
114 mciznick 1598 cgPlanIntRow = new Plan<int>(row, nGroups_);
115     cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_);
116     cgPlanIntColumn = new Plan<int>(col, nGroups_);
117     cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_);
118 gezelter 1593
119 mciznick 1598 nAtomsInRow_ = AtomPlanIntRow->getSize();
120     nAtomsInCol_ = AtomPlanIntColumn->getSize();
121     nGroupsInRow_ = cgPlanIntRow->getSize();
122     nGroupsInCol_ = cgPlanIntColumn->getSize();
123 gezelter 1591
124 mciznick 1598 // Modify the data storage objects with the correct layouts and sizes:
125     atomRowData.resize(nAtomsInRow_);
126     atomRowData.setStorageLayout(storageLayout_);
127     atomColData.resize(nAtomsInCol_);
128     atomColData.setStorageLayout(storageLayout_);
129     cgRowData.resize(nGroupsInRow_);
130     cgRowData.setStorageLayout(DataStorage::dslPosition);
131     cgColData.resize(nGroupsInCol_);
132     cgColData.setStorageLayout(DataStorage::dslPosition);
133 gezelter 1591
134 mciznick 1598 identsRow.resize(nAtomsInRow_);
135     identsCol.resize(nAtomsInCol_);
136 gezelter 1589
137 mciznick 1598 AtomPlanIntRow->gather(idents, identsRow);
138     AtomPlanIntColumn->gather(idents, identsCol);
139 gezelter 1593
140 mciznick 1598 // allocate memory for the parallel objects
141     atypesRow.resize(nAtomsInRow_);
142     atypesCol.resize(nAtomsInCol_);
143 gezelter 1593
144 mciznick 1598 for (int i = 0; i < nAtomsInRow_; i++)
145     atypesRow[i] = ff_->getAtomType(identsRow[i]);
146     for (int i = 0; i < nAtomsInCol_; i++)
147     atypesCol[i] = ff_->getAtomType(identsCol[i]);
148 gezelter 1541
149 mciznick 1598 pot_row.resize(nAtomsInRow_);
150     pot_col.resize(nAtomsInCol_);
151 gezelter 1593
152 mciznick 1598 AtomRowToGlobal.resize(nAtomsInRow_);
153     AtomColToGlobal.resize(nAtomsInCol_);
154     AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
155     AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
156 gezelter 1593
157 mciznick 1598 cerr << "Atoms in Local:\n";
158     for (int i = 0; i < AtomLocalToGlobal.size(); i++)
159     {
160     cerr << "i =\t" << i << "\t localAt =\t" << AtomLocalToGlobal[i] << "\n";
161     }
162     cerr << "Atoms in Row:\n";
163     for (int i = 0; i < AtomRowToGlobal.size(); i++)
164     {
165     cerr << "i =\t" << i << "\t rowAt =\t" << AtomRowToGlobal[i] << "\n";
166     }
167     cerr << "Atoms in Col:\n";
168     for (int i = 0; i < AtomColToGlobal.size(); i++)
169     {
170     cerr << "i =\t" << i << "\t colAt =\t" << AtomColToGlobal[i] << "\n";
171     }
172 gezelter 1569
173 mciznick 1598 cgRowToGlobal.resize(nGroupsInRow_);
174     cgColToGlobal.resize(nGroupsInCol_);
175     cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
176     cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
177 gezelter 1569
178 mciznick 1598 cerr << "Gruops in Local:\n";
179     for (int i = 0; i < cgLocalToGlobal.size(); i++)
180     {
181     cerr << "i =\t" << i << "\t localCG =\t" << cgLocalToGlobal[i] << "\n";
182     }
183     cerr << "Groups in Row:\n";
184     for (int i = 0; i < cgRowToGlobal.size(); i++)
185     {
186     cerr << "i =\t" << i << "\t rowCG =\t" << cgRowToGlobal[i] << "\n";
187     }
188     cerr << "Groups in Col:\n";
189     for (int i = 0; i < cgColToGlobal.size(); i++)
190     {
191     cerr << "i =\t" << i << "\t colCG =\t" << cgColToGlobal[i] << "\n";
192     }
193 gezelter 1569
194 mciznick 1598 massFactorsRow.resize(nAtomsInRow_);
195     massFactorsCol.resize(nAtomsInCol_);
196     AtomPlanRealRow->gather(massFactors, massFactorsRow);
197     AtomPlanRealColumn->gather(massFactors, massFactorsCol);
198 gezelter 1579
199 mciznick 1598 groupListRow_.clear();
200     groupListRow_.resize(nGroupsInRow_);
201     for (int i = 0; i < nGroupsInRow_; i++)
202     {
203     int gid = cgRowToGlobal[i];
204     for (int j = 0; j < nAtomsInRow_; j++)
205     {
206     int aid = AtomRowToGlobal[j];
207     if (globalGroupMembership[aid] == gid)
208     groupListRow_[i].push_back(j);
209     }
210     }
211 gezelter 1579
212 mciznick 1598 groupListCol_.clear();
213     groupListCol_.resize(nGroupsInCol_);
214     for (int i = 0; i < nGroupsInCol_; i++)
215     {
216     int gid = cgColToGlobal[i];
217     for (int j = 0; j < nAtomsInCol_; j++)
218     {
219     int aid = AtomColToGlobal[j];
220     if (globalGroupMembership[aid] == gid)
221     groupListCol_[i].push_back(j);
222     }
223     }
224 gezelter 1570
225 mciznick 1598 excludesForAtom.clear();
226     excludesForAtom.resize(nAtomsInRow_);
227     toposForAtom.clear();
228     toposForAtom.resize(nAtomsInRow_);
229     topoDist.clear();
230     topoDist.resize(nAtomsInRow_);
231     for (int i = 0; i < nAtomsInRow_; i++)
232     {
233     int iglob = AtomRowToGlobal[i];
234    
235     for (int j = 0; j < nAtomsInCol_; j++)
236     {
237     int jglob = AtomColToGlobal[j];
238    
239     if (excludes->hasPair(iglob, jglob))
240     excludesForAtom[i].push_back(j);
241    
242     if (oneTwo->hasPair(iglob, jglob))
243     {
244     toposForAtom[i].push_back(j);
245     topoDist[i].push_back(1);
246     } else
247     {
248     if (oneThree->hasPair(iglob, jglob))
249     {
250     toposForAtom[i].push_back(j);
251     topoDist[i].push_back(2);
252     } else
253     {
254     if (oneFour->hasPair(iglob, jglob))
255     {
256     toposForAtom[i].push_back(j);
257     topoDist[i].push_back(3);
258     }
259     }
260     }
261     }
262     }
263    
264 gezelter 1569 #endif
265 gezelter 1579
266 mciznick 1598 // allocate memory for the parallel objects
267     atypesLocal.resize(nLocal_);
268 gezelter 1591
269 mciznick 1598 for (int i = 0; i < nLocal_; i++)
270     atypesLocal[i] = ff_->getAtomType(idents[i]);
271 gezelter 1591
272 mciznick 1598 groupList_.clear();
273     groupList_.resize(nGroups_);
274     for (int i = 0; i < nGroups_; i++)
275     {
276     int gid = cgLocalToGlobal[i];
277     for (int j = 0; j < nLocal_; j++)
278     {
279     int aid = AtomLocalToGlobal[j];
280     if (globalGroupMembership[aid] == gid)
281     {
282     groupList_[i].push_back(j);
283     }
284     }
285     }
286 gezelter 1569
287 mciznick 1598 excludesForAtom.clear();
288     excludesForAtom.resize(nLocal_);
289     toposForAtom.clear();
290     toposForAtom.resize(nLocal_);
291     topoDist.clear();
292     topoDist.resize(nLocal_);
293 gezelter 1569
294 mciznick 1598 for (int i = 0; i < nLocal_; i++)
295     {
296     int iglob = AtomLocalToGlobal[i];
297 gezelter 1579
298 mciznick 1598 for (int j = 0; j < nLocal_; j++)
299     {
300     int jglob = AtomLocalToGlobal[j];
301 gezelter 1579
302 mciznick 1598 if (excludes->hasPair(iglob, jglob))
303     excludesForAtom[i].push_back(j);
304 gezelter 1587
305 mciznick 1598 if (oneTwo->hasPair(iglob, jglob))
306     {
307     toposForAtom[i].push_back(j);
308     topoDist[i].push_back(1);
309     } else
310     {
311     if (oneThree->hasPair(iglob, jglob))
312     {
313     toposForAtom[i].push_back(j);
314     topoDist[i].push_back(2);
315     } else
316     {
317     if (oneFour->hasPair(iglob, jglob))
318     {
319     toposForAtom[i].push_back(j);
320     topoDist[i].push_back(3);
321     }
322     }
323     }
324     }
325     }
326    
327 mciznick 1599 Globals* simParams_ = info_->getSimParams();
328     if (simParams_->haveNeighborListReorderFreq())
329     {
330     neighborListReorderFreq = simParams_->getNeighborListReorderFreq();
331     } else
332     {
333     neighborListReorderFreq = 0;
334     }
335     reorderFreqCounter = 1;
336    
337 mciznick 1598 createGtypeCutoffMap();
338    
339     }
340    
341     void ForceMatrixDecomposition::createGtypeCutoffMap() {
342    
343     RealType tol = 1e-6;
344     largestRcut_ = 0.0;
345     RealType rc;
346     int atid;
347     set<AtomType*> atypes = info_->getSimulatedAtomTypes();
348    
349     map<int, RealType> atypeCutoff;
350    
351     for (set<AtomType*>::iterator at = atypes.begin(); at != atypes.end(); ++at)
352     {
353     atid = (*at)->getIdent();
354     if (userChoseCutoff_)
355     atypeCutoff[atid] = userCutoff_;
356     else
357     atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at);
358     }
359    
360     vector<RealType> gTypeCutoffs;
361     // first we do a single loop over the cutoff groups to find the
362     // largest cutoff for any atypes present in this group.
