ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/devel_omp/src/parallel/ForceMatrixDecomposition.cpp
(Generate patch)

Comparing:
branches/development/src/parallel/ForceDecomposition.cpp (file contents), Revision 1541 by gezelter, Fri Feb 4 20:04:56 2011 UTC vs.
branches/devel_omp/src/parallel/ForceMatrixDecomposition.cpp (file contents), Revision 1595 by chuckv, Tue Jul 19 18:50:04 2011 UTC

# Line 38 | Line 38
38   * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39   * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41 < #include "parallel/ForceDecomposition.hpp"
42 < #include "parallel/Communicator.hpp"
41 > #include "parallel/ForceMatrixDecomposition.hpp"
42   #include "math/SquareMatrix3.hpp"
43 + #include "nonbonded/NonBondedInteraction.hpp"
44 + #include "brains/SnapshotManager.hpp"
45 + #include "brains/PairList.hpp"
46  
47   using namespace std;
48   namespace OpenMD {
49  
50 <  void ForceDecomposition::distributeInitialData() {
50 >  ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) {
51 >
52 >    // In a parallel computation, row and colum scans must visit all
53 >    // surrounding cells (not just the 14 upper triangular blocks that
54 >    // are used when the processor can see all pairs)
55   #ifdef IS_MPI
56 <    Snapshot* snap = sman_->getCurrentSnapshot();
57 <    int nAtoms = snap->getNumberOfAtoms();
58 <    int nGroups = snap->getNumberOfCutoffGroups();
56 >    cellOffsets_.push_back( Vector3i(-1, 0, 0) );
57 >    cellOffsets_.push_back( Vector3i(-1,-1, 0) );
58 >    cellOffsets_.push_back( Vector3i( 0,-1, 0) );
59 >    cellOffsets_.push_back( Vector3i( 1,-1, 0) );
60 >    cellOffsets_.push_back( Vector3i( 0, 0,-1) );
61 >    cellOffsets_.push_back( Vector3i(-1, 0, 1) );
62 >    cellOffsets_.push_back( Vector3i(-1,-1,-1) );
63 >    cellOffsets_.push_back( Vector3i( 0,-1,-1) );
64 >    cellOffsets_.push_back( Vector3i( 1,-1,-1) );
65 >    cellOffsets_.push_back( Vector3i( 1, 0,-1) );
66 >    cellOffsets_.push_back( Vector3i( 1, 1,-1) );
67 >    cellOffsets_.push_back( Vector3i( 0, 1,-1) );
68 >    cellOffsets_.push_back( Vector3i(-1, 1,-1) );
69 > #endif    
70 >  }
71  
54    AtomCommRealI = new Communicator<Row,RealType>(nAtoms);
55    AtomCommVectorI = new Communicator<Row,Vector3d>(nAtoms);
56    AtomCommMatrixI = new Communicator<Row,Mat3x3d>(nAtoms);
72  
73 <    AtomCommRealJ = new Communicator<Column,RealType>(nAtoms);
74 <    AtomCommVectorJ = new Communicator<Column,Vector3d>(nAtoms);
75 <    AtomCommMatrixJ = new Communicator<Column,Mat3x3d>(nAtoms);
73 >  /**
74 >   * distributeInitialData is essentially a copy of the older fortran
75 >   * SimulationSetup
76 >   */
77 >  void ForceMatrixDecomposition::distributeInitialData() {
78 >    snap_ = sman_->getCurrentSnapshot();
79 >    storageLayout_ = sman_->getStorageLayout();
80 >    ff_ = info_->getForceField();
81 >    nLocal_ = snap_->getNumberOfAtoms();
82 >    
83 >    nGroups_ = info_->getNLocalCutoffGroups();
84 >    // gather the information for atomtype IDs (atids):
85 >    idents = info_->getIdentArray();
86 >    AtomLocalToGlobal = info_->getGlobalAtomIndices();
87 >    cgLocalToGlobal = info_->getGlobalGroupIndices();
88 >    vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
89  
90 <    cgCommVectorI = new Communicator<Row,Vector3d>(nGroups);
63 <    cgCommVectorJ = new Communicator<Column,Vector3d>(nGroups);
90 >    massFactors = info_->getMassFactors();
91  
92 <    int nInRow = AtomCommRealI.getSize();
93 <    int nInCol = AtomCommRealJ.getSize();
92 >    PairList* excludes = info_->getExcludedInteractions();
93 >    PairList* oneTwo = info_->getOneTwoInteractions();
94 >    PairList* oneThree = info_->getOneThreeInteractions();
95 >    PairList* oneFour = info_->getOneFourInteractions();
96  
97 <    vector<vector<RealType> > pot_row(LR_POT_TYPES,
98 <                                      vector<RealType> (nInRow, 0.0));
99 <    vector<vector<RealType> > pot_col(LR_POT_TYPES,
100 <                                      vector<RealType> (nInCol, 0.0));
97 > #ifdef IS_MPI
98 >
99 >    MPI::Intracomm row = rowComm.getComm();
100 >    MPI::Intracomm col = colComm.getComm();
101  
102 <    vector<vector<RealType> > pot_local(LR_POT_TYPES,
103 <                                        vector<RealType> (nAtoms, 0.0));
102 >    AtomPlanIntRow = new Plan<int>(row, nLocal_);
103 >    AtomPlanRealRow = new Plan<RealType>(row, nLocal_);
104 >    AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_);
105 >    AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_);
106 >    AtomPlanPotRow = new Plan<potVec>(row, nLocal_);
107  
108 +    AtomPlanIntColumn = new Plan<int>(col, nLocal_);
109 +    AtomPlanRealColumn = new Plan<RealType>(col, nLocal_);
110 +    AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_);
111 +    AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_);
112 +    AtomPlanPotColumn = new Plan<potVec>(col, nLocal_);
113 +
114 +    cgPlanIntRow = new Plan<int>(row, nGroups_);
115 +    cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_);
116 +    cgPlanIntColumn = new Plan<int>(col, nGroups_);
117 +    cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_);
118 +
119 +    nAtomsInRow_ = AtomPlanIntRow->getSize();
120 +    nAtomsInCol_ = AtomPlanIntColumn->getSize();
121 +    nGroupsInRow_ = cgPlanIntRow->getSize();
122 +    nGroupsInCol_ = cgPlanIntColumn->getSize();
123 +
124 +    // Modify the data storage objects with the correct layouts and sizes:
125 +    atomRowData.resize(nAtomsInRow_);
126 +    atomRowData.setStorageLayout(storageLayout_);
127 +    atomColData.resize(nAtomsInCol_);
128 +    atomColData.setStorageLayout(storageLayout_);
129 +    cgRowData.resize(nGroupsInRow_);
130 +    cgRowData.setStorageLayout(DataStorage::dslPosition);
131 +    cgColData.resize(nGroupsInCol_);
132 +    cgColData.setStorageLayout(DataStorage::dslPosition);
133 +        
134 +    identsRow.resize(nAtomsInRow_);
135 +    identsCol.resize(nAtomsInCol_);
136 +    
137 +    AtomPlanIntRow->gather(idents, identsRow);
138 +    AtomPlanIntColumn->gather(idents, identsCol);
139 +    
140 +    // allocate memory for the parallel objects
141 +    atypesRow.resize(nAtomsInRow_);
142 +    atypesCol.resize(nAtomsInCol_);
143 +
144 +    for (int i = 0; i < nAtomsInRow_; i++)
145 +      atypesRow[i] = ff_->getAtomType(identsRow[i]);
146 +    for (int i = 0; i < nAtomsInCol_; i++)
147 +      atypesCol[i] = ff_->getAtomType(identsCol[i]);        
148 +
149 +    pot_row.resize(nAtomsInRow_);
150 +    pot_col.resize(nAtomsInCol_);
151 +
152 +    AtomRowToGlobal.resize(nAtomsInRow_);
153 +    AtomColToGlobal.resize(nAtomsInCol_);
154 +    AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
155 +    AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
156 +
157 +    cerr << "Atoms in Local:\n";
158 +    for (int i = 0; i < AtomLocalToGlobal.size(); i++) {
159 +      cerr << "i =\t" << i << "\t localAt =\t" << AtomLocalToGlobal[i] << "\n";
160 +    }
161 +    cerr << "Atoms in Row:\n";
162 +    for (int i = 0; i < AtomRowToGlobal.size(); i++) {
163 +      cerr << "i =\t" << i << "\t rowAt =\t" << AtomRowToGlobal[i] << "\n";
164 +    }
165 +    cerr << "Atoms in Col:\n";
166 +    for (int i = 0; i < AtomColToGlobal.size(); i++) {
167 +      cerr << "i =\t" << i << "\t colAt =\t" << AtomColToGlobal[i] << "\n";
168 +    }
169 +
170 +    cgRowToGlobal.resize(nGroupsInRow_);
171 +    cgColToGlobal.resize(nGroupsInCol_);
172 +    cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
173 +    cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
174 +
175 +    cerr << "Gruops in Local:\n";
176 +    for (int i = 0; i < cgLocalToGlobal.size(); i++) {
177 +      cerr << "i =\t" << i << "\t localCG =\t" << cgLocalToGlobal[i] << "\n";
178 +    }
179 +    cerr << "Groups in Row:\n";
180 +    for (int i = 0; i < cgRowToGlobal.size(); i++) {
181 +      cerr << "i =\t" << i << "\t rowCG =\t" << cgRowToGlobal[i] << "\n";
182 +    }
183 +    cerr << "Groups in Col:\n";
184 +    for (int i = 0; i < cgColToGlobal.size(); i++) {
185 +      cerr << "i =\t" << i << "\t colCG =\t" << cgColToGlobal[i] << "\n";
186 +    }
187 +
188 +
189 +    massFactorsRow.resize(nAtomsInRow_);
190 +    massFactorsCol.resize(nAtomsInCol_);
191 +    AtomPlanRealRow->gather(massFactors, massFactorsRow);
192 +    AtomPlanRealColumn->gather(massFactors, massFactorsCol);
193 +
194 +    groupListRow_.clear();
195 +    groupListRow_.resize(nGroupsInRow_);
196 +    for (int i = 0; i < nGroupsInRow_; i++) {
197 +      int gid = cgRowToGlobal[i];
198 +      for (int j = 0; j < nAtomsInRow_; j++) {
199 +        int aid = AtomRowToGlobal[j];
200 +        if (globalGroupMembership[aid] == gid)
201 +          groupListRow_[i].push_back(j);
202 +      }      
203 +    }
204 +
205 +    groupListCol_.clear();
206 +    groupListCol_.resize(nGroupsInCol_);
207 +    for (int i = 0; i < nGroupsInCol_; i++) {
208 +      int gid = cgColToGlobal[i];
209 +      for (int j = 0; j < nAtomsInCol_; j++) {
210 +        int aid = AtomColToGlobal[j];
211 +        if (globalGroupMembership[aid] == gid)
212 +          groupListCol_[i].push_back(j);
213 +      }      
214 +    }
215 +
216 +    excludesForAtom.clear();
217 +    excludesForAtom.resize(nAtomsInRow_);
218 +    toposForAtom.clear();
219 +    toposForAtom.resize(nAtomsInRow_);
220 +    topoDist.clear();
221 +    topoDist.resize(nAtomsInRow_);
222 +    for (int i = 0; i < nAtomsInRow_; i++) {
223 +      int iglob = AtomRowToGlobal[i];
224 +
225 +      for (int j = 0; j < nAtomsInCol_; j++) {
226 +        int jglob = AtomColToGlobal[j];
227 +
228 +        if (excludes->hasPair(iglob, jglob))
229 +          excludesForAtom[i].push_back(j);      
230 +        
231 +        if (oneTwo->hasPair(iglob, jglob)) {
232 +          toposForAtom[i].push_back(j);
233 +          topoDist[i].push_back(1);
234 +        } else {
235 +          if (oneThree->hasPair(iglob, jglob)) {
236 +            toposForAtom[i].push_back(j);
237 +            topoDist[i].push_back(2);
238 +          } else {
239 +            if (oneFour->hasPair(iglob, jglob)) {
240 +              toposForAtom[i].push_back(j);
241 +              topoDist[i].push_back(3);
242 +            }
243 +          }
244 +        }
245 +      }      
246 +    }
247 +
248   #endif
249 +
250 +    // allocate memory for the parallel objects
251 +    atypesLocal.resize(nLocal_);
252 +
253 +    for (int i = 0; i < nLocal_; i++)
254 +      atypesLocal[i] = ff_->getAtomType(idents[i]);
255 +
256 +    groupList_.clear();
257 +    groupList_.resize(nGroups_);
258 +    for (int i = 0; i < nGroups_; i++) {
259 +      int gid = cgLocalToGlobal[i];
260 +      for (int j = 0; j < nLocal_; j++) {
261 +        int aid = AtomLocalToGlobal[j];
262 +        if (globalGroupMembership[aid] == gid) {
263 +          groupList_[i].push_back(j);
264 +        }
265 +      }      
266 +    }
267 +
268 +    excludesForAtom.clear();
269 +    excludesForAtom.resize(nLocal_);
270 +    toposForAtom.clear();
271 +    toposForAtom.resize(nLocal_);
272 +    topoDist.clear();
273 +    topoDist.resize(nLocal_);
274 +
275 +    for (int i = 0; i < nLocal_; i++) {
276 +      int iglob = AtomLocalToGlobal[i];
277 +
278 +      for (int j = 0; j < nLocal_; j++) {
279 +        int jglob = AtomLocalToGlobal[j];
280 +
281 +        if (excludes->hasPair(iglob, jglob))
282 +          excludesForAtom[i].push_back(j);              
283 +        
284 +        if (oneTwo->hasPair(iglob, jglob)) {
285 +          toposForAtom[i].push_back(j);
286 +          topoDist[i].push_back(1);
287 +        } else {
288 +          if (oneThree->hasPair(iglob, jglob)) {
289 +            toposForAtom[i].push_back(j);
290 +            topoDist[i].push_back(2);
291 +          } else {
292 +            if (oneFour->hasPair(iglob, jglob)) {
293 +              toposForAtom[i].push_back(j);
294 +              topoDist[i].push_back(3);
295 +            }
296 +          }
297 +        }
298 +      }      
299 +    }
300 +    
301 +    createGtypeCutoffMap();
302 +
303    }
304 +  
305 +  void ForceMatrixDecomposition::createGtypeCutoffMap() {
306      
307 +    RealType tol = 1e-6;
308 +    largestRcut_ = 0.0;
309 +    RealType rc;
310 +    int atid;
311 +    set<AtomType*> atypes = info_->getSimulatedAtomTypes();
312 +    
313 +    map<int, RealType> atypeCutoff;
314 +      
315 +    for (set<AtomType*>::iterator at = atypes.begin();
316 +         at != atypes.end(); ++at){
317 +      atid = (*at)->getIdent();
318 +      if (userChoseCutoff_)
319 +        atypeCutoff[atid] = userCutoff_;
320 +      else
321 +        atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at);
322 +    }
323 +    
324 +    vector<RealType> gTypeCutoffs;
325 +    // first we do a single loop over the cutoff groups to find the
326 +    // largest cutoff for any atypes present in this group.