363 gezelter 1576 #ifdef IS_MPI
364 mciznick 1598 vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0);
365     groupRowToGtype.resize(nGroupsInRow_);
366     for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++)
367     {
368     vector<int> atomListRow = getAtomsInGroupRow(cg1);
369     for (vector<int>::iterator ia = atomListRow.begin();
370     ia != atomListRow.end(); ++ia)
371     {
372     int atom1 = (*ia);
373     atid = identsRow[atom1];
374     if (atypeCutoff[atid] > groupCutoffRow[cg1])
375     {
376     groupCutoffRow[cg1] = atypeCutoff[atid];
377     }
378     }
379 gezelter 1576
380 mciznick 1598 bool gTypeFound = false;
381     for (int gt = 0; gt < gTypeCutoffs.size(); gt++)
382     {
383     if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol)
384     {
385     groupRowToGtype[cg1] = gt;
386     gTypeFound = true;
387     }
388     }
389     if (!gTypeFound)
390     {
391     gTypeCutoffs.push_back( groupCutoffRow[cg1] );
392     groupRowToGtype[cg1] = gTypeCutoffs.size() - 1;
393     }
394    
395     }
396     vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0);
397     groupColToGtype.resize(nGroupsInCol_);
398     for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++)
399     {
400     vector<int> atomListCol = getAtomsInGroupColumn(cg2);
401     for (vector<int>::iterator jb = atomListCol.begin();
402     jb != atomListCol.end(); ++jb)
403     {
404     int atom2 = (*jb);
405     atid = identsCol[atom2];
406     if (atypeCutoff[atid] > groupCutoffCol[cg2])
407     {
408     groupCutoffCol[cg2] = atypeCutoff[atid];
409     }
410     }
411     bool gTypeFound = false;
412     for (int gt = 0; gt < gTypeCutoffs.size(); gt++)
413     {
414     if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol)
415     {
416     groupColToGtype[cg2] = gt;
417     gTypeFound = true;
418     }
419     }
420     if (!gTypeFound)
421     {
422     gTypeCutoffs.push_back( groupCutoffCol[cg2] );
423     groupColToGtype[cg2] = gTypeCutoffs.size() - 1;
424     }
425     }
426 gezelter 1576 #else
427 gezelter 1579
428 mciznick 1598 vector<RealType> groupCutoff(nGroups_, 0.0);
429     groupToGtype.resize(nGroups_);
430     for (int cg1 = 0; cg1 < nGroups_; cg1++)
431     {
432     groupCutoff[cg1] = 0.0;
433     vector<int> atomList = getAtomsInGroupRow(cg1);
434     for (vector<int>::iterator ia = atomList.begin(); ia != atomList.end(); ++ia)
435     {
436     int atom1 = (*ia);
437     atid = idents[atom1];
438     if (atypeCutoff[atid] > groupCutoff[cg1])
439     groupCutoff[cg1] = atypeCutoff[atid];
440     }
441    
442     bool gTypeFound = false;
443     for (int gt = 0; gt < gTypeCutoffs.size(); gt++)
444     {
445     if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol)
446     {
447     groupToGtype[cg1] = gt;
448     gTypeFound = true;
449     }
450     }
451     if (!gTypeFound)
452     {
453     gTypeCutoffs.push_back(groupCutoff[cg1]);
454     groupToGtype[cg1] = gTypeCutoffs.size() - 1;
455     }
456     }
457 gezelter 1576 #endif
458    
459 mciznick 1598 // Now we find the maximum group cutoff value present in the simulation
460 gezelter 1576
461 mciznick 1598 RealType groupMax = *max_element(gTypeCutoffs.begin(), gTypeCutoffs.end());
462 gezelter 1576
463     #ifdef IS_MPI
464 mciznick 1598 MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE,
465     MPI::MAX);
466 gezelter 1576 #endif
467    
468 mciznick 1598 RealType tradRcut = groupMax;
469 gezelter 1576
470 mciznick 1598 for (int i = 0; i < gTypeCutoffs.size(); i++)
471     {
472     for (int j = 0; j < gTypeCutoffs.size(); j++)
473     {
474     RealType thisRcut;
475     switch (cutoffPolicy_) {
476     case TRADITIONAL:
477     thisRcut = tradRcut;
478     break;
479     case MIX:
480     thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]);
481     break;
482     case MAX:
483     thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]);
484     break;
485     default:
486     sprintf(painCave.errMsg, "ForceMatrixDecomposition::createGtypeCutoffMap "
487     "hit an unknown cutoff policy!\n");
488     painCave.severity = OPENMD_ERROR;
489     painCave.isFatal = 1;
490     simError();
491     break;
492     }
493 gezelter 1576
494 mciznick 1598 pair<int, int> key = make_pair(i, j);
495     gTypeCutoffMap[key].first = thisRcut;
496     if (thisRcut > largestRcut_)
497     largestRcut_ = thisRcut;
498     gTypeCutoffMap[key].second = thisRcut * thisRcut;
499     gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2);
500     // sanity check
501 gezelter 1576
502 mciznick 1598 if (userChoseCutoff_)
503     {
504     if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001)
505     {
506     sprintf(painCave.errMsg, "ForceMatrixDecomposition::createGtypeCutoffMap "
507     "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_);
508     painCave.severity = OPENMD_ERROR;
509     painCave.isFatal = 1;
510     simError();
511     }
512     }
513     }
514     }
515     }
516    
517     groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) {
518     int i, j;
519 gezelter 1576 #ifdef IS_MPI
520 mciznick 1598 i = groupRowToGtype[cg1];
521     j = groupColToGtype[cg2];
522 gezelter 1576 #else
523 mciznick 1598 i = groupToGtype[cg1];
524     j = groupToGtype[cg2];
525 gezelter 1579 #endif
526 mciznick 1598 return gTypeCutoffMap[make_pair(i, j)];
527     }
528 gezelter 1576
529 mciznick 1598 int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
530     for (int j = 0; j < toposForAtom[atom1].size(); j++)
531     {
532     if (toposForAtom[atom1][j] == atom2)
533     return topoDist[atom1][j];
534     }
535     return 0;
536     }
537 gezelter 1576
538 mciznick 1598 void ForceMatrixDecomposition::zeroWorkArrays() {
539     pairwisePot = 0.0;
540     embeddingPot = 0.0;
541 gezelter 1575
542     #ifdef IS_MPI
543 mciznick 1598 if (storageLayout_ & DataStorage::dslForce)
544     {
545     fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero);
546     fill(atomColData.force.begin(), atomColData.force.end(), V3Zero);
547     }
548 gezelter 1575
549 mciznick 1598 if (storageLayout_ & DataStorage::dslTorque)
550     {
551     fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero);
552     fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero);
553     }
554 gezelter 1575
555 mciznick 1598 fill(pot_row.begin(), pot_row.end(),
556     Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
557 gezelter 1575
558 mciznick 1598 fill(pot_col.begin(), pot_col.end(),
559     Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
560 gezelter 1575
561 mciznick 1598 if (storageLayout_ & DataStorage::dslParticlePot)
562     {
563     fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(),
564     0.0);
565     fill(atomColData.particlePot.begin(), atomColData.particlePot.end(),
566     0.0);
567     }
568 gezelter 1575
569 mciznick 1598 if (storageLayout_ & DataStorage::dslDensity)
570     {
571     fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0);
572     fill(atomColData.density.begin(), atomColData.density.end(), 0.0);
573     }
574 gezelter 1575
575 mciznick 1598 if (storageLayout_ & DataStorage::dslFunctional)
576     {
577     fill(atomRowData.functional.begin(), atomRowData.functional.end(),
578     0.0);
579     fill(atomColData.functional.begin(), atomColData.functional.end(),
580     0.0);
581     }
582 gezelter 1575
583 mciznick 1598 if (storageLayout_ & DataStorage::dslFunctionalDerivative)
584     {
585     fill(atomRowData.functionalDerivative.begin(),
586     atomRowData.functionalDerivative.end(), 0.0);
587     fill(atomColData.functionalDerivative.begin(),
588     atomColData.functionalDerivative.end(), 0.0);
589     }
590 gezelter 1586
591 mciznick 1598 if (storageLayout_ & DataStorage::dslSkippedCharge)
592     {
593     fill(atomRowData.skippedCharge.begin(),
594     atomRowData.skippedCharge.end(), 0.0);
595     fill(atomColData.skippedCharge.begin(),
596     atomColData.skippedCharge.end(), 0.0);
597     }
598    