327 + #ifdef IS_MPI
328 +    vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0);
329 +    groupRowToGtype.resize(nGroupsInRow_);
330 +    for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) {
331 +      vector<int> atomListRow = getAtomsInGroupRow(cg1);
332 +      for (vector<int>::iterator ia = atomListRow.begin();
333 +           ia != atomListRow.end(); ++ia) {            
334 +        int atom1 = (*ia);
335 +        atid = identsRow[atom1];
336 +        if (atypeCutoff[atid] > groupCutoffRow[cg1]) {
337 +          groupCutoffRow[cg1] = atypeCutoff[atid];
338 +        }
339 +      }
340  
341 +      bool gTypeFound = false;
342 +      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
343 +        if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) {
344 +          groupRowToGtype[cg1] = gt;
345 +          gTypeFound = true;
346 +        }
347 +      }
348 +      if (!gTypeFound) {
349 +        gTypeCutoffs.push_back( groupCutoffRow[cg1] );
350 +        groupRowToGtype[cg1] = gTypeCutoffs.size() - 1;
351 +      }
352 +      
353 +    }
354 +    vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0);
355 +    groupColToGtype.resize(nGroupsInCol_);
356 +    for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) {
357 +      vector<int> atomListCol = getAtomsInGroupColumn(cg2);
358 +      for (vector<int>::iterator jb = atomListCol.begin();
359 +           jb != atomListCol.end(); ++jb) {            
360 +        int atom2 = (*jb);
361 +        atid = identsCol[atom2];
362 +        if (atypeCutoff[atid] > groupCutoffCol[cg2]) {
363 +          groupCutoffCol[cg2] = atypeCutoff[atid];
364 +        }
365 +      }
366 +      bool gTypeFound = false;
367 +      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
368 +        if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) {
369 +          groupColToGtype[cg2] = gt;
370 +          gTypeFound = true;
371 +        }
372 +      }
373 +      if (!gTypeFound) {
374 +        gTypeCutoffs.push_back( groupCutoffCol[cg2] );
375 +        groupColToGtype[cg2] = gTypeCutoffs.size() - 1;
376 +      }
377 +    }
378 + #else
379  
380 <  void ForceDecomposition::distributeData()  {
380 >    vector<RealType> groupCutoff(nGroups_, 0.0);
381 >    groupToGtype.resize(nGroups_);
382 >    for (int cg1 = 0; cg1 < nGroups_; cg1++) {
383 >      groupCutoff[cg1] = 0.0;
384 >      vector<int> atomList = getAtomsInGroupRow(cg1);
385 >      for (vector<int>::iterator ia = atomList.begin();
386 >           ia != atomList.end(); ++ia) {            
387 >        int atom1 = (*ia);
388 >        atid = idents[atom1];
389 >        if (atypeCutoff[atid] > groupCutoff[cg1])
390 >          groupCutoff[cg1] = atypeCutoff[atid];
391 >      }
392 >      
393 >      bool gTypeFound = false;
394 >      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
395 >        if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) {
396 >          groupToGtype[cg1] = gt;
397 >          gTypeFound = true;
398 >        }
399 >      }
400 >      if (!gTypeFound) {      
401 >        gTypeCutoffs.push_back( groupCutoff[cg1] );
402 >        groupToGtype[cg1] = gTypeCutoffs.size() - 1;
403 >      }      
404 >    }
405 > #endif
406 >
407 >    // Now we find the maximum group cutoff value present in the simulation
408 >
409 >    RealType groupMax = *max_element(gTypeCutoffs.begin(),
410 >                                     gTypeCutoffs.end());
411 >
412   #ifdef IS_MPI
413 <    Snapshot* snap = sman_->getCurrentSnapshot();
413 >    MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE,
414 >                              MPI::MAX);
415 > #endif
416      
417 +    RealType tradRcut = groupMax;
418 +
419 +    for (int i = 0; i < gTypeCutoffs.size();  i++) {
420 +      for (int j = 0; j < gTypeCutoffs.size();  j++) {      
421 +        RealType thisRcut;
422 +        switch(cutoffPolicy_) {
423 +        case TRADITIONAL:
424 +          thisRcut = tradRcut;
425 +          break;
426 +        case MIX:
427 +          thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]);
428 +          break;
429 +        case MAX:
430 +          thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]);
431 +          break;
432 +        default:
433 +          sprintf(painCave.errMsg,
434 +                  "ForceMatrixDecomposition::createGtypeCutoffMap "
435 +                  "hit an unknown cutoff policy!\n");
436 +          painCave.severity = OPENMD_ERROR;
437 +          painCave.isFatal = 1;
438 +          simError();
439 +          break;
440 +        }
441 +
442 +        pair<int,int> key = make_pair(i,j);
443 +        gTypeCutoffMap[key].first = thisRcut;
444 +        if (thisRcut > largestRcut_) largestRcut_ = thisRcut;
445 +        gTypeCutoffMap[key].second = thisRcut*thisRcut;
446 +        gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2);
447 +        // sanity check
448 +        
449 +        if (userChoseCutoff_) {
450 +          if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) {
451 +            sprintf(painCave.errMsg,
452 +                    "ForceMatrixDecomposition::createGtypeCutoffMap "
453 +                    "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_);
454 +            painCave.severity = OPENMD_ERROR;
455 +            painCave.isFatal = 1;
456 +            simError();            
457 +          }
458 +        }
459 +      }
460 +    }
461 +  }
462 +
463 +
464 +  groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) {
465 +    int i, j;  
466 + #ifdef IS_MPI
467 +    i = groupRowToGtype[cg1];
468 +    j = groupColToGtype[cg2];
469 + #else
470 +    i = groupToGtype[cg1];
471 +    j = groupToGtype[cg2];
472 + #endif    
473 +    return gTypeCutoffMap[make_pair(i,j)];
474 +  }
475 +
476 +  int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
477 +    for (int j = 0; j < toposForAtom[atom1].size(); j++) {
478 +      if (toposForAtom[atom1][j] == atom2)
479 +        return topoDist[atom1][j];
480 +    }
481 +    return 0;
482 +  }
483 +
484 +  void ForceMatrixDecomposition::zeroWorkArrays() {
485 +    pairwisePot = 0.0;
486 +    embeddingPot = 0.0;
487 +
488 + #ifdef IS_MPI
489 +    if (storageLayout_ & DataStorage::dslForce) {
490 +      fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero);
491 +      fill(atomColData.force.begin(), atomColData.force.end(), V3Zero);
492 +    }
493 +
494 +    if (storageLayout_ & DataStorage::dslTorque) {
495 +      fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero);
496 +      fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero);
497 +    }
498 +    
499 +    fill(pot_row.begin(), pot_row.end(),
500 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
501 +
502 +    fill(pot_col.begin(), pot_col.end(),
503 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
504 +
505 +    if (storageLayout_ & DataStorage::dslParticlePot) {    
506 +      fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(),
507 +           0.0);
508 +      fill(atomColData.particlePot.begin(), atomColData.particlePot.end(),
509 +           0.0);
510 +    }
511 +
512 +    if (storageLayout_ & DataStorage::dslDensity) {      
513 +      fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0);
514 +      fill(atomColData.density.begin(), atomColData.density.end(), 0.0);
515 +    }
516 +
517 +    if (storageLayout_ & DataStorage::dslFunctional) {  
518 +      fill(atomRowData.functional.begin(), atomRowData.functional.end(),
519 +           0.0);
520 +      fill(atomColData.functional.begin(), atomColData.functional.end(),
521 +           0.0);
522 +    }
523 +
524 +    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
525 +      fill(atomRowData.functionalDerivative.begin(),
526 +           atomRowData.functionalDerivative.end(), 0.0);
527 +      fill(atomColData.functionalDerivative.begin(),
528 +           atomColData.functionalDerivative.end(), 0.0);
529 +    }
530 +
531 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
532 +      fill(atomRowData.skippedCharge.begin(),
533 +           atomRowData.skippedCharge.end(), 0.0);
534 +      fill(atomColData.skippedCharge.begin(),
535 +           atomColData.skippedCharge.end(), 0.0);
536 +    }
537 +
538 + #endif
539 +    // even in parallel, we need to zero out the local arrays:
540 +
541 +    if (storageLayout_ & DataStorage::dslParticlePot) {      
542 +      fill(snap_->atomData.particlePot.begin(),
543 +           snap_->atomData.particlePot.end(), 0.0);
544 +    }
545 +    
546 +    if (storageLayout_ & DataStorage::dslDensity) {      
547 +      fill(snap_->atomData.density.begin(),
548 +           snap_->atomData.density.end(), 0.0);
549 +    }
550 +    if (storageLayout_ & DataStorage::dslFunctional) {
551 +      fill(snap_->atomData.functional.begin(),
552 +           snap_->atomData.functional.end(), 0.0);
553 +    }
554 +    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
555 +      fill(snap_->atomData.functionalDerivative.begin(),
556 +           snap_->atomData.functionalDerivative.end(), 0.0);
557 +    }
558 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
559 +      fill(snap_->atomData.skippedCharge.begin(),
560 +           snap_->atomData.skippedCharge.end(), 0.0);
561 +    }
562 +    
563 +  }
564 +
565 +
566 +  void ForceMatrixDecomposition::distributeData()  {
567 +    snap_ = sman_->getCurrentSnapshot();
568 +    storageLayout_ = sman_->getStorageLayout();
569 + #ifdef IS_MPI
570 +    
571      // gather up the atomic positions
572 <    AtomCommVectorI->gather(snap->atomData.position,
573 <                            snap->atomIData.position);
574 <    AtomCommVectorJ->gather(snap->atomData.position,
575 <                            snap->atomJData.position);
572 >    AtomPlanVectorRow->gather(snap_->atomData.position,
573 >                              atomRowData.position);
574 >    AtomPlanVectorColumn->gather(snap_->atomData.position,
575 >                                 atomColData.position);
576      
577      // gather up the cutoff group positions
578 <    cgCommVectorI->gather(snap->cgData.position,
579 <                          snap->cgIData.position);
580 <    cgCommVectorJ->gather(snap->cgData.position,
581 <                          snap->cgJData.position);
578 >
579 >    cerr  << "before gather\n";
580 >    for (int i = 0; i < snap_->cgData.position.size(); i++) {
581 >      cerr << "cgpos = " << snap_->cgData.position[i] << "\n";
582 >    }
583 >
584 >    cgPlanVectorRow->gather(snap_->cgData.position,
585 >                            cgRowData.position);
586 >
587 >    cerr  << "after gather\n";
588 >    for (int i = 0; i < cgRowData.position.size(); i++) {
589 >      cerr << "cgRpos = " << cgRowData.position[i] << "\n";
590 >    }
591 >
592 >    cgPlanVectorColumn->gather(snap_->cgData.position,
593 >                               cgColData.position);
594 >    for (int i = 0; i < cgColData.position.size(); i++) {
595 >      cerr << "cgCpos = " << cgColData.position[i] << "\n";
596 >    }
597 >
598      
599      // if needed, gather the atomic rotation matrices
600 <    if (snap->atomData.getStorageLayout() & DataStorage::dslAmat) {
601 <      AtomCommMatrixI->gather(snap->atomData.aMat,
602 <                              snap->atomIData.aMat);
603 <      AtomCommMatrixJ->gather(snap->atomData.aMat,
604 <                              snap->atomJData.aMat);
600 >    if (storageLayout_ & DataStorage::dslAmat) {
601 >      AtomPlanMatrixRow->gather(snap_->atomData.aMat,
602 >                                atomRowData.aMat);
603 >      AtomPlanMatrixColumn->gather(snap_->atomData.aMat,
604 >                                   atomColData.aMat);
605      }
606      
607      // if needed, gather the atomic eletrostatic frames
608 <    if (snap->atomData.getStorageLayout() & DataStorage::dslElectroFrame) {
609 <      AtomCommMatrixI->gather(snap->atomData.electroFrame,
610 <                              snap->atomIData.electroFrame);
611 <      AtomCommMatrixJ->gather(snap->atomData.electroFrame,
612 <                              snap->atomJData.electroFrame);
608 >    if (storageLayout_ & DataStorage::dslElectroFrame) {
609 >      AtomPlanMatrixRow->gather(snap_->atomData.electroFrame,
610 >                                atomRowData.electroFrame);
611 >      AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame,
612 >                                   atomColData.electroFrame);
613      }
614 +
615   #endif      
616    }
617    
618 <  void ForceDecomposition::collectIntermediateData() {
618 >  /* collects information obtained during the pre-pair loop onto local
619 >   * data structures.
620 >   */
621 >  void ForceMatrixDecomposition::collectIntermediateData() {
622 >    snap_ = sman_->getCurrentSnapshot();
623 >    storageLayout_ = sman_->getStorageLayout();
624   #ifdef IS_MPI
117    Snapshot* snap = sman_->getCurrentSnapshot();
625      
626 <    if (snap->atomData.getStorageLayout() & DataStorage::dslDensity) {
627 <
628 <      AtomCommRealI->scatter(snap->atomIData.density,
629 <                             snap->atomData.density);
630 <
631 <      int n = snap->atomData.density.size();
632 <      std::vector<RealType> rho_tmp(n, 0.0);
633 <      AtomCommRealJ->scatter(snap->atomJData.density, rho_tmp);
626 >    if (storageLayout_ & DataStorage::dslDensity) {
627 >      
628 >      AtomPlanRealRow->scatter(atomRowData.density,
629 >                               snap_->atomData.density);
630 >      
631 >      int n = snap_->atomData.density.size();
632 >      vector<RealType> rho_tmp(n, 0.0);
633 >      AtomPlanRealColumn->scatter(atomColData.density, rho_tmp);
634        for (int i = 0; i < n; i++)
635 <        snap->atomData.density[i] += rho_tmp[i];
635 >        snap_->atomData.density[i] += rho_tmp[i];
636      }
637   #endif
638    }
639 <  
640 <  void ForceDecomposition::distributeIntermediateData() {
639 >
640 >  /*
641 >   * redistributes information obtained during the pre-pair loop out to
642 >   * row and column-indexed data structures
643 >   */
644 >  void ForceMatrixDecomposition::distributeIntermediateData() {
645 >    snap_ = sman_->getCurrentSnapshot();
646 >    storageLayout_ = sman_->getStorageLayout();
647   #ifdef IS_MPI
648 <    Snapshot* snap = sman_->getCurrentSnapshot();
649 <    if (snap->atomData.getStorageLayout() & DataStorage::dslFunctional) {
650 <      AtomCommRealI->gather(snap->atomData.functional,
651 <                            snap->atomIData.functional);
652 <      AtomCommRealJ->gather(snap->atomData.functional,
140 <                            snap->atomJData.functional);
648 >    if (storageLayout_ & DataStorage::dslFunctional) {
649 >      AtomPlanRealRow->gather(snap_->atomData.functional,
650 >                              atomRowData.functional);
651 >      AtomPlanRealColumn->gather(snap_->atomData.functional,
652 >                                 atomColData.functional);
653      }
654      
655 <    if (snap->atomData.getStorageLayout() & DataStorage::dslFunctionalDerivative) {
656 <      AtomCommRealI->gather(snap->atomData.functionalDerivative,
657 <                            snap->atomIData.functionalDerivative);
658 <      AtomCommRealJ->gather(snap->atomData.functionalDerivative,