599 gezelter 1590 #endif
600 mciznick 1598 // even in parallel, we need to zero out the local arrays:
601 gezelter 1590
602 mciznick 1598 if (storageLayout_ & DataStorage::dslParticlePot)
603     {
604     fill(snap_->atomData.particlePot.begin(), snap_->atomData.particlePot.end(), 0.0);
605     }
606 gezelter 1575
607 mciznick 1598 if (storageLayout_ & DataStorage::dslDensity)
608     {
609     fill(snap_->atomData.density.begin(), snap_->atomData.density.end(), 0.0);
610     }
611     if (storageLayout_ & DataStorage::dslFunctional)
612     {
613     fill(snap_->atomData.functional.begin(), snap_->atomData.functional.end(), 0.0);
614     }
615     if (storageLayout_ & DataStorage::dslFunctionalDerivative)
616     {
617     fill(snap_->atomData.functionalDerivative.begin(), snap_->atomData.functionalDerivative.end(), 0.0);
618     }
619     if (storageLayout_ & DataStorage::dslSkippedCharge)
620     {
621     fill(snap_->atomData.skippedCharge.begin(), snap_->atomData.skippedCharge.end(), 0.0);
622     }
623 gezelter 1575
624 mciznick 1598 }
625    
626     void ForceMatrixDecomposition::distributeData() {
627     snap_ = sman_->getCurrentSnapshot();
628     storageLayout_ = sman_->getStorageLayout();
629 chuckv 1538 #ifdef IS_MPI
630 gezelter 1593
631 mciznick 1598 // gather up the atomic positions
632     AtomPlanVectorRow->gather(snap_->atomData.position,
633     atomRowData.position);
634     AtomPlanVectorColumn->gather(snap_->atomData.position,
635     atomColData.position);
636 gezelter 1593
637 mciznick 1598 // gather up the cutoff group positions
638 gezelter 1593
639 mciznick 1598 cerr << "before gather\n";
640     for (int i = 0; i < snap_->cgData.position.size(); i++)
641     {
642     cerr << "cgpos = " << snap_->cgData.position[i] << "\n";
643     }
644 gezelter 1593
645 mciznick 1598 cgPlanVectorRow->gather(snap_->cgData.position,
646     cgRowData.position);
647 gezelter 1593
648 mciznick 1598 cerr << "after gather\n";
649     for (int i = 0; i < cgRowData.position.size(); i++)
650     {
651     cerr << "cgRpos = " << cgRowData.position[i] << "\n";
652     }
653 gezelter 1590
654 mciznick 1598 cgPlanVectorColumn->gather(snap_->cgData.position,
655     cgColData.position);
656     for (int i = 0; i < cgColData.position.size(); i++)
657     {
658     cerr << "cgCpos = " << cgColData.position[i] << "\n";
659     }
660    
661     // if needed, gather the atomic rotation matrices
662     if (storageLayout_ & DataStorage::dslAmat)
663     {
664     AtomPlanMatrixRow->gather(snap_->atomData.aMat,
665     atomRowData.aMat);
666     AtomPlanMatrixColumn->gather(snap_->atomData.aMat,
667     atomColData.aMat);
668     }
669    
670     // if needed, gather the atomic eletrostatic frames
671     if (storageLayout_ & DataStorage::dslElectroFrame)
672     {
673     AtomPlanMatrixRow->gather(snap_->atomData.electroFrame,
674     atomRowData.electroFrame);
675     AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame,
676     atomColData.electroFrame);
677     }
678    
679 gezelter 1539 #endif
680 mciznick 1598 }
681    
682     /* collects information obtained during the pre-pair loop onto local
683     * data structures.
684     */
685     void ForceMatrixDecomposition::collectIntermediateData() {
686     snap_ = sman_->getCurrentSnapshot();
687     storageLayout_ = sman_->getStorageLayout();
688 gezelter 1539 #ifdef IS_MPI
689 mciznick 1598
690     if (storageLayout_ & DataStorage::dslDensity)
691     {
692    
693     AtomPlanRealRow->scatter(atomRowData.density,
694     snap_->atomData.density);
695    
696     int n = snap_->atomData.density.size();
697     vector<RealType> rho_tmp(n, 0.0);
698     AtomPlanRealColumn->scatter(atomColData.density, rho_tmp);
699     for (int i = 0; i < n; i++)
700     snap_->atomData.density[i] += rho_tmp[i];
701     }
702 chuckv 1538 #endif
703 mciznick 1598 }
704 gezelter 1575
705 mciznick 1598 /*
706     * redistributes information obtained during the pre-pair loop out to
707     * row and column-indexed data structures
708     */
709     void ForceMatrixDecomposition::distributeIntermediateData() {
710     snap_ = sman_->getCurrentSnapshot();
711     storageLayout_ = sman_->getStorageLayout();
712 chuckv 1538 #ifdef IS_MPI
713 mciznick 1598 if (storageLayout_ & DataStorage::dslFunctional)
714     {
715     AtomPlanRealRow->gather(snap_->atomData.functional,
716     atomRowData.functional);
717     AtomPlanRealColumn->gather(snap_->atomData.functional,
718     atomColData.functional);
719     }
720    
721     if (storageLayout_ & DataStorage::dslFunctionalDerivative)
722     {
723     AtomPlanRealRow->gather(snap_->atomData.functionalDerivative,
724     atomRowData.functionalDerivative);
725     AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative,
726     atomColData.functionalDerivative);
727     }
728 chuckv 1538 #endif
729 mciznick 1598 }
730    
731     void ForceMatrixDecomposition::collectData() {
732     snap_ = sman_->getCurrentSnapshot();
733     storageLayout_ = sman_->getStorageLayout();
734 gezelter 1551 #ifdef IS_MPI
735 mciznick 1598 int n = snap_->atomData.force.size();
736     vector<Vector3d> frc_tmp(n, V3Zero);
737 gezelter 1541
738 mciznick 1598 AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp);
739     for (int i = 0; i < n; i++)
740     {
741     snap_->atomData.force[i] += frc_tmp[i];
742     frc_tmp[i] = 0.0;
743     }
744 gezelter 1541
745 mciznick 1598 AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp);
746     for (int i = 0; i < n; i++)
747     {
748     snap_->atomData.force[i] += frc_tmp[i];
749     }
750 gezelter 1587
751 mciznick 1598 if (storageLayout_ & DataStorage::dslTorque)
752     {
753 gezelter 1587
754 mciznick 1598 int nt = snap_->atomData.torque.size();
755     vector<Vector3d> trq_tmp(nt, V3Zero);
756 gezelter 1587
757 mciznick 1598 AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp);
758     for (int i = 0; i < nt; i++)
759     {
760     snap_->atomData.torque[i] += trq_tmp[i];
761     trq_tmp[i] = 0.0;
762     }
763 gezelter 1544
764 mciznick 1598 AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp);
765     for (int i = 0; i < nt; i++)
766     snap_->atomData.torque[i] += trq_tmp[i];
767     }
768 gezelter 1575
769 mciznick 1598 if (storageLayout_ & DataStorage::dslSkippedCharge)
770     {
771 gezelter 1575
772 mciznick 1598 int ns = snap_->atomData.skippedCharge.size();
773     vector<RealType> skch_tmp(ns, 0.0);
774    
775     AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp);
776     for (int i = 0; i < ns; i++)
777     {
778     snap_->atomData.skippedCharge[i] += skch_tmp[i];
779     skch_tmp[i] = 0.0;
780     }
781    
782     AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp);
783     for (int i = 0; i < ns; i++)
784     snap_->atomData.skippedCharge[i] += skch_tmp[i];
785     }
786    
787     nLocal_ = snap_->getNumberOfAtoms();
788    
789     vector<potVec> pot_temp(nLocal_,
790     Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
791    
792     // scatter/gather pot_row into the members of my column
793    
794     AtomPlanPotRow->scatter(pot_row, pot_temp);
795    
796     for (int ii = 0; ii < pot_temp.size(); ii++ )
797     pairwisePot += pot_temp[ii];
798    
799     fill(pot_temp.begin(), pot_temp.end(),
800     Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
801    
802     AtomPlanPotColumn->scatter(pot_col, pot_temp);
803    
804     for (int ii = 0; ii < pot_temp.size(); ii++ )
805     pairwisePot += pot_temp[ii];
806 gezelter 1539 #endif
807 gezelter 1583
808 mciznick 1599 // cerr << "pairwisePot = " << pairwisePot << "\n";
809 mciznick 1598 }
810 gezelter 1551
811 mciznick 1598 int ForceMatrixDecomposition::getNAtomsInRow() {
812 gezelter 1570 #ifdef IS_MPI
813 mciznick 1598 return nAtomsInRow_;
814 gezelter 1570 #else
815 mciznick 1598 return nLocal_;
816 gezelter 1570 #endif
817 mciznick 1598 }
818 gezelter 1570
819 mciznick 1598 /**
820     * returns the list of atoms belonging to this group.