659 <                            snap->atomJData.functionalDerivative);
655 >    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
656 >      AtomPlanRealRow->gather(snap_->atomData.functionalDerivative,
657 >                              atomRowData.functionalDerivative);
658 >      AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative,
659 >                                 atomColData.functionalDerivative);
660      }
661   #endif
662    }
663    
664    
665 <  void ForceDecomposition::collectData() {
666 < #ifdef IS_MPI
667 <    Snapshot* snap = sman_->getCurrentSnapshot();
665 >  void ForceMatrixDecomposition::collectData() {
666 >    snap_ = sman_->getCurrentSnapshot();
667 >    storageLayout_ = sman_->getStorageLayout();
668 > #ifdef IS_MPI    
669 >    int n = snap_->atomData.force.size();
670 >    vector<Vector3d> frc_tmp(n, V3Zero);
671      
672 <    int n = snap->atomData.force.size();
158 <    std::vector<Vector3d> frc_tmp(n, 0.0);
159 <    
160 <    AtomCommVectorI->scatter(snap->atomIData.force, frc_tmp);
672 >    AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp);
673      for (int i = 0; i < n; i++) {
674 <      snap->atomData.force[i] += frc_tmp[i];
674 >      snap_->atomData.force[i] += frc_tmp[i];
675        frc_tmp[i] = 0.0;
676      }
677      
678 <    AtomCommVectorJ->scatter(snap->atomJData.force, frc_tmp);
679 <    for (int i = 0; i < n; i++)
680 <      snap->atomData.force[i] += frc_tmp[i];
681 <    
682 <    
683 <    if (snap->atomData.getStorageLayout() & DataStorage::dslTorque) {
678 >    AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp);
679 >    for (int i = 0; i < n; i++) {
680 >      snap_->atomData.force[i] += frc_tmp[i];
681 >    }
682 >        
683 >    if (storageLayout_ & DataStorage::dslTorque) {
684  
685 <      int nt = snap->atomData.force.size();
686 <      std::vector<Vector3d> trq_tmp(nt, 0.0);
685 >      int nt = snap_->atomData.torque.size();
686 >      vector<Vector3d> trq_tmp(nt, V3Zero);
687  
688 <      AtomCommVectorI->scatter(snap->atomIData.torque, trq_tmp);
689 <      for (int i = 0; i < n; i++) {
690 <        snap->atomData.torque[i] += trq_tmp[i];
688 >      AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp);
689 >      for (int i = 0; i < nt; i++) {
690 >        snap_->atomData.torque[i] += trq_tmp[i];
691          trq_tmp[i] = 0.0;
692        }
693        
694 <      AtomCommVectorJ->scatter(snap->atomJData.torque, trq_tmp);
695 <      for (int i = 0; i < n; i++)
696 <        snap->atomData.torque[i] += trq_tmp[i];
694 >      AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp);
695 >      for (int i = 0; i < nt; i++)
696 >        snap_->atomData.torque[i] += trq_tmp[i];
697      }
698 <    
699 <    
700 <    vector<vector<RealType> > pot_temp(LR_POT_TYPES,
701 <                                       vector<RealType> (nAtoms, 0.0));
702 <    
703 <    for (int i = 0; i < LR_POT_TYPES; i++) {
704 <      AtomCommRealI->scatter(pot_row[i], pot_temp[i]);
705 <      for (int ii = 0;  ii < pot_temp[i].size(); ii++ ) {
706 <        pot_local[i] += pot_temp[i][ii];
698 >
699 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {
700 >
701 >      int ns = snap_->atomData.skippedCharge.size();
702 >      vector<RealType> skch_tmp(ns, 0.0);
703 >
704 >      AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp);
705 >      for (int i = 0; i < ns; i++) {
706 >        snap_->atomData.skippedCharge[i] += skch_tmp[i];
707 >        skch_tmp[i] = 0.0;
708        }
709 +      
710 +      AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp);
711 +      for (int i = 0; i < ns; i++)
712 +        snap_->atomData.skippedCharge[i] += skch_tmp[i];
713      }
714      
715 +    nLocal_ = snap_->getNumberOfAtoms();
716  
717 +    vector<potVec> pot_temp(nLocal_,
718 +                            Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
719  
720 +    // scatter/gather pot_row into the members of my column
721 +          
722 +    AtomPlanPotRow->scatter(pot_row, pot_temp);
723 +
724 +    for (int ii = 0;  ii < pot_temp.size(); ii++ )
725 +      pairwisePot += pot_temp[ii];
726 +    
727 +    fill(pot_temp.begin(), pot_temp.end(),
728 +         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
729 +      
730 +    AtomPlanPotColumn->scatter(pot_col, pot_temp);    
731 +    
732 +    for (int ii = 0;  ii < pot_temp.size(); ii++ )
733 +      pairwisePot += pot_temp[ii];    
734   #endif
735 +
736 +    cerr << "pairwisePot = " <<  pairwisePot << "\n";
737    }
738 +
739 +  int ForceMatrixDecomposition::getNAtomsInRow() {  
740 + #ifdef IS_MPI
741 +    return nAtomsInRow_;
742 + #else
743 +    return nLocal_;
744 + #endif
745 +  }
746 +
747 +  /**
748 +   * returns the list of atoms belonging to this group.  
749 +   */
750 +  vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
751 + #ifdef IS_MPI
752 +    return groupListRow_[cg1];
753 + #else
754 +    return groupList_[cg1];
755 + #endif
756 +  }
757 +
758 +  vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
759 + #ifdef IS_MPI
760 +    return groupListCol_[cg2];
761 + #else
762 +    return groupList_[cg2];
763 + #endif
764 +  }
765    
766 +  Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){
767 +    Vector3d d;
768 +    
769 + #ifdef IS_MPI
770 +    d = cgColData.position[cg2] - cgRowData.position[cg1];
771 +    cerr << "cg1 = " << cg1 << "\tcg1p = " << cgRowData.position[cg1] << "\n";
772 +    cerr << "cg2 = " << cg2 << "\tcg2p = " << cgColData.position[cg2] << "\n";
773 + #else
774 +    d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1];
775 +    cerr << "cg1 = " << cg1 << "\tcg1p = " << snap_->cgData.position[cg1] << "\n";
776 +    cerr << "cg2 = " << cg2 << "\tcg2p = " << snap_->cgData.position[cg2] << "\n";
777 + #endif
778 +    
779 +    snap_->wrapVector(d);
780 +    return d;    
781 +  }
782 +
783 +
784 +  Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){
785 +
786 +    Vector3d d;
787 +    
788 + #ifdef IS_MPI
789 +    d = cgRowData.position[cg1] - atomRowData.position[atom1];
790 + #else
791 +    d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1];
792 + #endif
793 +
794 +    snap_->wrapVector(d);
795 +    return d;    
796 +  }
797 +  
798 +  Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){
799 +    Vector3d d;
800 +    
801 + #ifdef IS_MPI
802 +    d = cgColData.position[cg2] - atomColData.position[atom2];
803 + #else
804 +    d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2];
805 + #endif
806 +    
807 +    snap_->wrapVector(d);
808 +    return d;    
809 +  }
810 +
811 +  RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) {
812 + #ifdef IS_MPI
813 +    return massFactorsRow[atom1];
814 + #else
815 +    return massFactors[atom1];
816 + #endif
817 +  }
818 +
819 +  RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
820 + #ifdef IS_MPI
821 +    return massFactorsCol[atom2];
822 + #else
823 +    return massFactors[atom2];
824 + #endif
825 +
826 +  }
827 +    
828 +  Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){
829 +    Vector3d d;
830 +    
831 + #ifdef IS_MPI
832 +    d = atomColData.position[atom2] - atomRowData.position[atom1];
833 + #else
834 +    d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1];
835 + #endif
836 +
837 +    snap_->wrapVector(d);
838 +    return d;    
839 +  }
840 +
841 +  vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) {
842 +    return excludesForAtom[atom1];
843 +  }
844 +
845 +  /**
846 +   * We need to exclude some overcounted interactions that result from
847 +   * the parallel decomposition.
848 +   */
849 +  bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) {
850 +    int unique_id_1, unique_id_2;
851 +    
852 +
853 +    cerr << "sap with atom1, atom2 =\t" << atom1 << "\t" << atom2 << "\n";
854 + #ifdef IS_MPI
855 +    // in MPI, we have to look up the unique IDs for each atom
856 +    unique_id_1 = AtomRowToGlobal[atom1];
857 +    unique_id_2 = AtomColToGlobal[atom2];
858 +
859 +    cerr << "sap with uid1, uid2 =\t" << unique_id_1 << "\t" << unique_id_2 << "\n";
860 +    // this situation should only arise in MPI simulations
861 +    if (unique_id_1 == unique_id_2) return true;
862 +    
863 +    // this prevents us from doing the pair on multiple processors
864 +    if (unique_id_1 < unique_id_2) {
865 +      if ((unique_id_1 + unique_id_2) % 2 == 0) return true;
866 +    } else {
867 +      if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
868 +    }
869 + #endif
870 +    return false;
871 +  }
872 +
873 +  /**
874 +   * We need to handle the interactions for atoms who are involved in
875 +   * the same rigid body as well as some short range interactions
876 +   * (bonds, bends, torsions) differently from other interactions.
877 +   * We'll still visit the pairwise routines, but with a flag that
878 +   * tells those routines to exclude the pair from direct long range
879 +   * interactions.  Some indirect interactions (notably reaction
880 +   * field) must still be handled for these pairs.
881 +   */
882 +  bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) {
883 +    int unique_id_2;
884 + #ifdef IS_MPI
885 +    // in MPI, we have to look up the unique IDs for the row atom.
886 +    unique_id_2 = AtomColToGlobal[atom2];
887 + #else
888 +    // in the normal loop, the atom numbers are unique
889 +    unique_id_2 = atom2;
890 + #endif
891 +    
892 +    for (vector<int>::iterator i = excludesForAtom[atom1].begin();
893 +         i != excludesForAtom[atom1].end(); ++i) {
894 +      if ( (*i) == unique_id_2 ) return true;
895 +    }
896 +
897 +    return false;
898 +  }
899 +
900 +
901 +  void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){
902 + #ifdef IS_MPI
903 +    atomRowData.force[atom1] += fg;
904 + #else
905 +    snap_->atomData.force[atom1] += fg;
906 + #endif
907 +  }
908 +
909 +  void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){
910 + #ifdef IS_MPI
911 +    atomColData.force[atom2] += fg;
912 + #else
913 +    snap_->atomData.force[atom2] += fg;
914 + #endif
915 +  }
916 +
917 +    // filling interaction blocks with pointers
918 +  void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat,
919 +                                                     int atom1, int atom2) {
920 +
921 +    idat.excluded = excludeAtomPair(atom1, atom2);
922 +  
923 + #ifdef IS_MPI
924 +    idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]);
925 +    //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
926 +    //                         ff_->getAtomType(identsCol[atom2]) );
927 +    
928 +    if (storageLayout_ & DataStorage::dslAmat) {
929 +      idat.A1 = &(atomRowData.aMat[atom1]);
930 +      idat.A2 = &(atomColData.aMat[atom2]);
931 +    }
932 +    
933 +    if (storageLayout_ & DataStorage::dslElectroFrame) {
934 +      idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
935 +      idat.eFrame2 = &(atomColData.electroFrame[atom2]);
936 +    }
937 +
938 +    if (storageLayout_ & DataStorage::dslTorque) {
939 +      idat.t1 = &(atomRowData.torque[atom1]);
940 +      idat.t2 = &(atomColData.torque[atom2]);
941 +    }
942 +
943 +    if (storageLayout_ & DataStorage::dslDensity) {
944 +      idat.rho1 = &(atomRowData.density[atom1]);
945 +      idat.rho2 = &(atomColData.density[atom2]);
946 +    }
947 +
948 +    if (storageLayout_ & DataStorage::dslFunctional) {
949 +      idat.frho1 = &(atomRowData.functional[atom1]);
950 +      idat.frho2 = &(atomColData.functional[atom2]);
951 +    }
952 +
953 +    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
954 +      idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
955 +      idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
956 +    }
957 +
958 +    if (storageLayout_ & DataStorage::dslParticlePot) {
959 +      idat.particlePot1 = &(atomRowData.particlePot[atom1]);
960 +      idat.particlePot2 = &(atomColData.particlePot[atom2]);
961 +    }
962 +
963 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {              
964 +      idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
965 +      idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
966 +    }
967 +
968 + #else
969 +
970 +    idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]);
971 +    //idat.atypes = make_pair( ff_->getAtomType(idents[atom1]),
972 +    //                         ff_->getAtomType(idents[atom2]) );
973 +
974 +    if (storageLayout_ & DataStorage::dslAmat) {
975 +      idat.A1 = &(snap_->atomData.aMat[atom1]);
976 +      idat.A2 = &(snap_->atomData.aMat[atom2]);
977 +    }
978 +
979 +    if (storageLayout_ & DataStorage::dslElectroFrame) {
980 +      idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
981 +      idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
982 +    }
983 +
984 +    if (storageLayout_ & DataStorage::dslTorque) {
985 +      idat.t1 = &(snap_->atomData.torque[atom1]);
986 +      idat.t2 = &(snap_->atomData.torque[atom2]);
987 +    }
988 +
989 +    if (storageLayout_ & DataStorage::dslDensity) {    
990 +      idat.rho1 = &(snap_->atomData.density[atom1]);
991 +      idat.rho2 = &(snap_->atomData.density[atom2]);
992 +    }
993 +
994 +    if (storageLayout_ & DataStorage::dslFunctional) {
995 +      idat.frho1 = &(snap_->atomData.functional[atom1]);
996 +      idat.frho2 = &(snap_->atomData.functional[atom2]);
997 +    }
998 +
999 +    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1000 +      idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
1001 +      idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
1002 +    }
1003 +
1004 +    if (storageLayout_ & DataStorage::dslParticlePot) {
1005 +      idat.particlePot1 = &(snap_->atomData.particlePot[atom1]);
1006 +      idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
1007 +    }
1008 +
1009 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
1010 +      idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
1011 +      idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
1012 +    }
1013 + #endif
1014 +  }
1015 +
1016 +  
1017 +  void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) {    
1018 + #ifdef IS_MPI
1019 +    pot_row[atom1] += 0.5 *  *(idat.pot);
1020 +    pot_col[atom2] += 0.5 *  *(idat.pot);
1021 +
1022 +    atomRowData.force[atom1] += *(idat.f1);
1023 +    atomColData.force[atom2] -= *(idat.f1);
1024 + #else
1025 +    pairwisePot += *(idat.pot);
1026 +
1027 +    snap_->atomData.force[atom1] += *(idat.f1);
1028 +    snap_->atomData.force[atom2] -= *(idat.f1);
1029 + #endif
1030 +    
1031 +  }
1032 +
1033 + vector<vector<int> > ForceMatrixDecomposition::buildLayerBasedNeighborList() {
1034 +        printf("buildLayerBasedNeighborList; nGroups:%d\n", nGroups_);
1035 +        // Na = nGroups_
1036 +        /* cell occupancy counter */
1037 +        vector<int> k_c;
1038 +        /* c_i - has cell containing atom i (size Na) */
1039 +        vector<int> c;
1040 +        /* l_i - layer containing atom i (size Na) */
1041 +        vector<int> l;
1042 +
1043 + //      cellList_.clear();
1044 +
1045 +        RealType rList_ = (largestRcut_ + skinThickness_);
1046 +        Snapshot* snap_ = sman_->getCurrentSnapshot();
1047 +        Mat3x3d Hmat = snap_->getHmat();
1048 +        Vector3d Hx = Hmat.getColumn(0);
1049 +        Vector3d Hy = Hmat.getColumn(1);
1050 +        Vector3d Hz = Hmat.getColumn(2);
1051 +
1052 +        nCells_.x() = (int) (Hx.length()) / rList_;
1053 +        nCells_.y() = (int) (Hy.length()) / rList_;
1054 +        nCells_.z() = (int) (Hz.length()) / rList_;
1055 +
1056 +        Mat3x3d invHmat = snap_->getInvHmat();
1057 +        Vector3d rs, scaled, dr;
1058 +        Vector3i whichCell;
1059 +        int cellIndex;
1060 +        int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
1061 +
1062 + //      cellList_.resize(nCtot);
1063 +        k_c = vector<int>(nCtot, 0);
1064 +
1065 +        for (int i = 0; i < nGroups_; i++)
1066 +        {
1067 +                rs = snap_->cgData.position[i];
1068 +
1069 +                // scaled positions relative to the box vectors
1070 +                scaled = invHmat * rs;
1071 +
1072 +                // wrap the vector back into the unit box by subtracting integer box
1073 +                // numbers
1074 +                for (int j = 0; j < 3; j++)
1075 +                {
1076 +                        scaled[j] -= roundMe(scaled[j]);
1077 +                        scaled[j] += 0.5;
1078 +                }
1079 +
1080 +                // find xyz-indices of cell that cutoffGroup is in.