821     */
822     vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1) {
823 gezelter 1569 #ifdef IS_MPI
824 mciznick 1598 return groupListRow_[cg1];
825 gezelter 1569 #else
826 mciznick 1598 return groupList_[cg1];
827 gezelter 1569 #endif
828 mciznick 1598 }
829 gezelter 1569
830 mciznick 1598 vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2) {
831 gezelter 1569 #ifdef IS_MPI
832 mciznick 1598 return groupListCol_[cg2];
833 gezelter 1569 #else
834 mciznick 1598 return groupList_[cg2];
835 gezelter 1569 #endif
836 mciznick 1598 }
837    
838     Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2) {
839     Vector3d d;
840    
841 gezelter 1551 #ifdef IS_MPI
842 mciznick 1598 d = cgColData.position[cg2] - cgRowData.position[cg1];
843     cerr << "cg1 = " << cg1 << "\tcg1p = " << cgRowData.position[cg1] << "\n";
844     cerr << "cg2 = " << cg2 << "\tcg2p = " << cgColData.position[cg2] << "\n";
845 gezelter 1551 #else
846 mciznick 1598 d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1];
847     cerr << "cg1 = " << cg1 << "\tcg1p = " << snap_->cgData.position[cg1] << "\n";
848     cerr << "cg2 = " << cg2 << "\tcg2p = " << snap_->cgData.position[cg2] << "\n";
849 gezelter 1551 #endif
850    
851 mciznick 1598 snap_->wrapVector(d);
852     return d;
853     }
854 gezelter 1551
855 mciznick 1598 Vector3d ForceMatrixDecomposition::getIntergroupVector(CutoffGroup *cg1, CutoffGroup *cg2) {
856     Vector3d d;
857 gezelter 1551
858 mciznick 1598 d = snap_->cgData.position[cg2->getLocalIndex()] - snap_->cgData.position[cg1->getLocalIndex()];
859 mciznick 1599 /* cerr << "cg1_gid = " << cg1->getGlobalIndex() << "\tcg1_lid = " << cg1->getLocalIndex() << "\tcg1p = "
860     << snap_->cgData.position[cg1->getLocalIndex()] << "\n";
861     cerr << "cg2_gid = " << cg2->getGlobalIndex() << "\tcg2_lid = " << cg2->getLocalIndex() << "\tcg2p = "
862     << snap_->cgData.position[cg2->getLocalIndex()] << "\n";*/
863 mciznick 1598
864     snap_->wrapVector(d);
865     return d;
866     }
867    
868     Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1) {
869    
870     Vector3d d;
871    
872 gezelter 1551 #ifdef IS_MPI
873 mciznick 1598 d = cgRowData.position[cg1] - atomRowData.position[atom1];
874 gezelter 1551 #else
875 mciznick 1598 d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1];
876 gezelter 1551 #endif
877    
878 mciznick 1598 snap_->wrapVector(d);
879     return d;
880     }
881    
882     Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2) {
883     Vector3d d;
884    
885 gezelter 1551 #ifdef IS_MPI
886 mciznick 1598 d = cgColData.position[cg2] - atomColData.position[atom2];
887 gezelter 1551 #else
888 mciznick 1598 d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2];
889 gezelter 1551 #endif
890 gezelter 1569
891 mciznick 1598 snap_->wrapVector(d);
892     return d;
893     }
894    
895     RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) {
896 gezelter 1569 #ifdef IS_MPI
897 mciznick 1598 return massFactorsRow[atom1];
898 gezelter 1569 #else
899 mciznick 1598 return massFactors[atom1];
900 gezelter 1569 #endif
901 mciznick 1598 }
902 gezelter 1569
903 mciznick 1598 RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
904 gezelter 1569 #ifdef IS_MPI
905 mciznick 1598 return massFactorsCol[atom2];
906 gezelter 1569 #else
907 mciznick 1598 return massFactors[atom2];
908 gezelter 1569 #endif
909    
910 mciznick 1598 }
911    
912     Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2) {
913     Vector3d d;
914    
915 gezelter 1551 #ifdef IS_MPI
916 mciznick 1598 d = atomColData.position[atom2] - atomRowData.position[atom1];
917 gezelter 1551 #else
918 mciznick 1598 d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1];
919 gezelter 1551 #endif
920    
921 mciznick 1598 snap_->wrapVector(d);
922     return d;
923     }
924 gezelter 1551
925 mciznick 1598 vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) {
926     return excludesForAtom[atom1];
927     }
928 gezelter 1570
929 mciznick 1598 /**
930     * We need to exclude some overcounted interactions that result from
931     * the parallel decomposition.
932     */
933     bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) {
934     int unique_id_1, unique_id_2;
935 gezelter 1570
936 mciznick 1599 // cerr << "sap with atom1, atom2 =\t" << atom1 << "\t" << atom2 << "\n";
937 gezelter 1570 #ifdef IS_MPI
938 mciznick 1598 // in MPI, we have to look up the unique IDs for each atom
939     unique_id_1 = AtomRowToGlobal[atom1];
940     unique_id_2 = AtomColToGlobal[atom2];
941 gezelter 1570
942 mciznick 1598 cerr << "sap with uid1, uid2 =\t" << unique_id_1 << "\t" << unique_id_2 << "\n";
943     // this situation should only arise in MPI simulations
944     if (unique_id_1 == unique_id_2) return true;
945    
946     // this prevents us from doing the pair on multiple processors
947     if (unique_id_1 < unique_id_2)
948     {
949     if ((unique_id_1 + unique_id_2) % 2 == 0) return true;
950     } else
951     {
952     if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
953     }
954 gezelter 1587 #endif
955 mciznick 1598 return false;
956     }
957 gezelter 1587
958 mciznick 1598 /**
959     * We need to handle the interactions for atoms who are involved in
960     * the same rigid body as well as some short range interactions
961     * (bonds, bends, torsions) differently from other interactions.
962     * We'll still visit the pairwise routines, but with a flag that
963     * tells those routines to exclude the pair from direct long range
964     * interactions. Some indirect interactions (notably reaction
965     * field) must still be handled for these pairs.
966     */
967     bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) {
968     int unique_id_2;
969 gezelter 1587 #ifdef IS_MPI
970 mciznick 1598 // in MPI, we have to look up the unique IDs for the row atom.
971     unique_id_2 = AtomColToGlobal[atom2];
972 gezelter 1570 #else
973 mciznick 1598 // in the normal loop, the atom numbers are unique
974     unique_id_2 = atom2;
975 gezelter 1570 #endif
976 gezelter 1579
977 mciznick 1598 for (vector<int>::iterator i = excludesForAtom[atom1].begin(); i != excludesForAtom[atom1].end(); ++i)
978     {
979     if ((*i) == unique_id_2)
980     return true;
981     }
982 gezelter 1570
983 mciznick 1598 return false;
984     }
985 gezelter 1570
986 mciznick 1598 void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg) {
987 gezelter 1551 #ifdef IS_MPI
988 mciznick 1598 atomRowData.force[atom1] += fg;
989 gezelter 1551 #else
990 mciznick 1598 snap_->atomData.force[atom1] += fg;
991 gezelter 1551 #endif
992 mciznick 1598 }
993 gezelter 1551
994 mciznick 1608 void ForceMatrixDecomposition::addForceToAtomRowOMP(int atom1, Vector3d fg) {
995     #pragma omp critical
996     {
997     snap_->atomData.force[atom1] += fg;
998     }
999     }
1000    
1001 mciznick 1598 void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg) {
1002 gezelter 1551 #ifdef IS_MPI
1003 mciznick 1598 atomColData.force[atom2] += fg;
1004 gezelter 1551 #else
1005 mciznick 1598 snap_->atomData.force[atom2] += fg;
1006 gezelter 1551 #endif
1007 mciznick 1598 }
1008 gezelter 1551
1009 mciznick 1608 void ForceMatrixDecomposition::addForceToAtomColumnOMP(int atom2, Vector3d fg) {
1010     #pragma omp critical
1011     {
1012     snap_->atomData.force[atom2] += fg;
1013     }
1014     }
1015    
1016 mciznick 1598 // filling interaction blocks with pointers
1017     void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat, int atom1, int atom2) {
1018 gezelter 1587
1019 mciznick 1598 idat.excluded = excludeAtomPair(atom1, atom2);
1020    
1021 gezelter 1551 #ifdef IS_MPI
1022 mciznick 1598 idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]);
1023     //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
1024     // ff_->getAtomType(identsCol[atom2]) );
1025 gezelter 1551
1026 mciznick 1598 if (storageLayout_ & DataStorage::dslAmat)
1027     {
1028     idat.A1 = &(atomRowData.aMat[atom1]);
1029     idat.A2 = &(atomColData.aMat[atom2]);
1030     }
1031 gezelter 1551
1032 mciznick 1598 if (storageLayout_ & DataStorage::dslElectroFrame)
1033     {
1034     idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
1035     idat.eFrame2 = &(atomColData.electroFrame[atom2]);
1036     }
1037 gezelter 1551
1038 mciznick 1598 if (storageLayout_ & DataStorage::dslTorque)
1039     {
1040     idat.t1 = &(atomRowData.torque[atom1]);
1041     idat.t2 = &(atomColData.torque[atom2]);
1042     }
1043 gezelter 1575
1044 mciznick 1598 if (storageLayout_ & DataStorage::dslDensity)
1045     {
1046     idat.rho1 = &(atomRowData.density[atom1]);
1047     idat.rho2 = &(atomColData.density[atom2]);
1048     }
1049 gezelter 1570
1050 mciznick 1598 if (storageLayout_ & DataStorage::dslFunctional)
1051     {
1052     idat.frho1 = &(atomRowData.functional[atom1]);
1053     idat.frho2 = &(atomColData.functional[atom2]);
1054     }
1055 gezelter 1575
1056 mciznick 1598 if (storageLayout_ & DataStorage::dslFunctionalDerivative)
1057     {
1058     idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
1059     idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
1060     }
1061 gezelter 1587
1062 mciznick 1598 if (storageLayout_ & DataStorage::dslParticlePot)
1063     {
1064     idat.particlePot1 = &(atomRowData.particlePot[atom1]);
1065     idat.particlePot2 = &(atomColData.particlePot[atom2]);
1066     }
1067    
1068     if (storageLayout_ & DataStorage::dslSkippedCharge)
1069     {
1070     idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
1071     idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
1072     }
1073    
1074 gezelter 1562 #else
1075 gezelter 1571
1076 mciznick 1598 idat.atypes = make_pair(atypesLocal[atom1], atypesLocal[atom2]);
1077     //idat.atypes = make_pair( ff_->getAtomType(idents[atom1]),
1078     // ff_->getAtomType(idents[atom2]) );
1079 gezelter 1571
1080 mciznick 1598 if (storageLayout_ & DataStorage::dslAmat)
1081     {
1082     idat.A1 = &(snap_->atomData.aMat[atom1]);
1083     idat.A2 = &(snap_->atomData.aMat[atom2]);
1084     }
1085 gezelter 1562
1086 mciznick 1598 if (storageLayout_ & DataStorage::dslElectroFrame)
1087     {
1088     idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
1089     idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
1090     }
1091 gezelter 1562
1092 mciznick 1598 if (storageLayout_ & DataStorage::dslTorque)
1093     {
1094     idat.t1 = &(snap_->atomData.torque[atom1]);
1095     idat.t2 = &(snap_->atomData.torque[atom2]);
1096     }
1097 gezelter 1562
1098 mciznick 1598 if (storageLayout_ & DataStorage::dslDensity)
1099     {
1100     idat.rho1 = &(snap_->atomData.density[atom1]);
1101     idat.rho2 = &(snap_->atomData.density[atom2]);
1102     }
1103 gezelter 1562
1104 mciznick 1598 if (storageLayout_ & DataStorage::dslFunctional)
1105     {
1106     idat.frho1 = &(snap_->atomData.functional[atom1]);
1107     idat.frho2 = &(snap_->atomData.functional[atom2]);
1108     }
1109 gezelter 1575
1110 mciznick 1598 if (storageLayout_ & DataStorage::dslFunctionalDerivative)
1111     {
1112     idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
1113     idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
1114     }
1115 gezelter 1575
1116 mciznick 1598 if (storageLayout_ & DataStorage::dslParticlePot)
1117     {
1118     idat.particlePot1 = &(snap_->atomData.particlePot[atom1]);
1119     idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
1120     }
1121 gezelter 1575
1122 mciznick 1598 if (storageLayout_ & DataStorage::dslSkippedCharge)
1123     {
1124     idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
1125     idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
1126     }
1127 gezelter 1551 #endif
1128 mciznick 1598 }
1129 gezelter 1567
1130 mciznick 1608 // filling interaction blocks with pointers
1131     void ForceMatrixDecomposition::fillInteractionDataOMP(InteractionDataPrv &idat, int atom1, int atom2) {
1132    
1133     idat.excluded = excludeAtomPair(atom1, atom2);
1134    
1135     #ifdef IS_MPI
1136     idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]);
1137     //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
1138     // ff_->getAtomType(identsCol[atom2]) );
1139    
1140     if (storageLayout_ & DataStorage::dslAmat)
1141     {
1142     idat.A1 = &(atomRowData.aMat[atom1]);
1143     idat.A2 = &(atomColData.aMat[atom2]);
1144     }
1145    
1146     if (storageLayout_ & DataStorage::dslElectroFrame)
1147     {
1148     idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
1149     idat.eFrame2 = &(atomColData.electroFrame[atom2]);
1150     }
1151    
1152     if (storageLayout_ & DataStorage::dslTorque)
1153     {
1154     idat.t1 = &(atomRowData.torque[atom1]);
1155     idat.t2 = &(atomColData.torque[atom2]);
1156     }
1157    
1158     if (storageLayout_ & DataStorage::dslDensity)
1159     {
1160     idat.rho1 = &(atomRowData.density[atom1]);
1161     idat.rho2 = &(atomColData.density[atom2]);
1162     }
1163    
1164     if (storageLayout_ & DataStorage::dslFunctional)
1165     {
1166     idat.frho1 = &(atomRowData.functional[atom1]);
1167     idat.frho2 = &(atomColData.functional[atom2]);
1168     }
1169    
1170     if (storageLayout_ & DataStorage::dslFunctionalDerivative)
1171     {
1172     idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
1173     idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
1174     }
1175    
1176     if (storageLayout_ & DataStorage::dslParticlePot)
1177     {
1178     idat.particlePot1 = &(atomRowData.particlePot[atom1]);
1179     idat.particlePot2 = &(atomColData.particlePot[atom2]);
1180     }
1181    
1182     if (storageLayout_ & DataStorage::dslSkippedCharge)
1183     {
1184     idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
1185     idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
1186     }
1187    
1188     #else
1189    
1190     idat.atypes = make_pair(atypesLocal[atom1], atypesLocal[atom2]);
1191     //idat.atypes = make_pair( ff_->getAtomType(idents[atom1]),
1192     // ff_->getAtomType(idents[atom2]) );
1193    
1194     if (storageLayout_ & DataStorage::dslAmat)
1195     {
1196     idat.A1 = &(snap_->atomData.aMat[atom1]);
1197     idat.A2 = &(snap_->atomData.aMat[atom2]);
1198     }
1199    
1200     if (storageLayout_ & DataStorage::dslElectroFrame)
1201     {
1202     idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
1203     idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
1204     }
1205    
1206     if (storageLayout_ & DataStorage::dslTorque)
1207     {
1208     idat.t1 = &(snap_->atomData.torque[atom1]);
1209     idat.t2 = &(snap_->atomData.torque[atom2]);
1210     }
1211    
1212     if (storageLayout_ & DataStorage::dslDensity)
1213     {
1214     idat.rho1 = &(snap_->atomData.density[atom1]);
1215     idat.rho2 = &(snap_->atomData.density[atom2]);
1216     }
1217    
1218     if (storageLayout_ & DataStorage::dslFunctional)
1219     {
1220     idat.frho1 = &(snap_->atomData.functional[atom1]);
1221     idat.frho2 = &(snap_->atomData.functional[atom2]);
1222     }
1223    
1224     if (storageLayout_ & DataStorage::dslFunctionalDerivative)
1225     {
1226     idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
1227     idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
1228     }
1229    
1230     if (storageLayout_ & DataStorage::dslParticlePot)
1231     {
1232     idat.particlePot1 = &(snap_->atomData.particlePot[atom1]);
1233     idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
1234     }
1235    
1236     if (storageLayout_ & DataStorage::dslSkippedCharge)
1237     {
1238     idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
1239     idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
1240     }
1241     #endif
1242     }
1243    
1244 mciznick 1598 void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) {
1245 gezelter 1575 #ifdef IS_MPI
1246 mciznick 1598 pot_row[atom1] += 0.5 * *(idat.pot);
1247     pot_col[atom2] += 0.5 * *(idat.pot);
1248 gezelter 1575
1249 mciznick 1598 atomRowData.force[atom1] += *(idat.f1);
1250     atomColData.force[atom2] -= *(idat.f1);
1251 gezelter 1575 #else
1252 mciznick 1598 pairwisePot += *(idat.pot);
1253 gezelter 1583
1254 mciznick 1598 snap_->atomData.force[atom1] += *(idat.f1);
1255     snap_->atomData.force[atom2] -= *(idat.f1);
1256 gezelter 1575 #endif
1257    
1258 mciznick 1598 }
1259    
1260 mciznick 1608 void ForceMatrixDecomposition::unpackInteractionDataOMP(InteractionDataPrv &idat, int atom1, int atom2) {
1261     #pragma omp critical
1262     {
1263     pairwisePot += idat.pot;
1264    
1265     snap_->atomData.force[atom1] += idat.f1;
1266     snap_->atomData.force[atom2] -= idat.f1;
1267     }
1268     }
1269    
1270 mciznick 1598 void ForceMatrixDecomposition::reorderGroupCutoffs(vector<int> &order) {
1271     vector<int> tmp = vector<int> (groupToGtype.size());
1272    
1273     for (int i = 0; i < groupToGtype.size(); ++i)
1274     {
1275     tmp[i] = groupToGtype[i];
1276     }
1277    
1278     for (int i = 0; i < groupToGtype.size(); ++i)
1279     {
1280     groupToGtype[i] = tmp[order[i]];
1281     }
1282     }
1283    
1284     void ForceMatrixDecomposition::reorderPosition(vector<int> &order) {
1285     Snapshot* snap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1286     DataStorage* cgConfig = &(snap_->cgData);
1287     vector<Vector3d> tmp = vector<Vector3d> (nGroups_);
1288    
1289     for (int i = 0; i < nGroups_; ++i)
1290     {
1291     tmp[i] = snap_->cgData.position[i];
1292     }
1293    
1294 mciznick 1599 vector<int> mapPos = vector<int> (nGroups_);
1295 mciznick 1598 for (int i = 0; i < nGroups_; ++i)
1296     {
1297     snap_->cgData.position[i] = tmp[order[i]];
1298     mapPos[order[i]] = i;
1299     }
1300    
1301     SimInfo::MoleculeIterator mi;
1302     Molecule* mol;
1303     Molecule::CutoffGroupIterator ci;
1304     CutoffGroup* cg;
1305    
1306     for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi))
1307     {
1308     for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci))
1309     {
1310     cg->setLocalIndex(mapPos[cg->getLocalIndex()]);
1311     }
1312     }
1313    
1314 mciznick 1599 /* if (info_->getNCutoffGroups() > 0)
1315     {
1316     for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi))
1317     {
1318     for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci))
1319     {
1320     printf("gbI:%d locI:%d x:%f y:%f z:%f\n", cg->getGlobalIndex(), cg->getLocalIndex(),
1321     cgConfig->position[cg->getLocalIndex()].x(), cgConfig->position[cg->getLocalIndex()].y(),
1322     cgConfig->position[cg->getLocalIndex()].z());
1323     }
1324     }
1325     } else
1326     {
1327     // center of mass of the group is the same as position of the atom
1328     // if cutoff group does not exist
1329     printf("ERROR!!!!!!!!!!!!!!!!!!!!!!!!!!!\n");
1330     // cgConfig->position = config->position;
1331     }*/
1332 mciznick 1598 }
1333    
1334     void ForceMatrixDecomposition::reorderGroupList(vector<int> &order) {
1335     vector<vector<int> > tmp = vector<vector<int> > (groupList_.size());
1336    
1337     for (int i = 0; i < groupList_.size(); ++i)
1338     {
1339     tmp[i] = groupList_[i];
1340     }
1341    
1342     for (int i = 0; i < groupList_.size(); ++i)
1343     {
1344     groupList_[i] = tmp[order[i]];
1345     }
1346     }
1347    
1348     void ForceMatrixDecomposition::reorderMemory(vector<vector<CutoffGroup *> > &H_c_l) {
1349     int n = 0;
1350 mciznick 1599 // printf("Reorder memory time:%f!!!!!!!!!!!!!!!!!!!!!!!!!!!\n",
1351     // info_->getSnapshotManager()->getCurrentSnapshot()->getTime());
1352 mciznick 1598
1353     /* record the reordered atom indices */
1354     vector<int> k = vector<int> (nGroups_);
1355    
1356     for (int c = 0; c < H_c_l.size(); ++c)
1357     {
1358     for (vector<CutoffGroup *>::iterator cg = H_c_l[c].begin(); cg != H_c_l[c].end(); ++cg)
1359     {
1360     int i = (*cg)->getGlobalIndex();
1361     k[n] = i;
1362     ++n;
1363     }
1364     }
1365    
1366     // reorderGroupCutoffs(k);
1367     // reorderGroupList(k);
1368     reorderPosition(k);
1369     }
1370    
1371     vector<vector<CutoffGroup *> > ForceMatrixDecomposition::buildLayerBasedNeighborList() {
1372 mciznick 1599 // printf("buildLayerBasedNeighborList; nGroups:%d\n", nGroups_);
1373 chuckv 1595 // Na = nGroups_
1374     /* cell occupancy counter */
1375 mciznick 1599 // vector<int> k_c;
1376 chuckv 1595 /* c_i - has cell containing atom i (size Na) */
1377 mciznick 1598 vector<int> c = vector<int> (nGroups_);
1378 chuckv 1595 /* l_i - layer containing atom i (size Na) */
1379 mciznick 1599 // vector<int> l;
1380 chuckv 1595
1381     RealType rList_ = (largestRcut_ + skinThickness_);
1382     Snapshot* snap_ = sman_->getCurrentSnapshot();
1383     Mat3x3d Hmat = snap_->getHmat();
1384     Vector3d Hx = Hmat.getColumn(0);
1385     Vector3d Hy = Hmat.getColumn(1);
1386     Vector3d Hz = Hmat.getColumn(2);
1387    
1388     nCells_.x() = (int) (Hx.length()) / rList_;
1389     nCells_.y() = (int) (Hy.length()) / rList_;
1390     nCells_.z() = (int) (Hz.length()) / rList_;
1391    
1392     Mat3x3d invHmat = snap_->getInvHmat();
1393     Vector3d rs, scaled, dr;
1394     Vector3i whichCell;
1395     int cellIndex;
1396     int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
1397    
1398 mciznick 1599 // k_c = vector<int> (nCtot, 0);
1399 chuckv 1595
1400 mciznick 1598 SimInfo::MoleculeIterator mi;
1401     Molecule* mol;
1402     Molecule::CutoffGroupIterator ci;
1403     CutoffGroup* cg;
1404    
1405     for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi))
1406 chuckv 1595 {
1407 mciznick 1598 for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci))
1408     {
1409     rs = snap_->cgData.position[cg->getLocalIndex()];
1410 chuckv 1595
1411 mciznick 1598 // scaled positions relative to the box vectors
1412     scaled = invHmat * rs;
1413 chuckv 1595
1414 mciznick 1598 // wrap the vector back into the unit box by subtracting integer box
1415     // numbers
1416     for (int j = 0; j < 3; j++)
1417     {
1418     scaled[j] -= roundMe(scaled[j]);
1419     scaled[j] += 0.5;
1420     }
1421 chuckv 1595
1422 mciznick 1598 // find xyz-indices of cell that cutoffGroup is in.
1423     whichCell.x() = nCells_.x() * scaled.x();
1424     whichCell.y() = nCells_.y() * scaled.y();
1425     whichCell.z() = nCells_.z() * scaled.z();
1426 chuckv 1595
1427 mciznick 1599 // printf("pos x:%f y:%f z:%f cell x:%d y:%d z:%d\n", rs.x(), rs.y(), rs.z(), whichCell.x(), whichCell.y(),
1428     // whichCell.z());
1429 chuckv 1595
1430 mciznick 1598 // find single index of this cell:
1431     cellIndex = Vlinear(whichCell, nCells_);
1432 chuckv 1595
1433 mciznick 1598 c[cg->getGlobalIndex()] = cellIndex;
1434     }
1435 chuckv 1595 }
1436    
1437 mciznick 1599 // int k_c_curr;
1438     // int k_c_max = 0;
1439 chuckv 1595 /* the cell-layer occupancy matrix */
1440 mciznick 1598 vector<vector<CutoffGroup *> > H_c_l = vector<vector<CutoffGroup *> > (nCtot);
1441 chuckv 1595
1442 mciznick 1598 for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi))
1443 chuckv 1595 {
1444 mciznick 1598 for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci))
1445 chuckv 1595
1446     {
1447 mciznick 1598 // k_c_curr = ++k_c[c[cg1->getGlobalIndex()]];
1448     // l.push_back(k_c_curr);
1449     //
1450     // /* determines the number of layers in use */
1451     // if (k_c_max < k_c_curr)
1452     // {
1453     // k_c_max = k_c_curr;
1454     // }
1455     H_c_l[c[cg->getGlobalIndex()]].push_back(/*l[*/cg/*]*/);
1456 chuckv 1595 }
1457     }
1458    
1459 mciznick 1599 /* Frequency of reordering the memory */
1460     if (neighborListReorderFreq != 0)
1461     {
1462     if (reorderFreqCounter == neighborListReorderFreq)
1463     {
1464     //printf("neighborListReorderFreq:%d\n", neighborListReorderFreq);
1465     reorderMemory(H_c_l);
1466     reorderFreqCounter = 1;
1467     } else
1468     {
1469     reorderFreqCounter++;
1470     }
1471     }
1472 mciznick 1598
1473 chuckv 1595 int m;
1474     /* the neighbor matrix */
1475 mciznick 1598 vector<vector<CutoffGroup *> > neighborMatW = vector<vector<CutoffGroup *> > (nGroups_);
1476 chuckv 1595
1477     groupCutoffs cuts;
1478 mciznick 1598 CutoffGroup *cg1;
1479 chuckv 1595
1480     /* loops over objects(atoms, rigidBodies, cutoffGroups, etc.) */
1481 mciznick 1598 for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi))
1482 chuckv 1595 {
1483 mciznick 1598 for (cg1 = mol->beginCutoffGroup(ci); cg1 != NULL; cg1 = mol->nextCutoffGroup(ci))
1484 chuckv 1595 {
1485 mciznick 1598 /* c' */
1486     int c1 = c[cg1->getGlobalIndex()];
1487     Vector3i c1v = idxToV(c1, nCells_);
1488 chuckv 1595
1489 mciznick 1598 /* loops over the neighboring cells c'' */
1490     for (vector<Vector3i>::iterator os = cellOffsets_.begin(); os != cellOffsets_.end(); ++os)
1491 chuckv 1595 {
1492 mciznick 1598 Vector3i c2v = c1v + (*os);
1493 chuckv 1595
1494 mciznick 1598 if (c2v.x() >= nCells_.x())
1495     {
1496     c2v.x() = 0;
1497     } else if (c2v.x() < 0)
1498     {
1499     c2v.x() = nCells_.x() - 1;
1500     }
1501 chuckv 1595
1502 mciznick 1598 if (c2v.y() >= nCells_.y())
1503     {
1504     c2v.y() = 0;
1505     } else if (c2v.y() < 0)
1506     {
1507     c2v.y() = nCells_.y() - 1;
1508     }
1509 chuckv 1595
1510 mciznick 1598 if (c2v.z() >= nCells_.z())
1511 chuckv 1595 {
1512 mciznick 1598 c2v.z() = 0;
1513     } else if (c2v.z() < 0)
1514     {
1515     c2v.z() = nCells_.z() - 1;
1516     }
1517    
1518     int c2 = Vlinear(c2v, nCells_);
1519     /* loops over layers l to access the neighbor atoms */
1520     for (vector<CutoffGroup *>::iterator cg2 = H_c_l[c2].begin(); cg2 != H_c_l[c2].end(); ++cg2)
1521     {
1522     // if i'' = 0 then break // doesn't apply to vector implementation of matrix
1523     // if(i != *j)
1524     if (c2 != c1 || (*cg2)->getGlobalIndex() < cg1->getGlobalIndex())
1525 chuckv 1595 {
1526 mciznick 1598 dr = snap_->cgData.position[(*cg2)->getLocalIndex()] - snap_->cgData.position[cg1->getLocalIndex()];
1527     snap_->wrapVector(dr);
1528     cuts = getGroupCutoffs(cg1->getGlobalIndex(), (*cg2)->getGlobalIndex());
1529     if (dr.lengthSquare() < cuts.third)
1530     {
1531     /* transposed version of Rapaport W mat, to occupy successive memory locations on CPU */
1532     neighborMatW[cg1->getGlobalIndex()].push_back((*cg2));
1533     }
1534 chuckv 1595 }
1535     }
1536     }
1537     }
1538     }
1539    
1540     // save the local cutoff group positions for the check that is
1541     // done on each loop:
1542     saved_CG_positions_.clear();
1543     for (int i = 0; i < nGroups_; i++)
1544     saved_CG_positions_.push_back(snap_->cgData.position[i]);
1545    
1546     return neighborMatW;
1547     }
1548    
1549 mciznick 1598 /*
1550     * buildNeighborList
1551     *
1552     * first element of pair is row-indexed CutoffGroup
1553     * second element of pair is column-indexed CutoffGroup
1554     */
1555     vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() {
1556 gezelter 1587
1557 mciznick 1598 vector<pair<int, int> > neighborList;
1558     groupCutoffs cuts;
1559     bool doAllPairs = false;
1560    
1561 gezelter 1567 #ifdef IS_MPI
1562 mciznick 1598 cellListRow_.clear();
1563     cellListCol_.clear();
1564 gezelter 1567 #else
1565 mciznick 1598 cellList_.clear();
1566 gezelter 1567 #endif
1567 gezelter 1562
1568 mciznick 1598 RealType rList_ = (largestRcut_ + skinThickness_);
1569     RealType rl2 = rList_ * rList_;
1570     Snapshot* snap_ = sman_->getCurrentSnapshot();
1571     Mat3x3d Hmat = snap_->getHmat();
1572     Vector3d Hx = Hmat.getColumn(0);
1573     Vector3d Hy = Hmat.getColumn(1);
1574     Vector3d Hz = Hmat.getColumn(2);
1575 gezelter 1562
1576 mciznick 1598 nCells_.x() = (int) (Hx.length()) / rList_;
1577     nCells_.y() = (int) (Hy.length()) / rList_;
1578     nCells_.z() = (int) (Hz.length()) / rList_;
1579 gezelter 1562
1580 mciznick 1598 // handle small boxes where the cell offsets can end up repeating cells
1581 gezelter 1587
1582 mciznick 1598 if (nCells_.x() < 3)
1583     doAllPairs = true;
1584     if (nCells_.y() < 3)
1585     doAllPairs = true;
1586     if (nCells_.z() < 3)
1587     doAllPairs = true;
1588 gezelter 1567
1589 mciznick 1598 Mat3x3d invHmat = snap_->getInvHmat();
1590     Vector3d rs, scaled, dr;
1591     Vector3i whichCell;
1592     int cellIndex;
1593     int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
1594    
1595 gezelter 1567 #ifdef IS_MPI
1596 mciznick 1598 cellListRow_.resize(nCtot);
1597     cellListCol_.resize(nCtot);
1598 gezelter 1579 #else
1599 mciznick 1598 cellList_.resize(nCtot);
1600 gezelter 1579 #endif
1601 gezelter 1582
1602 mciznick 1598 if (!doAllPairs)
1603     {
1604 gezelter 1579 #ifdef IS_MPI
1605 gezelter 1581
1606 mciznick 1598 for (int i = 0; i < nGroupsInRow_; i++)
1607     {
1608     rs = cgRowData.position[i];
1609    
1610     // scaled positions relative to the box vectors
1611     scaled = invHmat * rs;
1612    
1613     // wrap the vector back into the unit box by subtracting integer box
1614     // numbers
1615     for (int j = 0; j < 3; j++)
1616     {
1617     scaled[j] -= roundMe(scaled[j]);
1618     scaled[j] += 0.5;
1619     }
1620    
1621     // find xyz-indices of cell that cutoffGroup is in.
1622     whichCell.x() = nCells_.x() * scaled.x();
1623     whichCell.y() = nCells_.y() * scaled.y();
1624     whichCell.z() = nCells_.z() * scaled.z();
1625    
1626     // find single index of this cell:
1627     cellIndex = Vlinear(whichCell, nCells_);
1628    
1629     // add this cutoff group to the list of groups in this cell;
1630     cellListRow_[cellIndex].push_back(i);
1631     }
1632     for (int i = 0; i < nGroupsInCol_; i++)
1633     {
1634     rs = cgColData.position[i];
1635    
1636     // scaled positions relative to the box vectors
1637     scaled = invHmat * rs;
1638    
1639     // wrap the vector back into the unit box by subtracting integer box
1640     // numbers
1641     for (int j = 0; j < 3; j++)
1642     {
1643     scaled[j] -= roundMe(scaled[j]);
1644     scaled[j] += 0.5;
1645     }
1646    
1647     // find xyz-indices of cell that cutoffGroup is in.
1648     whichCell.x() = nCells_.x() * scaled.x();
1649     whichCell.y() = nCells_.y() * scaled.y();
1650     whichCell.z() = nCells_.z() * scaled.z();
1651    
1652     // find single index of this cell:
1653     cellIndex = Vlinear(whichCell, nCells_);
1654    
1655     // add this cutoff group to the list of groups in this cell;
1656     cellListCol_[cellIndex].push_back(i);
1657     }
1658 gezelter 1567 #else
1659 mciznick 1598 for (int i = 0; i < nGroups_; i++)
1660     {
1661     rs = snap_->cgData.position[i];
1662    
1663     // scaled positions relative to the box vectors
1664     scaled = invHmat * rs;
1665    
1666     // wrap the vector back into the unit box by subtracting integer box
1667     // numbers
1668     for (int j = 0; j < 3; j++)
1669     {
1670     scaled[j] -= roundMe(scaled[j]);
1671     scaled[j] += 0.5;
1672     }
1673    
1674     // find xyz-indices of cell that cutoffGroup is in.
1675     whichCell.x() = nCells_.x() * scaled.x();
1676     whichCell.y() = nCells_.y() * scaled.y();
1677     whichCell.z() = nCells_.z() * scaled.z();
1678    
1679     // find single index of this cell:
1680     cellIndex = Vlinear(whichCell, nCells_);
1681    
1682     // add this cutoff group to the list of groups in this cell;
1683     cellList_[cellIndex].push_back(i);
1684     }
1685 gezelter 1567 #endif
1686    
1687 mciznick 1598 for (int m1z = 0; m1z < nCells_.z(); m1z++)
1688     {
1689     for (int m1y = 0; m1y < nCells_.y(); m1y++)
1690     {
1691     for (int m1x = 0; m1x < nCells_.x(); m1x++)
1692     {
1693     Vector3i m1v(m1x, m1y, m1z);
1694     int m1 = Vlinear(m1v, nCells_);
1695    
1696     for (vector<Vector3i>::iterator os = cellOffsets_.begin(); os != cellOffsets_.end(); ++os)
1697     {
1698    
1699     Vector3i m2v = m1v + (*os);
1700    
1701     if (m2v.x() >= nCells_.x())
1702     {
1703     m2v.x() = 0;
1704     } else if (m2v.x() < 0)
1705     {
1706     m2v.x() = nCells_.x() - 1;
1707     }
1708    
1709     if (m2v.y() >= nCells_.y())
1710     {
1711     m2v.y() = 0;
1712     } else if (m2v.y() < 0)
1713     {
1714     m2v.y() = nCells_.y() - 1;
1715     }
1716    
1717     if (m2v.z() >= nCells_.z())
1718     {
1719     m2v.z() = 0;
1720     } else if (m2v.z() < 0)
1721     {
1722     m2v.z() = nCells_.z() - 1;
1723     }
1724    
1725     int m2 = Vlinear(m2v, nCells_);
1726    
1727 gezelter 1567 #ifdef IS_MPI
1728 mciznick 1598 for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1729     j1 != cellListRow_[m1].end(); ++j1)
1730     {
1731     for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1732     j2 != cellListCol_[m2].end(); ++j2)
1733     {
1734    
1735     // In parallel, we need to visit *all* pairs of row &
1736     // column indicies and will truncate later on.
1737     dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1738     snap_->wrapVector(dr);
1739     cuts = getGroupCutoffs( (*j1), (*j2) );
1740     if (dr.lengthSquare() < cuts.third)
1741     {
1742     neighborList.push_back(make_pair((*j1), (*j2)));
1743     }
1744     }
1745     }
1746 gezelter 1567 #else
1747 mciznick 1598
1748     for (vector<int>::iterator j1 = cellList_[m1].begin(); j1 != cellList_[m1].end(); ++j1)
1749     {
1750     for (vector<int>::iterator j2 = cellList_[m2].begin(); j2 != cellList_[m2].end(); ++j2)
1751     {
1752    
1753     // Always do this if we're in different cells or if
1754     // we're in the same cell and the global index of the
1755     // j2 cutoff group is less than the j1 cutoff group
1756    
1757     if (m2 != m1 || (*j2) < (*j1))
1758     {
1759     dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1760     snap_->wrapVector(dr);
1761     cuts = getGroupCutoffs((*j1), (*j2));
1762     if (dr.lengthSquare() < cuts.third)
1763     {
1764     neighborList.push_back(make_pair((*j1), (*j2)));
1765     }
1766     }
1767     }
1768     }
1769 gezelter 1587 #endif
1770 mciznick 1598 }
1771     }
1772     }
1773     }
1774     } else
1775     {
1776     // branch to do all cutoff group pairs
1777 gezelter 1587 #ifdef IS_MPI
1778 mciznick 1598 for (int j1 = 0; j1 < nGroupsInRow_; j1++)
1779     {
1780     for (int j2 = 0; j2 < nGroupsInCol_; j2++)
1781     {
1782     dr = cgColData.position[j2] - cgRowData.position[j1];
1783     snap_->wrapVector(dr);
1784     cuts = getGroupCutoffs( j1, j2 );
1785     if (dr.lengthSquare() < cuts.third)
1786     {
1787     neighborList.push_back(make_pair(j1, j2));
1788     }
1789     }
1790     }
1791 gezelter 1587 #else
1792 mciznick 1598 for (int j1 = 0; j1 < nGroups_ - 1; j1++)
1793     {
1794     for (int j2 = j1 + 1; j2 < nGroups_; j2++)
1795     {
1796     dr = snap_->cgData.position[j2] - snap_->cgData.position[j1];
1797     snap_->wrapVector(dr);
1798     cuts = getGroupCutoffs(j1, j2);
1799     if (dr.lengthSquare() < cuts.third)
1800     {
1801     neighborList.push_back(make_pair(j1, j2));
1802     }
1803     }
1804     }
1805 gezelter 1587 #endif
1806 mciznick 1598 }
1807    
1808     // save the local cutoff group positions for the check that is
1809     // done on each loop:
1810     saved_CG_positions_.clear();
1811     for (int i = 0; i < nGroups_; i++)
1812     saved_CG_positions_.push_back(snap_->cgData.position[i]);
1813    
1814     return neighborList;
1815     }
1816 gezelter 1539 } //end namespace OpenMD