1081 +                whichCell.x() = nCells_.x() * scaled.x();
1082 +                whichCell.y() = nCells_.y() * scaled.y();
1083 +                whichCell.z() = nCells_.z() * scaled.z();
1084 +
1085 +                // find single index of this cell:
1086 +                cellIndex = Vlinear(whichCell, nCells_);
1087 +
1088 +                c.push_back(cellIndex);
1089 +
1090 + //              // add this cutoff group to the list of groups in this cell;
1091 + //              cellList_[cellIndex].push_back(i);
1092 +        }
1093 +
1094 +        int k_c_curr;
1095 +        int k_c_max = 0;
1096 +        /* the cell-layer occupancy matrix */
1097 +        vector<vector<int> > H_c_l = vector<vector<int> >(nCtot);
1098 +
1099 +        for(int i = 0; i < nGroups_; ++i)
1100 +        {
1101 +                k_c_curr = ++k_c[c[i]];
1102 +                l.push_back(k_c_curr);
1103 +
1104 +                /* determines the number of layers in use */
1105 +                if(k_c_max < k_c_curr)
1106 +                {
1107 +                        k_c_max = k_c_curr;
1108 +                }
1109 +
1110 +                H_c_l[c[i]].push_back(/*l[*/i/*]*/);
1111 +        }
1112 +
1113 +        int m;
1114 +        /* the neighbor matrix */
1115 +        vector<vector<int> >neighborMatW = vector<vector<int> >(nGroups_);
1116 +
1117 + //      vector<pair<int, int> > neighborList;
1118 +        groupCutoffs cuts;
1119 +
1120 +        /* loops over objects(atoms, rigidBodies, cutoffGroups, etc.) */
1121 +        for(int i = 0; i < nGroups_; ++i)
1122 +        {
1123 +                m = 0;
1124 +                /* c' */
1125 +                int c1 = c[i];
1126 +                Vector3i c1v = idxToV(c1, nCells_);
1127 +
1128 +                /* loops over the neighboring cells c'' */
1129 +                for (vector<Vector3i>::iterator os = cellOffsets_.begin(); os != cellOffsets_.end(); ++os)
1130 +                {
1131 +                        Vector3i c2v = c1v + (*os);
1132 +
1133 +                        if (c2v.x() >= nCells_.x())
1134 +                        {
1135 +                                c2v.x() = 0;
1136 +                        } else if (c2v.x() < 0)
1137 +                        {
1138 +                                c2v.x() = nCells_.x() - 1;
1139 +                        }
1140 +
1141 +                        if (c2v.y() >= nCells_.y())
1142 +                        {
1143 +                                c2v.y() = 0;
1144 +                        } else if (c2v.y() < 0)
1145 +                        {
1146 +                                c2v.y() = nCells_.y() - 1;
1147 +                        }
1148 +
1149 +                        if (c2v.z() >= nCells_.z())
1150 +                        {
1151 +                                c2v.z() = 0;
1152 +                        } else if (c2v.z() < 0)
1153 +                        {
1154 +                                c2v.z() = nCells_.z() - 1;
1155 +                        }
1156 +
1157 +                        int c2 = Vlinear(c2v, nCells_);
1158 +                        /* loops over layers l to access the neighbor atoms */
1159 +                        for (vector<int>::iterator j = H_c_l[c2].begin(); j != H_c_l[c2].end(); ++j)
1160 +                        {
1161 + //                              if i'' = 0 then break // doesn't apply to vector implementation of matrix
1162 + //                              if(i != *j)
1163 +                                if (c2 != c1 || (*j) < (i))
1164 +                                {
1165 +                                        dr = snap_->cgData.position[(*j)] - snap_->cgData.position[(i)];
1166 +                                        snap_->wrapVector(dr);
1167 +                                        cuts = getGroupCutoffs((i), (*j));
1168 +                                        if (dr.lengthSquare() < cuts.third)
1169 +                                        {
1170 +                                                ++m;
1171 +                                                /* transposed version of Rapaport W mat, to occupy successive memory locations on CPU */
1172 +                                                neighborMatW[i].push_back(*j);
1173 + //                                              neighborList.push_back(make_pair((i), (*j)));
1174 +                                        }
1175 +                                }
1176 +                        }
1177 +                }
1178 +        }
1179 +
1180 +        // save the local cutoff group positions for the check that is
1181 +        // done on each loop:
1182 +        saved_CG_positions_.clear();
1183 +        for (int i = 0; i < nGroups_; i++)
1184 +                saved_CG_positions_.push_back(snap_->cgData.position[i]);
1185 +
1186 +        return neighborMatW;
1187 + }
1188 +
1189 +  /*
1190 +   * buildNeighborList
1191 +   *
1192 +   * first element of pair is row-indexed CutoffGroup
1193 +   * second element of pair is column-indexed CutoffGroup
1194 +   */
1195 +  vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() {
1196 +      
1197 +    vector<pair<int, int> > neighborList;
1198 +    groupCutoffs cuts;
1199 +    bool doAllPairs = false;
1200 +
1201 + #ifdef IS_MPI
1202 +    cellListRow_.clear();
1203 +    cellListCol_.clear();
1204 + #else
1205 +    cellList_.clear();
1206 + #endif
1207 +
1208 +    RealType rList_ = (largestRcut_ + skinThickness_);
1209 +    RealType rl2 = rList_ * rList_;
1210 +    Snapshot* snap_ = sman_->getCurrentSnapshot();
1211 +    Mat3x3d Hmat = snap_->getHmat();
1212 +    Vector3d Hx = Hmat.getColumn(0);
1213 +    Vector3d Hy = Hmat.getColumn(1);
1214 +    Vector3d Hz = Hmat.getColumn(2);
1215 +
1216 +    nCells_.x() = (int) ( Hx.length() )/ rList_;
1217 +    nCells_.y() = (int) ( Hy.length() )/ rList_;
1218 +    nCells_.z() = (int) ( Hz.length() )/ rList_;
1219 +
1220 +    // handle small boxes where the cell offsets can end up repeating cells
1221 +    
1222 +    if (nCells_.x() < 3) doAllPairs = true;
1223 +    if (nCells_.y() < 3) doAllPairs = true;
1224 +    if (nCells_.z() < 3) doAllPairs = true;
1225 +
1226 +    Mat3x3d invHmat = snap_->getInvHmat();
1227 +    Vector3d rs, scaled, dr;
1228 +    Vector3i whichCell;
1229 +    int cellIndex;
1230 +    int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
1231 +
1232 + #ifdef IS_MPI
1233 +    cellListRow_.resize(nCtot);
1234 +    cellListCol_.resize(nCtot);
1235 + #else
1236 +    cellList_.resize(nCtot);
1237 + #endif
1238 +
1239 +    if (!doAllPairs) {
1240 + #ifdef IS_MPI
1241 +
1242 +      for (int i = 0; i < nGroupsInRow_; i++) {
1243 +        rs = cgRowData.position[i];
1244 +        
1245 +        // scaled positions relative to the box vectors
1246 +        scaled = invHmat * rs;
1247 +        
1248 +        // wrap the vector back into the unit box by subtracting integer box
1249 +        // numbers
1250 +        for (int j = 0; j < 3; j++) {
1251 +          scaled[j] -= roundMe(scaled[j]);
1252 +          scaled[j] += 0.5;
1253 +        }
1254 +        
1255 +        // find xyz-indices of cell that cutoffGroup is in.
1256 +        whichCell.x() = nCells_.x() * scaled.x();
1257 +        whichCell.y() = nCells_.y() * scaled.y();
1258 +        whichCell.z() = nCells_.z() * scaled.z();
1259 +        
1260 +        // find single index of this cell:
1261 +        cellIndex = Vlinear(whichCell, nCells_);
1262 +        
1263 +        // add this cutoff group to the list of groups in this cell;
1264 +        cellListRow_[cellIndex].push_back(i);
1265 +      }
1266 +      for (int i = 0; i < nGroupsInCol_; i++) {
1267 +        rs = cgColData.position[i];
1268 +        
1269 +        // scaled positions relative to the box vectors
1270 +        scaled = invHmat * rs;
1271 +        
1272 +        // wrap the vector back into the unit box by subtracting integer box
1273 +        // numbers
1274 +        for (int j = 0; j < 3; j++) {
1275 +          scaled[j] -= roundMe(scaled[j]);
1276 +          scaled[j] += 0.5;
1277 +        }
1278 +        
1279 +        // find xyz-indices of cell that cutoffGroup is in.
1280 +        whichCell.x() = nCells_.x() * scaled.x();
1281 +        whichCell.y() = nCells_.y() * scaled.y();
1282 +        whichCell.z() = nCells_.z() * scaled.z();
1283 +        
1284 +        // find single index of this cell:
1285 +        cellIndex = Vlinear(whichCell, nCells_);
1286 +        
1287 +        // add this cutoff group to the list of groups in this cell;
1288 +        cellListCol_[cellIndex].push_back(i);
1289 +      }
1290 + #else
1291 +      for (int i = 0; i < nGroups_; i++) {
1292 +        rs = snap_->cgData.position[i];
1293 +        
1294 +        // scaled positions relative to the box vectors
1295 +        scaled = invHmat * rs;
1296 +        
1297 +        // wrap the vector back into the unit box by subtracting integer box
1298 +        // numbers
1299 +        for (int j = 0; j < 3; j++) {
1300 +          scaled[j] -= roundMe(scaled[j]);
1301 +          scaled[j] += 0.5;
1302 +        }
1303 +        
1304 +        // find xyz-indices of cell that cutoffGroup is in.
1305 +        whichCell.x() = nCells_.x() * scaled.x();
1306 +        whichCell.y() = nCells_.y() * scaled.y();
1307 +        whichCell.z() = nCells_.z() * scaled.z();
1308 +        
1309 +        // find single index of this cell:
1310 +        cellIndex = Vlinear(whichCell, nCells_);
1311 +        
1312 +        // add this cutoff group to the list of groups in this cell;
1313 +        cellList_[cellIndex].push_back(i);
1314 +      }
1315 + #endif
1316 +
1317 +      for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1318 +        for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1319 +          for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1320 +            Vector3i m1v(m1x, m1y, m1z);
1321 +            int m1 = Vlinear(m1v, nCells_);
1322 +            
1323 +            for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1324 +                 os != cellOffsets_.end(); ++os) {
1325 +              
1326 +              Vector3i m2v = m1v + (*os);
1327 +              
1328 +              if (m2v.x() >= nCells_.x()) {
1329 +                m2v.x() = 0;          
1330 +              } else if (m2v.x() < 0) {
1331 +                m2v.x() = nCells_.x() - 1;
1332 +              }
1333 +              
1334 +              if (m2v.y() >= nCells_.y()) {
1335 +                m2v.y() = 0;          
1336 +              } else if (m2v.y() < 0) {
1337 +                m2v.y() = nCells_.y() - 1;
1338 +              }
1339 +              
1340 +              if (m2v.z() >= nCells_.z()) {
1341 +                m2v.z() = 0;          
1342 +              } else if (m2v.z() < 0) {
1343 +                m2v.z() = nCells_.z() - 1;
1344 +              }
1345 +              
1346 +              int m2 = Vlinear (m2v, nCells_);
1347 +              
1348 + #ifdef IS_MPI
1349 +              for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1350 +                   j1 != cellListRow_[m1].end(); ++j1) {
1351 +                for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1352 +                     j2 != cellListCol_[m2].end(); ++j2) {
1353 +                  
1354 +                  // In parallel, we need to visit *all* pairs of row &
1355 +                  // column indicies and will truncate later on.
1356 +                  dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1357 +                  snap_->wrapVector(dr);
1358 +                  cuts = getGroupCutoffs( (*j1), (*j2) );
1359 +                  if (dr.lengthSquare() < cuts.third) {
1360 +                    neighborList.push_back(make_pair((*j1), (*j2)));
1361 +                  }                  
1362 +                }
1363 +              }
1364 + #else
1365 +              
1366 +              for (vector<int>::iterator j1 = cellList_[m1].begin();
1367 +                   j1 != cellList_[m1].end(); ++j1) {
1368 +                for (vector<int>::iterator j2 = cellList_[m2].begin();
1369 +                     j2 != cellList_[m2].end(); ++j2) {
1370 +                  
1371 +                  // Always do this if we're in different cells or if
1372 +                  // we're in the same cell and the global index of the
1373 +                  // j2 cutoff group is less than the j1 cutoff group
1374 +                  
1375 +                  if (m2 != m1 || (*j2) < (*j1)) {
1376 +                    dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1377 +                    snap_->wrapVector(dr);
1378 +                    cuts = getGroupCutoffs( (*j1), (*j2) );
1379 +                    if (dr.lengthSquare() < cuts.third) {
1380 +                      neighborList.push_back(make_pair((*j1), (*j2)));
1381 +                    }
1382 +                  }
1383 +                }
1384 +              }
1385 + #endif
1386 +            }
1387 +          }
1388 +        }
1389 +      }
1390 +    } else {
1391 +      // branch to do all cutoff group pairs
1392 + #ifdef IS_MPI
1393 +      for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1394 +        for (int j2 = 0; j2 < nGroupsInCol_; j2++) {      
1395 +          dr = cgColData.position[j2] - cgRowData.position[j1];
1396 +          snap_->wrapVector(dr);
1397 +          cuts = getGroupCutoffs( j1, j2 );
1398 +          if (dr.lengthSquare() < cuts.third) {
1399 +            neighborList.push_back(make_pair(j1, j2));
1400 +          }
1401 +        }
1402 +      }
1403 + #else
1404 +      for (int j1 = 0; j1 < nGroups_ - 1; j1++) {
1405 +        for (int j2 = j1 + 1; j2 < nGroups_; j2++) {
1406 +          dr = snap_->cgData.position[j2] - snap_->cgData.position[j1];
1407 +          snap_->wrapVector(dr);
1408 +          cuts = getGroupCutoffs( j1, j2 );
1409 +          if (dr.lengthSquare() < cuts.third) {
1410 +            neighborList.push_back(make_pair(j1, j2));
1411 +          }
1412 +        }
1413 +      }        
1414 + #endif
1415 +    }
1416 +      
1417 +    // save the local cutoff group positions for the check that is
1418 +    // done on each loop:
1419 +    saved_CG_positions_.clear();
1420 +    for (int i = 0; i < nGroups_; i++)
1421 +      saved_CG_positions_.push_back(snap_->cgData.position[i]);
1422 +    
1423 +    return neighborList;
1424 +  }
1425   } //end namespace OpenMD

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines