ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/devel_omp/src/parallel/ForceMatrixDecomposition.cpp
(Generate patch)

Comparing:
branches/development/src/parallel/ForceDecomposition.cpp (file contents), Revision 1538 by chuckv, Tue Jan 11 18:58:12 2011 UTC vs.
branches/devel_omp/src/parallel/ForceMatrixDecomposition.cpp (file contents), Revision 1595 by chuckv, Tue Jul 19 18:50:04 2011 UTC

# Line 1 | Line 1
1 < /**
2 < * @file ForceDecomposition.cpp
3 < * @author Charles Vardeman <cvardema.at.nd.edu>
4 < * @date 08/18/2010
5 < * @time 11:56am
6 < * @version 1.0
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
8 * @section LICENSE
9 * Copyright (c) 2010 The University of Notre Dame. All Rights Reserved.
10 *
4   * The University of Notre Dame grants you ("Licensee") a
5   * non-exclusive, royalty free, license to use, modify and
6   * redistribute this software in source and binary code form, provided
# Line 45 | Line 38
38   * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39   * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41 + #include "parallel/ForceMatrixDecomposition.hpp"
42 + #include "math/SquareMatrix3.hpp"
43 + #include "nonbonded/NonBondedInteraction.hpp"
44 + #include "brains/SnapshotManager.hpp"
45 + #include "brains/PairList.hpp"
46  
47 + using namespace std;
48 + namespace OpenMD {
49  
50 +  ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) {
51  
52 < /*  -*- c++ -*-  */
53 < #include "config.h"
54 < #include <stdlib.h>
52 >    // In a parallel computation, row and colum scans must visit all
53 >    // surrounding cells (not just the 14 upper triangular blocks that
54 >    // are used when the processor can see all pairs)
55   #ifdef IS_MPI
56 < #include <mpi.h>
57 < #endif
56 >    cellOffsets_.push_back( Vector3i(-1, 0, 0) );
57 >    cellOffsets_.push_back( Vector3i(-1,-1, 0) );
58 >    cellOffsets_.push_back( Vector3i( 0,-1, 0) );
59 >    cellOffsets_.push_back( Vector3i( 1,-1, 0) );
60 >    cellOffsets_.push_back( Vector3i( 0, 0,-1) );
61 >    cellOffsets_.push_back( Vector3i(-1, 0, 1) );
62 >    cellOffsets_.push_back( Vector3i(-1,-1,-1) );
63 >    cellOffsets_.push_back( Vector3i( 0,-1,-1) );
64 >    cellOffsets_.push_back( Vector3i( 1,-1,-1) );
65 >    cellOffsets_.push_back( Vector3i( 1, 0,-1) );
66 >    cellOffsets_.push_back( Vector3i( 1, 1,-1) );
67 >    cellOffsets_.push_back( Vector3i( 0, 1,-1) );
68 >    cellOffsets_.push_back( Vector3i(-1, 1,-1) );
69 > #endif    
70 >  }
71  
58 #include <iostream>
59 #include <vector>
60 #include <algorithm>
61 #include <cmath>
62 #include "parallel/ForceDecomposition.hpp"
72  
73 +  /**
74 +   * distributeInitialData is essentially a copy of the older fortran
75 +   * SimulationSetup
76 +   */
77 +  void ForceMatrixDecomposition::distributeInitialData() {
78 +    snap_ = sman_->getCurrentSnapshot();
79 +    storageLayout_ = sman_->getStorageLayout();
80 +    ff_ = info_->getForceField();
81 +    nLocal_ = snap_->getNumberOfAtoms();
82 +    
83 +    nGroups_ = info_->getNLocalCutoffGroups();
84 +    // gather the information for atomtype IDs (atids):
85 +    idents = info_->getIdentArray();
86 +    AtomLocalToGlobal = info_->getGlobalAtomIndices();
87 +    cgLocalToGlobal = info_->getGlobalGroupIndices();
88 +    vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
89  
90 < using namespace std;
66 < using namespace OpenMD;
90 >    massFactors = info_->getMassFactors();
91  
92 < //__static
92 >    PairList* excludes = info_->getExcludedInteractions();
93 >    PairList* oneTwo = info_->getOneTwoInteractions();
94 >    PairList* oneThree = info_->getOneThreeInteractions();
95 >    PairList* oneFour = info_->getOneFourInteractions();
96 >
97   #ifdef IS_MPI
98 < static vector<MPI:Comm> communictors;
99 < #endif
98 >
99 >    MPI::Intracomm row = rowComm.getComm();
100 >    MPI::Intracomm col = colComm.getComm();
101  
102 < //____ MPITypeTraits
103 < template<typename T>
104 < struct MPITypeTraits;
102 >    AtomPlanIntRow = new Plan<int>(row, nLocal_);
103 >    AtomPlanRealRow = new Plan<RealType>(row, nLocal_);
104 >    AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_);
105 >    AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_);
106 >    AtomPlanPotRow = new Plan<potVec>(row, nLocal_);
107  
108 < #ifdef IS_MPI
109 < template<>
110 < struct MPITypeTraits<RealType> {
111 <  static const MPI::Datatype datatype;
112 < };
82 < const MPI_Datatype MPITypeTraits<RealType>::datatype = MY_MPI_REAL;
108 >    AtomPlanIntColumn = new Plan<int>(col, nLocal_);
109 >    AtomPlanRealColumn = new Plan<RealType>(col, nLocal_);
110 >    AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_);
111 >    AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_);
112 >    AtomPlanPotColumn = new Plan<potVec>(col, nLocal_);
113  
114 < template<>
115 < struct MPITypeTraits<int> {
116 <  static const MPI::Datatype datatype;
117 < };
88 < const MPI::Datatype MPITypeTraits<int>::datatype = MPI_INT;
89 < #endif
114 >    cgPlanIntRow = new Plan<int>(row, nGroups_);
115 >    cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_);
116 >    cgPlanIntColumn = new Plan<int>(col, nGroups_);
117 >    cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_);
118  
119 < /**
120 < * Constructor for ForceDecomposition Parallel Decomposition Method
121 < * Will try to construct a symmetric grid of processors. Ideally, the
122 < * number of processors will be a square ex: 4, 9, 16, 25.
95 < *
96 < */
119 >    nAtomsInRow_ = AtomPlanIntRow->getSize();
120 >    nAtomsInCol_ = AtomPlanIntColumn->getSize();
121 >    nGroupsInRow_ = cgPlanIntRow->getSize();
122 >    nGroupsInCol_ = cgPlanIntColumn->getSize();
123  
124 < ForceDecomposition::ForceDecomposition() {
124 >    // Modify the data storage objects with the correct layouts and sizes:
125 >    atomRowData.resize(nAtomsInRow_);
126 >    atomRowData.setStorageLayout(storageLayout_);
127 >    atomColData.resize(nAtomsInCol_);
128 >    atomColData.setStorageLayout(storageLayout_);
129 >    cgRowData.resize(nGroupsInRow_);
130 >    cgRowData.setStorageLayout(DataStorage::dslPosition);
131 >    cgColData.resize(nGroupsInCol_);
132 >    cgColData.setStorageLayout(DataStorage::dslPosition);
133 >        
134 >    identsRow.resize(nAtomsInRow_);
135 >    identsCol.resize(nAtomsInCol_);
136 >    
137 >    AtomPlanIntRow->gather(idents, identsRow);
138 >    AtomPlanIntColumn->gather(idents, identsCol);
139 >    
140 >    // allocate memory for the parallel objects
141 >    atypesRow.resize(nAtomsInRow_);
142 >    atypesCol.resize(nAtomsInCol_);
143  
144 < #ifdef IS_MPI
145 <  int nProcs = MPI::COMM_WORLD.Get_size();
146 <  int worldRank = MPI::COMM_WORLD.Get_rank();
144 >    for (int i = 0; i < nAtomsInRow_; i++)
145 >      atypesRow[i] = ff_->getAtomType(identsRow[i]);
146 >    for (int i = 0; i < nAtomsInCol_; i++)
147 >      atypesCol[i] = ff_->getAtomType(identsCol[i]);        
148 >
149 >    pot_row.resize(nAtomsInRow_);
150 >    pot_col.resize(nAtomsInCol_);
151 >
152 >    AtomRowToGlobal.resize(nAtomsInRow_);
153 >    AtomColToGlobal.resize(nAtomsInCol_);
154 >    AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
155 >    AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
156 >
157 >    cerr << "Atoms in Local:\n";
158 >    for (int i = 0; i < AtomLocalToGlobal.size(); i++) {
159 >      cerr << "i =\t" << i << "\t localAt =\t" << AtomLocalToGlobal[i] << "\n";
160 >    }
161 >    cerr << "Atoms in Row:\n";
162 >    for (int i = 0; i < AtomRowToGlobal.size(); i++) {
163 >      cerr << "i =\t" << i << "\t rowAt =\t" << AtomRowToGlobal[i] << "\n";
164 >    }
165 >    cerr << "Atoms in Col:\n";
166 >    for (int i = 0; i < AtomColToGlobal.size(); i++) {
167 >      cerr << "i =\t" << i << "\t colAt =\t" << AtomColToGlobal[i] << "\n";
168 >    }
169 >
170 >    cgRowToGlobal.resize(nGroupsInRow_);
171 >    cgColToGlobal.resize(nGroupsInCol_);
172 >    cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
173 >    cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
174 >
175 >    cerr << "Gruops in Local:\n";
176 >    for (int i = 0; i < cgLocalToGlobal.size(); i++) {
177 >      cerr << "i =\t" << i << "\t localCG =\t" << cgLocalToGlobal[i] << "\n";
178 >    }
179 >    cerr << "Groups in Row:\n";
180 >    for (int i = 0; i < cgRowToGlobal.size(); i++) {
181 >      cerr << "i =\t" << i << "\t rowCG =\t" << cgRowToGlobal[i] << "\n";
182 >    }
183 >    cerr << "Groups in Col:\n";
184 >    for (int i = 0; i < cgColToGlobal.size(); i++) {
185 >      cerr << "i =\t" << i << "\t colCG =\t" << cgColToGlobal[i] << "\n";
186 >    }
187 >
188 >
189 >    massFactorsRow.resize(nAtomsInRow_);
190 >    massFactorsCol.resize(nAtomsInCol_);
191 >    AtomPlanRealRow->gather(massFactors, massFactorsRow);
192 >    AtomPlanRealColumn->gather(massFactors, massFactorsCol);
193 >
194 >    groupListRow_.clear();
195 >    groupListRow_.resize(nGroupsInRow_);
196 >    for (int i = 0; i < nGroupsInRow_; i++) {
197 >      int gid = cgRowToGlobal[i];
198 >      for (int j = 0; j < nAtomsInRow_; j++) {
199 >        int aid = AtomRowToGlobal[j];
200 >        if (globalGroupMembership[aid] == gid)
201 >          groupListRow_[i].push_back(j);
202 >      }      
203 >    }
204 >
205 >    groupListCol_.clear();
206 >    groupListCol_.resize(nGroupsInCol_);
207 >    for (int i = 0; i < nGroupsInCol_; i++) {
208 >      int gid = cgColToGlobal[i];
209 >      for (int j = 0; j < nAtomsInCol_; j++) {
210 >        int aid = AtomColToGlobal[j];
211 >        if (globalGroupMembership[aid] == gid)
212 >          groupListCol_[i].push_back(j);
213 >      }      
214 >    }
215 >
216 >    excludesForAtom.clear();
217 >    excludesForAtom.resize(nAtomsInRow_);
218 >    toposForAtom.clear();
219 >    toposForAtom.resize(nAtomsInRow_);
220 >    topoDist.clear();
221 >    topoDist.resize(nAtomsInRow_);
222 >    for (int i = 0; i < nAtomsInRow_; i++) {
223 >      int iglob = AtomRowToGlobal[i];
224 >
225 >      for (int j = 0; j < nAtomsInCol_; j++) {
226 >        int jglob = AtomColToGlobal[j];
227 >
228 >        if (excludes->hasPair(iglob, jglob))
229 >          excludesForAtom[i].push_back(j);      
230 >        
231 >        if (oneTwo->hasPair(iglob, jglob)) {
232 >          toposForAtom[i].push_back(j);
233 >          topoDist[i].push_back(1);
234 >        } else {
235 >          if (oneThree->hasPair(iglob, jglob)) {
236 >            toposForAtom[i].push_back(j);
237 >            topoDist[i].push_back(2);
238 >          } else {
239 >            if (oneFour->hasPair(iglob, jglob)) {
240 >              toposForAtom[i].push_back(j);
241 >              topoDist[i].push_back(3);
242 >            }
243 >          }
244 >        }
245 >      }      
246 >    }
247 >
248   #endif
249  
250 <  // First time through, construct column stride.
251 <  if (communicators.size() == 0)
252 <  {
253 <    int nColumnsMax = (int) round(sqrt((float) nProcs));
254 <    for (int i = 0; i < nProcs; ++i)
255 <    {
256 <      if (nProcs%i==0) nColumns=i;
250 >    // allocate memory for the parallel objects
251 >    atypesLocal.resize(nLocal_);
252 >
253 >    for (int i = 0; i < nLocal_; i++)
254 >      atypesLocal[i] = ff_->getAtomType(idents[i]);
255 >
256 >    groupList_.clear();
257 >    groupList_.resize(nGroups_);
258 >    for (int i = 0; i < nGroups_; i++) {
259 >      int gid = cgLocalToGlobal[i];
260 >      for (int j = 0; j < nLocal_; j++) {
261 >        int aid = AtomLocalToGlobal[j];
262 >        if (globalGroupMembership[aid] == gid) {
263 >          groupList_[i].push_back(j);
264 >        }
265 >      }      
266      }
267  
268 <    int nRows = nProcs/nColumns;    
269 <    myRank_ = (int) worldRank%nColumns;
268 >    excludesForAtom.clear();
269 >    excludesForAtom.resize(nLocal_);
270 >    toposForAtom.clear();
271 >    toposForAtom.resize(nLocal_);
272 >    topoDist.clear();
273 >    topoDist.resize(nLocal_);
274 >
275 >    for (int i = 0; i < nLocal_; i++) {
276 >      int iglob = AtomLocalToGlobal[i];
277 >
278 >      for (int j = 0; j < nLocal_; j++) {
279 >        int jglob = AtomLocalToGlobal[j];
280 >
281 >        if (excludes->hasPair(iglob, jglob))
282 >          excludesForAtom[i].push_back(j);              
283 >        
284 >        if (oneTwo->hasPair(iglob, jglob)) {
285 >          toposForAtom[i].push_back(j);
286 >          topoDist[i].push_back(1);
287 >        } else {
288 >          if (oneThree->hasPair(iglob, jglob)) {
289 >            toposForAtom[i].push_back(j);
290 >            topoDist[i].push_back(2);
291 >          } else {
292 >            if (oneFour->hasPair(iglob, jglob)) {
293 >              toposForAtom[i].push_back(j);
294 >              topoDist[i].push_back(3);
295 >            }
296 >          }
297 >        }
298 >      }      
299 >    }
300 >    
301 >    createGtypeCutoffMap();
302 >
303    }
304 <  else
305 <  {
306 <    myRank_ = myRank/nColumns;
307 <  }
308 <  MPI::Comm newComm = MPI:COMM_WORLD.Split(myRank_,0);
309 <  
310 <  isColumn_ = false;
311 <  
312 < }
304 >  
305 >  void ForceMatrixDecomposition::createGtypeCutoffMap() {
306 >    
307 >    RealType tol = 1e-6;
308 >    largestRcut_ = 0.0;
309 >    RealType rc;
310 >    int atid;
311 >    set<AtomType*> atypes = info_->getSimulatedAtomTypes();
312 >    
313 >    map<int, RealType> atypeCutoff;
314 >      
315 >    for (set<AtomType*>::iterator at = atypes.begin();
316 >         at != atypes.end(); ++at){
317 >      atid = (*at)->getIdent();
318 >      if (userChoseCutoff_)
319 >        atypeCutoff[atid] = userCutoff_;
320 >      else
321 >        atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at);
322 >    }
323 >    
324 >    vector<RealType> gTypeCutoffs;
325 >    // first we do a single loop over the cutoff groups to find the
326 >    // largest cutoff for any atypes present in this group.
327 > #ifdef IS_MPI
328 >    vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0);
329 >    groupRowToGtype.resize(nGroupsInRow_);
330 >    for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) {
331 >      vector<int> atomListRow = getAtomsInGroupRow(cg1);
332 >      for (vector<int>::iterator ia = atomListRow.begin();
333 >           ia != atomListRow.end(); ++ia) {            
334 >        int atom1 = (*ia);
335 >        atid = identsRow[atom1];
336 >        if (atypeCutoff[atid] > groupCutoffRow[cg1]) {
337 >          groupCutoffRow[cg1] = atypeCutoff[atid];
338 >        }
339 >      }
340  
341 < ForceDecomposition::gather(sendbuf, receivebuf){
342 <  communicators(myIndex_).Allgatherv();
343 < }
341 >      bool gTypeFound = false;
342 >      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
343 >        if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) {
344 >          groupRowToGtype[cg1] = gt;
345 >          gTypeFound = true;
346 >        }
347 >      }
348 >      if (!gTypeFound) {
349 >        gTypeCutoffs.push_back( groupCutoffRow[cg1] );
350 >        groupRowToGtype[cg1] = gTypeCutoffs.size() - 1;
351 >      }
352 >      
353 >    }
354 >    vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0);
355 >    groupColToGtype.resize(nGroupsInCol_);
356 >    for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) {
357 >      vector<int> atomListCol = getAtomsInGroupColumn(cg2);
358 >      for (vector<int>::iterator jb = atomListCol.begin();
359 >           jb != atomListCol.end(); ++jb) {            
360 >        int atom2 = (*jb);
361 >        atid = identsCol[atom2];
362 >        if (atypeCutoff[atid] > groupCutoffCol[cg2]) {
363 >          groupCutoffCol[cg2] = atypeCutoff[atid];
364 >        }
365 >      }
366 >      bool gTypeFound = false;
367 >      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
368 >        if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) {
369 >          groupColToGtype[cg2] = gt;
370 >          gTypeFound = true;
371 >        }
372 >      }
373 >      if (!gTypeFound) {
374 >        gTypeCutoffs.push_back( groupCutoffCol[cg2] );
375 >        groupColToGtype[cg2] = gTypeCutoffs.size() - 1;
376 >      }
377 >    }
378 > #else
379  
380 +    vector<RealType> groupCutoff(nGroups_, 0.0);
381 +    groupToGtype.resize(nGroups_);
382 +    for (int cg1 = 0; cg1 < nGroups_; cg1++) {
383 +      groupCutoff[cg1] = 0.0;
384 +      vector<int> atomList = getAtomsInGroupRow(cg1);
385 +      for (vector<int>::iterator ia = atomList.begin();
386 +           ia != atomList.end(); ++ia) {            
387 +        int atom1 = (*ia);
388 +        atid = idents[atom1];
389 +        if (atypeCutoff[atid] > groupCutoff[cg1])
390 +          groupCutoff[cg1] = atypeCutoff[atid];
391 +      }
392 +      
393 +      bool gTypeFound = false;
394 +      for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
395 +        if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) {
396 +          groupToGtype[cg1] = gt;
397 +          gTypeFound = true;
398 +        }
399 +      }
400 +      if (!gTypeFound) {      
401 +        gTypeCutoffs.push_back( groupCutoff[cg1] );
402 +        groupToGtype[cg1] = gTypeCutoffs.size() - 1;
403 +      }      
404 +    }
405 + #endif
406  
407 +    // Now we find the maximum group cutoff value present in the simulation
408  
409 < ForceDecomposition::scatter(sbuffer, rbuffer){
410 <  communicators(myIndex_).Reduce_scatter(sbuffer, recevbuf. recvcounts, MPI::DOUBLE, MPI::SUM);
409 >    RealType groupMax = *max_element(gTypeCutoffs.begin(),
410 >                                     gTypeCutoffs.end());
411 >
412 > #ifdef IS_MPI
413 >    MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE,
414 >                              MPI::MAX);
415 > #endif
416 >    
417 >    RealType tradRcut = groupMax;
418 >
419 >    for (int i = 0; i < gTypeCutoffs.size();  i++) {
420 >      for (int j = 0; j < gTypeCutoffs.size();  j++) {      
421 >        RealType thisRcut;
422 >        switch(cutoffPolicy_) {
423 >        case TRADITIONAL:
424 >          thisRcut = tradRcut;
425 >          break;
426 >        case MIX:
427 >          thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]);
428 >          break;
429 >        case MAX:
430 >          thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]);
431 >          break;
432 >        default:
433 >          sprintf(painCave.errMsg,
434 >                  "ForceMatrixDecomposition::createGtypeCutoffMap "
435 >                  "hit an unknown cutoff policy!\n");
436 >          painCave.severity = OPENMD_ERROR;
437 >          painCave.isFatal = 1;
438 >          simError();
439 >          break;
440 >        }
441 >
442 >        pair<int,int> key = make_pair(i,j);
443 >        gTypeCutoffMap[key].first = thisRcut;
444 >        if (thisRcut > largestRcut_) largestRcut_ = thisRcut;
445 >        gTypeCutoffMap[key].second = thisRcut*thisRcut;
446 >        gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2);
447 >        // sanity check
448 >        
449 >        if (userChoseCutoff_) {
450 >          if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) {
451 >            sprintf(painCave.errMsg,
452 >                    "ForceMatrixDecomposition::createGtypeCutoffMap "
453 >                    "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_);
454 >            painCave.severity = OPENMD_ERROR;
455 >            painCave.isFatal = 1;
456 >            simError();            
457 >          }
458 >        }
459 >      }
460 >    }
461 >  }
462 >
463 >
464 >  groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) {
465 >    int i, j;  
466 > #ifdef IS_MPI
467 >    i = groupRowToGtype[cg1];
468 >    j = groupColToGtype[cg2];
469 > #else
470 >    i = groupToGtype[cg1];
471 >    j = groupToGtype[cg2];
472 > #endif    
473 >    return gTypeCutoffMap[make_pair(i,j)];
474 >  }
475 >
476 >  int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
477 >    for (int j = 0; j < toposForAtom[atom1].size(); j++) {
478 >      if (toposForAtom[atom1][j] == atom2)
479 >        return topoDist[atom1][j];
480 >    }
481 >    return 0;
482 >  }
483 >
484 >  void ForceMatrixDecomposition::zeroWorkArrays() {
485 >    pairwisePot = 0.0;
486 >    embeddingPot = 0.0;
487 >
488 > #ifdef IS_MPI
489 >    if (storageLayout_ & DataStorage::dslForce) {
490 >      fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero);
491 >      fill(atomColData.force.begin(), atomColData.force.end(), V3Zero);
492 >    }
493 >
494 >    if (storageLayout_ & DataStorage::dslTorque) {
495 >      fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero);
496 >      fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero);
497 >    }
498 >    
499 >    fill(pot_row.begin(), pot_row.end(),
500 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
501 >
502 >    fill(pot_col.begin(), pot_col.end(),
503 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));  
504 >
505 >    if (storageLayout_ & DataStorage::dslParticlePot) {    
506 >      fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(),
507 >           0.0);
508 >      fill(atomColData.particlePot.begin(), atomColData.particlePot.end(),
509 >           0.0);
510 >    }
511 >
512 >    if (storageLayout_ & DataStorage::dslDensity) {      
513 >      fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0);
514 >      fill(atomColData.density.begin(), atomColData.density.end(), 0.0);
515 >    }
516 >
517 >    if (storageLayout_ & DataStorage::dslFunctional) {  
518 >      fill(atomRowData.functional.begin(), atomRowData.functional.end(),
519 >           0.0);
520 >      fill(atomColData.functional.begin(), atomColData.functional.end(),
521 >           0.0);
522 >    }
523 >
524 >    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
525 >      fill(atomRowData.functionalDerivative.begin(),
526 >           atomRowData.functionalDerivative.end(), 0.0);
527 >      fill(atomColData.functionalDerivative.begin(),
528 >           atomColData.functionalDerivative.end(), 0.0);
529 >    }
530 >
531 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
532 >      fill(atomRowData.skippedCharge.begin(),
533 >           atomRowData.skippedCharge.end(), 0.0);
534 >      fill(atomColData.skippedCharge.begin(),
535 >           atomColData.skippedCharge.end(), 0.0);
536 >    }
537 >
538 > #endif
539 >    // even in parallel, we need to zero out the local arrays:
540 >
541 >    if (storageLayout_ & DataStorage::dslParticlePot) {      
542 >      fill(snap_->atomData.particlePot.begin(),
543 >           snap_->atomData.particlePot.end(), 0.0);
544 >    }
545 >    
546 >    if (storageLayout_ & DataStorage::dslDensity) {      
547 >      fill(snap_->atomData.density.begin(),
548 >           snap_->atomData.density.end(), 0.0);
549 >    }
550 >    if (storageLayout_ & DataStorage::dslFunctional) {
551 >      fill(snap_->atomData.functional.begin(),
552 >           snap_->atomData.functional.end(), 0.0);
553 >    }
554 >    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {      
555 >      fill(snap_->atomData.functionalDerivative.begin(),
556 >           snap_->atomData.functionalDerivative.end(), 0.0);
557 >    }
558 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
559 >      fill(snap_->atomData.skippedCharge.begin(),
560 >           snap_->atomData.skippedCharge.end(), 0.0);
561 >    }
562 >    
563 >  }
564 >
565 >
566 >  void ForceMatrixDecomposition::distributeData()  {
567 >    snap_ = sman_->getCurrentSnapshot();
568 >    storageLayout_ = sman_->getStorageLayout();
569 > #ifdef IS_MPI
570 >    
571 >    // gather up the atomic positions
572 >    AtomPlanVectorRow->gather(snap_->atomData.position,
573 >                              atomRowData.position);
574 >    AtomPlanVectorColumn->gather(snap_->atomData.position,
575 >                                 atomColData.position);
576 >    
577 >    // gather up the cutoff group positions
578 >
579 >    cerr  << "before gather\n";
580 >    for (int i = 0; i < snap_->cgData.position.size(); i++) {
581 >      cerr << "cgpos = " << snap_->cgData.position[i] << "\n";
582 >    }
583 >
584 >    cgPlanVectorRow->gather(snap_->cgData.position,
585 >                            cgRowData.position);
586 >
587 >    cerr  << "after gather\n";
588 >    for (int i = 0; i < cgRowData.position.size(); i++) {
589 >      cerr << "cgRpos = " << cgRowData.position[i] << "\n";
590 >    }
591 >
592 >    cgPlanVectorColumn->gather(snap_->cgData.position,
593 >                               cgColData.position);
594 >    for (int i = 0; i < cgColData.position.size(); i++) {
595 >      cerr << "cgCpos = " << cgColData.position[i] << "\n";
596 >    }
597 >
598 >    
599 >    // if needed, gather the atomic rotation matrices
600 >    if (storageLayout_ & DataStorage::dslAmat) {
601 >      AtomPlanMatrixRow->gather(snap_->atomData.aMat,
602 >                                atomRowData.aMat);
603 >      AtomPlanMatrixColumn->gather(snap_->atomData.aMat,
604 >                                   atomColData.aMat);
605 >    }
606 >    
607 >    // if needed, gather the atomic eletrostatic frames
608 >    if (storageLayout_ & DataStorage::dslElectroFrame) {
609 >      AtomPlanMatrixRow->gather(snap_->atomData.electroFrame,
610 >                                atomRowData.electroFrame);
611 >      AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame,
612 >                                   atomColData.electroFrame);
613 >    }
614 >
615 > #endif      
616 >  }
617 >  
618 >  /* collects information obtained during the pre-pair loop onto local
619 >   * data structures.
620 >   */
621 >  void ForceMatrixDecomposition::collectIntermediateData() {
622 >    snap_ = sman_->getCurrentSnapshot();
623 >    storageLayout_ = sman_->getStorageLayout();
624 > #ifdef IS_MPI
625 >    
626 >    if (storageLayout_ & DataStorage::dslDensity) {
627 >      
628 >      AtomPlanRealRow->scatter(atomRowData.density,
629 >                               snap_->atomData.density);
630 >      
631 >      int n = snap_->atomData.density.size();
632 >      vector<RealType> rho_tmp(n, 0.0);
633 >      AtomPlanRealColumn->scatter(atomColData.density, rho_tmp);
634 >      for (int i = 0; i < n; i++)
635 >        snap_->atomData.density[i] += rho_tmp[i];
636 >    }
637 > #endif
638 >  }
639 >
640 >  /*
641 >   * redistributes information obtained during the pre-pair loop out to
642 >   * row and column-indexed data structures
643 >   */
644 >  void ForceMatrixDecomposition::distributeIntermediateData() {
645 >    snap_ = sman_->getCurrentSnapshot();
646 >    storageLayout_ = sman_->getStorageLayout();
647 > #ifdef IS_MPI
648 >    if (storageLayout_ & DataStorage::dslFunctional) {
649 >      AtomPlanRealRow->gather(snap_->atomData.functional,
650 >                              atomRowData.functional);
651 >      AtomPlanRealColumn->gather(snap_->atomData.functional,
652 >                                 atomColData.functional);
653 >    }
654 >    
655 >    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
656 >      AtomPlanRealRow->gather(snap_->atomData.functionalDerivative,
657 >                              atomRowData.functionalDerivative);
658 >      AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative,
659 >                                 atomColData.functionalDerivative);
660 >    }
661 > #endif
662 >  }
663 >  
664 >  
665 >  void ForceMatrixDecomposition::collectData() {
666 >    snap_ = sman_->getCurrentSnapshot();
667 >    storageLayout_ = sman_->getStorageLayout();
668 > #ifdef IS_MPI    
669 >    int n = snap_->atomData.force.size();
670 >    vector<Vector3d> frc_tmp(n, V3Zero);
671 >    
672 >    AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp);
673 >    for (int i = 0; i < n; i++) {
674 >      snap_->atomData.force[i] += frc_tmp[i];
675 >      frc_tmp[i] = 0.0;
676 >    }
677 >    
678 >    AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp);
679 >    for (int i = 0; i < n; i++) {
680 >      snap_->atomData.force[i] += frc_tmp[i];
681 >    }
682 >        
683 >    if (storageLayout_ & DataStorage::dslTorque) {
684 >
685 >      int nt = snap_->atomData.torque.size();
686 >      vector<Vector3d> trq_tmp(nt, V3Zero);
687 >
688 >      AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp);
689 >      for (int i = 0; i < nt; i++) {
690 >        snap_->atomData.torque[i] += trq_tmp[i];
691 >        trq_tmp[i] = 0.0;
692 >      }
693 >      
694 >      AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp);
695 >      for (int i = 0; i < nt; i++)
696 >        snap_->atomData.torque[i] += trq_tmp[i];
697 >    }
698 >
699 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {
700 >
701 >      int ns = snap_->atomData.skippedCharge.size();
702 >      vector<RealType> skch_tmp(ns, 0.0);
703 >
704 >      AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp);
705 >      for (int i = 0; i < ns; i++) {
706 >        snap_->atomData.skippedCharge[i] += skch_tmp[i];
707 >        skch_tmp[i] = 0.0;
708 >      }
709 >      
710 >      AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp);
711 >      for (int i = 0; i < ns; i++)
712 >        snap_->atomData.skippedCharge[i] += skch_tmp[i];
713 >    }
714 >    
715 >    nLocal_ = snap_->getNumberOfAtoms();
716 >
717 >    vector<potVec> pot_temp(nLocal_,
718 >                            Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
719 >
720 >    // scatter/gather pot_row into the members of my column
721 >          
722 >    AtomPlanPotRow->scatter(pot_row, pot_temp);
723 >
724 >    for (int ii = 0;  ii < pot_temp.size(); ii++ )
725 >      pairwisePot += pot_temp[ii];
726 >    
727 >    fill(pot_temp.begin(), pot_temp.end(),
728 >         Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
729 >      
730 >    AtomPlanPotColumn->scatter(pot_col, pot_temp);    
731 >    
732 >    for (int ii = 0;  ii < pot_temp.size(); ii++ )
733 >      pairwisePot += pot_temp[ii];    
734 > #endif
735 >
736 >    cerr << "pairwisePot = " <<  pairwisePot << "\n";
737 >  }
738 >
739 >  int ForceMatrixDecomposition::getNAtomsInRow() {  
740 > #ifdef IS_MPI
741 >    return nAtomsInRow_;
742 > #else
743 >    return nLocal_;
744 > #endif
745 >  }
746 >
747 >  /**
748 >   * returns the list of atoms belonging to this group.  
749 >   */
750 >  vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
751 > #ifdef IS_MPI
752 >    return groupListRow_[cg1];
753 > #else
754 >    return groupList_[cg1];
755 > #endif
756 >  }
757 >
758 >  vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
759 > #ifdef IS_MPI
760 >    return groupListCol_[cg2];
761 > #else
762 >    return groupList_[cg2];
763 > #endif
764 >  }
765 >  
766 >  Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){
767 >    Vector3d d;
768 >    
769 > #ifdef IS_MPI
770 >    d = cgColData.position[cg2] - cgRowData.position[cg1];
771 >    cerr << "cg1 = " << cg1 << "\tcg1p = " << cgRowData.position[cg1] << "\n";
772 >    cerr << "cg2 = " << cg2 << "\tcg2p = " << cgColData.position[cg2] << "\n";
773 > #else
774 >    d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1];
775 >    cerr << "cg1 = " << cg1 << "\tcg1p = " << snap_->cgData.position[cg1] << "\n";
776 >    cerr << "cg2 = " << cg2 << "\tcg2p = " << snap_->cgData.position[cg2] << "\n";
777 > #endif
778 >    
779 >    snap_->wrapVector(d);
780 >    return d;    
781 >  }
782 >
783 >
784 >  Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){
785 >
786 >    Vector3d d;
787 >    
788 > #ifdef IS_MPI
789 >    d = cgRowData.position[cg1] - atomRowData.position[atom1];
790 > #else
791 >    d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1];
792 > #endif
793 >
794 >    snap_->wrapVector(d);
795 >    return d;    
796 >  }
797 >  
798 >  Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){
799 >    Vector3d d;
800 >    
801 > #ifdef IS_MPI
802 >    d = cgColData.position[cg2] - atomColData.position[atom2];
803 > #else
804 >    d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2];
805 > #endif
806 >    
807 >    snap_->wrapVector(d);
808 >    return d;    
809 >  }
810 >
811 >  RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) {
812 > #ifdef IS_MPI
813 >    return massFactorsRow[atom1];
814 > #else
815 >    return massFactors[atom1];
816 > #endif
817 >  }
818 >
819 >  RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
820 > #ifdef IS_MPI
821 >    return massFactorsCol[atom2];
822 > #else
823 >    return massFactors[atom2];
824 > #endif
825 >
826 >  }
827 >    
828 >  Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){
829 >    Vector3d d;
830 >    
831 > #ifdef IS_MPI
832 >    d = atomColData.position[atom2] - atomRowData.position[atom1];
833 > #else
834 >    d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1];
835 > #endif
836 >
837 >    snap_->wrapVector(d);
838 >    return d;    
839 >  }
840 >
841 >  vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) {
842 >    return excludesForAtom[atom1];
843 >  }
844 >
845 >  /**
846 >   * We need to exclude some overcounted interactions that result from
847 >   * the parallel decomposition.
848 >   */
849 >  bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) {
850 >    int unique_id_1, unique_id_2;
851 >    
852 >
853 >    cerr << "sap with atom1, atom2 =\t" << atom1 << "\t" << atom2 << "\n";
854 > #ifdef IS_MPI
855 >    // in MPI, we have to look up the unique IDs for each atom
856 >    unique_id_1 = AtomRowToGlobal[atom1];
857 >    unique_id_2 = AtomColToGlobal[atom2];
858 >
859 >    cerr << "sap with uid1, uid2 =\t" << unique_id_1 << "\t" << unique_id_2 << "\n";
860 >    // this situation should only arise in MPI simulations
861 >    if (unique_id_1 == unique_id_2) return true;
862 >    
863 >    // this prevents us from doing the pair on multiple processors
864 >    if (unique_id_1 < unique_id_2) {
865 >      if ((unique_id_1 + unique_id_2) % 2 == 0) return true;
866 >    } else {
867 >      if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
868 >    }
869 > #endif
870 >    return false;
871 >  }
872 >
873 >  /**
874 >   * We need to handle the interactions for atoms who are involved in
875 >   * the same rigid body as well as some short range interactions
876 >   * (bonds, bends, torsions) differently from other interactions.
877 >   * We'll still visit the pairwise routines, but with a flag that
878 >   * tells those routines to exclude the pair from direct long range
879 >   * interactions.  Some indirect interactions (notably reaction
880 >   * field) must still be handled for these pairs.
881 >   */
882 >  bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) {
883 >    int unique_id_2;
884 > #ifdef IS_MPI
885 >    // in MPI, we have to look up the unique IDs for the row atom.
886 >    unique_id_2 = AtomColToGlobal[atom2];
887 > #else
888 >    // in the normal loop, the atom numbers are unique
889 >    unique_id_2 = atom2;
890 > #endif
891 >    
892 >    for (vector<int>::iterator i = excludesForAtom[atom1].begin();
893 >         i != excludesForAtom[atom1].end(); ++i) {
894 >      if ( (*i) == unique_id_2 ) return true;
895 >    }
896 >
897 >    return false;
898 >  }
899 >
900 >
901 >  void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){
902 > #ifdef IS_MPI
903 >    atomRowData.force[atom1] += fg;
904 > #else
905 >    snap_->atomData.force[atom1] += fg;
906 > #endif
907 >  }
908 >
909 >  void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){
910 > #ifdef IS_MPI
911 >    atomColData.force[atom2] += fg;
912 > #else
913 >    snap_->atomData.force[atom2] += fg;
914 > #endif
915 >  }
916 >
917 >    // filling interaction blocks with pointers
918 >  void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat,
919 >                                                     int atom1, int atom2) {
920 >
921 >    idat.excluded = excludeAtomPair(atom1, atom2);
922 >  
923 > #ifdef IS_MPI
924 >    idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]);
925 >    //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
926 >    //                         ff_->getAtomType(identsCol[atom2]) );
927 >    
928 >    if (storageLayout_ & DataStorage::dslAmat) {
929 >      idat.A1 = &(atomRowData.aMat[atom1]);
930 >      idat.A2 = &(atomColData.aMat[atom2]);
931 >    }
932 >    
933 >    if (storageLayout_ & DataStorage::dslElectroFrame) {
934 >      idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
935 >      idat.eFrame2 = &(atomColData.electroFrame[atom2]);
936 >    }
937 >
938 >    if (storageLayout_ & DataStorage::dslTorque) {
939 >      idat.t1 = &(atomRowData.torque[atom1]);
940 >      idat.t2 = &(atomColData.torque[atom2]);
941 >    }
942 >
943 >    if (storageLayout_ & DataStorage::dslDensity) {
944 >      idat.rho1 = &(atomRowData.density[atom1]);
945 >      idat.rho2 = &(atomColData.density[atom2]);
946 >    }
947 >
948 >    if (storageLayout_ & DataStorage::dslFunctional) {
949 >      idat.frho1 = &(atomRowData.functional[atom1]);
950 >      idat.frho2 = &(atomColData.functional[atom2]);
951 >    }
952 >
953 >    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
954 >      idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
955 >      idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
956 >    }
957 >
958 >    if (storageLayout_ & DataStorage::dslParticlePot) {
959 >      idat.particlePot1 = &(atomRowData.particlePot[atom1]);
960 >      idat.particlePot2 = &(atomColData.particlePot[atom2]);
961 >    }
962 >
963 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {              
964 >      idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
965 >      idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
966 >    }
967 >
968 > #else
969 >
970 >    idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]);
971 >    //idat.atypes = make_pair( ff_->getAtomType(idents[atom1]),
972 >    //                         ff_->getAtomType(idents[atom2]) );
973 >
974 >    if (storageLayout_ & DataStorage::dslAmat) {
975 >      idat.A1 = &(snap_->atomData.aMat[atom1]);
976 >      idat.A2 = &(snap_->atomData.aMat[atom2]);
977 >    }
978 >
979 >    if (storageLayout_ & DataStorage::dslElectroFrame) {
980 >      idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
981 >      idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
982 >    }
983 >
984 >    if (storageLayout_ & DataStorage::dslTorque) {
985 >      idat.t1 = &(snap_->atomData.torque[atom1]);
986 >      idat.t2 = &(snap_->atomData.torque[atom2]);
987 >    }
988 >
989 >    if (storageLayout_ & DataStorage::dslDensity) {    
990 >      idat.rho1 = &(snap_->atomData.density[atom1]);
991 >      idat.rho2 = &(snap_->atomData.density[atom2]);
992 >    }
993 >
994 >    if (storageLayout_ & DataStorage::dslFunctional) {
995 >      idat.frho1 = &(snap_->atomData.functional[atom1]);
996 >      idat.frho2 = &(snap_->atomData.functional[atom2]);
997 >    }
998 >
999 >    if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1000 >      idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
1001 >      idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
1002 >    }
1003 >
1004 >    if (storageLayout_ & DataStorage::dslParticlePot) {
1005 >      idat.particlePot1 = &(snap_->atomData.particlePot[atom1]);
1006 >      idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
1007 >    }
1008 >
1009 >    if (storageLayout_ & DataStorage::dslSkippedCharge) {
1010 >      idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
1011 >      idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
1012 >    }
1013 > #endif
1014 >  }
1015 >
1016 >  
1017 >  void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) {    
1018 > #ifdef IS_MPI
1019 >    pot_row[atom1] += 0.5 *  *(idat.pot);
1020 >    pot_col[atom2] += 0.5 *  *(idat.pot);
1021 >
1022 >    atomRowData.force[atom1] += *(idat.f1);
1023 >    atomColData.force[atom2] -= *(idat.f1);
1024 > #else
1025 >    pairwisePot += *(idat.pot);
1026 >
1027 >    snap_->atomData.force[atom1] += *(idat.f1);
1028 >    snap_->atomData.force[atom2] -= *(idat.f1);
1029 > #endif
1030 >    
1031 >  }
1032 >
1033 > vector<vector<int> > ForceMatrixDecomposition::buildLayerBasedNeighborList() {
1034 >        printf("buildLayerBasedNeighborList; nGroups:%d\n", nGroups_);
1035 >        // Na = nGroups_
1036 >        /* cell occupancy counter */
1037 >        vector<int> k_c;
1038 >        /* c_i - has cell containing atom i (size Na) */
1039 >        vector<int> c;
1040 >        /* l_i - layer containing atom i (size Na) */
1041 >        vector<int> l;
1042 >
1043 > //      cellList_.clear();
1044 >
1045 >        RealType rList_ = (largestRcut_ + skinThickness_);
1046 >        Snapshot* snap_ = sman_->getCurrentSnapshot();
1047 >        Mat3x3d Hmat = snap_->getHmat();
1048 >        Vector3d Hx = Hmat.getColumn(0);
1049 >        Vector3d Hy = Hmat.getColumn(1);
1050 >        Vector3d Hz = Hmat.getColumn(2);
1051 >
1052 >        nCells_.x() = (int) (Hx.length()) / rList_;
1053 >        nCells_.y() = (int) (Hy.length()) / rList_;
1054 >        nCells_.z() = (int) (Hz.length()) / rList_;
1055 >
1056 >        Mat3x3d invHmat = snap_->getInvHmat();
1057 >        Vector3d rs, scaled, dr;
1058 >        Vector3i whichCell;
1059 >        int cellIndex;
1060 >        int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
1061 >
1062 > //      cellList_.resize(nCtot);
1063 >        k_c = vector<int>(nCtot, 0);
1064 >
1065 >        for (int i = 0; i < nGroups_; i++)
1066 >        {
1067 >                rs = snap_->cgData.position[i];
1068 >
1069 >                // scaled positions relative to the box vectors
1070 >                scaled = invHmat * rs;
1071 >
1072 >                // wrap the vector back into the unit box by subtracting integer box
1073 >                // numbers
1074 >                for (int j = 0; j < 3; j++)
1075 >                {
1076 >                        scaled[j] -= roundMe(scaled[j]);
1077 >                        scaled[j] += 0.5;
1078 >                }
1079 >
1080 >                // find xyz-indices of cell that cutoffGroup is in.
1081 >                whichCell.x() = nCells_.x() * scaled.x();
1082 >                whichCell.y() = nCells_.y() * scaled.y();
1083 >                whichCell.z() = nCells_.z() * scaled.z();
1084 >
1085 >                // find single index of this cell:
1086 >                cellIndex = Vlinear(whichCell, nCells_);
1087 >
1088 >                c.push_back(cellIndex);
1089 >
1090 > //              // add this cutoff group to the list of groups in this cell;
1091 > //              cellList_[cellIndex].push_back(i);
1092 >        }
1093 >
1094 >        int k_c_curr;
1095 >        int k_c_max = 0;
1096 >        /* the cell-layer occupancy matrix */
1097 >        vector<vector<int> > H_c_l = vector<vector<int> >(nCtot);
1098 >
1099 >        for(int i = 0; i < nGroups_; ++i)
1100 >        {
1101 >                k_c_curr = ++k_c[c[i]];
1102 >                l.push_back(k_c_curr);
1103 >
1104 >                /* determines the number of layers in use */
1105 >                if(k_c_max < k_c_curr)
1106 >                {
1107 >                        k_c_max = k_c_curr;
1108 >                }
1109 >
1110 >                H_c_l[c[i]].push_back(/*l[*/i/*]*/);
1111 >        }
1112 >
1113 >        int m;
1114 >        /* the neighbor matrix */
1115 >        vector<vector<int> >neighborMatW = vector<vector<int> >(nGroups_);
1116 >
1117 > //      vector<pair<int, int> > neighborList;
1118 >        groupCutoffs cuts;
1119 >
1120 >        /* loops over objects(atoms, rigidBodies, cutoffGroups, etc.) */
1121 >        for(int i = 0; i < nGroups_; ++i)
1122 >        {
1123 >                m = 0;
1124 >                /* c' */
1125 >                int c1 = c[i];
1126 >                Vector3i c1v = idxToV(c1, nCells_);
1127 >
1128 >                /* loops over the neighboring cells c'' */
1129 >                for (vector<Vector3i>::iterator os = cellOffsets_.begin(); os != cellOffsets_.end(); ++os)
1130 >                {
1131 >                        Vector3i c2v = c1v + (*os);
1132 >
1133 >                        if (c2v.x() >= nCells_.x())
1134 >                        {
1135 >                                c2v.x() = 0;
1136 >                        } else if (c2v.x() < 0)
1137 >                        {
1138 >                                c2v.x() = nCells_.x() - 1;
1139 >                        }
1140 >
1141 >                        if (c2v.y() >= nCells_.y())
1142 >                        {
1143 >                                c2v.y() = 0;
1144 >                        } else if (c2v.y() < 0)
1145 >                        {
1146 >                                c2v.y() = nCells_.y() - 1;
1147 >                        }
1148 >
1149 >                        if (c2v.z() >= nCells_.z())
1150 >                        {
1151 >                                c2v.z() = 0;
1152 >                        } else if (c2v.z() < 0)
1153 >                        {
1154 >                                c2v.z() = nCells_.z() - 1;
1155 >                        }
1156 >
1157 >                        int c2 = Vlinear(c2v, nCells_);
1158 >                        /* loops over layers l to access the neighbor atoms */
1159 >                        for (vector<int>::iterator j = H_c_l[c2].begin(); j != H_c_l[c2].end(); ++j)
1160 >                        {
1161 > //                              if i'' = 0 then break // doesn't apply to vector implementation of matrix
1162 > //                              if(i != *j)
1163 >                                if (c2 != c1 || (*j) < (i))
1164 >                                {
1165 >                                        dr = snap_->cgData.position[(*j)] - snap_->cgData.position[(i)];
1166 >                                        snap_->wrapVector(dr);
1167 >                                        cuts = getGroupCutoffs((i), (*j));
1168 >                                        if (dr.lengthSquare() < cuts.third)
1169 >                                        {
1170 >                                                ++m;
1171 >                                                /* transposed version of Rapaport W mat, to occupy successive memory locations on CPU */
1172 >                                                neighborMatW[i].push_back(*j);
1173 > //                                              neighborList.push_back(make_pair((i), (*j)));
1174 >                                        }
1175 >                                }
1176 >                        }
1177 >                }
1178 >        }
1179 >
1180 >        // save the local cutoff group positions for the check that is
1181 >        // done on each loop:
1182 >        saved_CG_positions_.clear();
1183 >        for (int i = 0; i < nGroups_; i++)
1184 >                saved_CG_positions_.push_back(snap_->cgData.position[i]);
1185 >
1186 >        return neighborMatW;
1187   }
1188  
1189 +  /*
1190 +   * buildNeighborList
1191 +   *
1192 +   * first element of pair is row-indexed CutoffGroup
1193 +   * second element of pair is column-indexed CutoffGroup
1194 +   */
1195 +  vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() {
1196 +      
1197 +    vector<pair<int, int> > neighborList;
1198 +    groupCutoffs cuts;
1199 +    bool doAllPairs = false;
1200  
1201 + #ifdef IS_MPI
1202 +    cellListRow_.clear();
1203 +    cellListCol_.clear();
1204 + #else
1205 +    cellList_.clear();
1206 + #endif
1207 +
1208 +    RealType rList_ = (largestRcut_ + skinThickness_);
1209 +    RealType rl2 = rList_ * rList_;
1210 +    Snapshot* snap_ = sman_->getCurrentSnapshot();
1211 +    Mat3x3d Hmat = snap_->getHmat();
1212 +    Vector3d Hx = Hmat.getColumn(0);
1213 +    Vector3d Hy = Hmat.getColumn(1);
1214 +    Vector3d Hz = Hmat.getColumn(2);
1215 +
1216 +    nCells_.x() = (int) ( Hx.length() )/ rList_;
1217 +    nCells_.y() = (int) ( Hy.length() )/ rList_;
1218 +    nCells_.z() = (int) ( Hz.length() )/ rList_;
1219 +
1220 +    // handle small boxes where the cell offsets can end up repeating cells
1221 +    
1222 +    if (nCells_.x() < 3) doAllPairs = true;
1223 +    if (nCells_.y() < 3) doAllPairs = true;
1224 +    if (nCells_.z() < 3) doAllPairs = true;
1225 +
1226 +    Mat3x3d invHmat = snap_->getInvHmat();
1227 +    Vector3d rs, scaled, dr;
1228 +    Vector3i whichCell;
1229 +    int cellIndex;
1230 +    int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
1231 +
1232 + #ifdef IS_MPI
1233 +    cellListRow_.resize(nCtot);
1234 +    cellListCol_.resize(nCtot);
1235 + #else
1236 +    cellList_.resize(nCtot);
1237 + #endif
1238 +
1239 +    if (!doAllPairs) {
1240 + #ifdef IS_MPI
1241 +
1242 +      for (int i = 0; i < nGroupsInRow_; i++) {
1243 +        rs = cgRowData.position[i];
1244 +        
1245 +        // scaled positions relative to the box vectors
1246 +        scaled = invHmat * rs;
1247 +        
1248 +        // wrap the vector back into the unit box by subtracting integer box
1249 +        // numbers
1250 +        for (int j = 0; j < 3; j++) {
1251 +          scaled[j] -= roundMe(scaled[j]);
1252 +          scaled[j] += 0.5;
1253 +        }
1254 +        
1255 +        // find xyz-indices of cell that cutoffGroup is in.
1256 +        whichCell.x() = nCells_.x() * scaled.x();
1257 +        whichCell.y() = nCells_.y() * scaled.y();
1258 +        whichCell.z() = nCells_.z() * scaled.z();
1259 +        
1260 +        // find single index of this cell:
1261 +        cellIndex = Vlinear(whichCell, nCells_);
1262 +        
1263 +        // add this cutoff group to the list of groups in this cell;
1264 +        cellListRow_[cellIndex].push_back(i);
1265 +      }
1266 +      for (int i = 0; i < nGroupsInCol_; i++) {
1267 +        rs = cgColData.position[i];
1268 +        
1269 +        // scaled positions relative to the box vectors
1270 +        scaled = invHmat * rs;
1271 +        
1272 +        // wrap the vector back into the unit box by subtracting integer box
1273 +        // numbers
1274 +        for (int j = 0; j < 3; j++) {
1275 +          scaled[j] -= roundMe(scaled[j]);
1276 +          scaled[j] += 0.5;
1277 +        }
1278 +        
1279 +        // find xyz-indices of cell that cutoffGroup is in.
1280 +        whichCell.x() = nCells_.x() * scaled.x();
1281 +        whichCell.y() = nCells_.y() * scaled.y();
1282 +        whichCell.z() = nCells_.z() * scaled.z();
1283 +        
1284 +        // find single index of this cell:
1285 +        cellIndex = Vlinear(whichCell, nCells_);
1286 +        
1287 +        // add this cutoff group to the list of groups in this cell;
1288 +        cellListCol_[cellIndex].push_back(i);
1289 +      }
1290 + #else
1291 +      for (int i = 0; i < nGroups_; i++) {
1292 +        rs = snap_->cgData.position[i];
1293 +        
1294 +        // scaled positions relative to the box vectors
1295 +        scaled = invHmat * rs;
1296 +        
1297 +        // wrap the vector back into the unit box by subtracting integer box
1298 +        // numbers
1299 +        for (int j = 0; j < 3; j++) {
1300 +          scaled[j] -= roundMe(scaled[j]);
1301 +          scaled[j] += 0.5;
1302 +        }
1303 +        
1304 +        // find xyz-indices of cell that cutoffGroup is in.
1305 +        whichCell.x() = nCells_.x() * scaled.x();
1306 +        whichCell.y() = nCells_.y() * scaled.y();
1307 +        whichCell.z() = nCells_.z() * scaled.z();
1308 +        
1309 +        // find single index of this cell:
1310 +        cellIndex = Vlinear(whichCell, nCells_);
1311 +        
1312 +        // add this cutoff group to the list of groups in this cell;
1313 +        cellList_[cellIndex].push_back(i);
1314 +      }
1315 + #endif
1316 +
1317 +      for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1318 +        for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1319 +          for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1320 +            Vector3i m1v(m1x, m1y, m1z);
1321 +            int m1 = Vlinear(m1v, nCells_);
1322 +            
1323 +            for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1324 +                 os != cellOffsets_.end(); ++os) {
1325 +              
1326 +              Vector3i m2v = m1v + (*os);
1327 +              
1328 +              if (m2v.x() >= nCells_.x()) {
1329 +                m2v.x() = 0;          
1330 +              } else if (m2v.x() < 0) {
1331 +                m2v.x() = nCells_.x() - 1;
1332 +              }
1333 +              
1334 +              if (m2v.y() >= nCells_.y()) {
1335 +                m2v.y() = 0;          
1336 +              } else if (m2v.y() < 0) {
1337 +                m2v.y() = nCells_.y() - 1;
1338 +              }
1339 +              
1340 +              if (m2v.z() >= nCells_.z()) {
1341 +                m2v.z() = 0;          
1342 +              } else if (m2v.z() < 0) {
1343 +                m2v.z() = nCells_.z() - 1;
1344 +              }
1345 +              
1346 +              int m2 = Vlinear (m2v, nCells_);
1347 +              
1348 + #ifdef IS_MPI
1349 +              for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1350 +                   j1 != cellListRow_[m1].end(); ++j1) {
1351 +                for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1352 +                     j2 != cellListCol_[m2].end(); ++j2) {
1353 +                  
1354 +                  // In parallel, we need to visit *all* pairs of row &
1355 +                  // column indicies and will truncate later on.
1356 +                  dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1357 +                  snap_->wrapVector(dr);
1358 +                  cuts = getGroupCutoffs( (*j1), (*j2) );
1359 +                  if (dr.lengthSquare() < cuts.third) {
1360 +                    neighborList.push_back(make_pair((*j1), (*j2)));
1361 +                  }                  
1362 +                }
1363 +              }
1364 + #else
1365 +              
1366 +              for (vector<int>::iterator j1 = cellList_[m1].begin();
1367 +                   j1 != cellList_[m1].end(); ++j1) {
1368 +                for (vector<int>::iterator j2 = cellList_[m2].begin();
1369 +                     j2 != cellList_[m2].end(); ++j2) {
1370 +                  
1371 +                  // Always do this if we're in different cells or if
1372 +                  // we're in the same cell and the global index of the
1373 +                  // j2 cutoff group is less than the j1 cutoff group
1374 +                  
1375 +                  if (m2 != m1 || (*j2) < (*j1)) {
1376 +                    dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1377 +                    snap_->wrapVector(dr);
1378 +                    cuts = getGroupCutoffs( (*j1), (*j2) );
1379 +                    if (dr.lengthSquare() < cuts.third) {
1380 +                      neighborList.push_back(make_pair((*j1), (*j2)));
1381 +                    }
1382 +                  }
1383 +                }
1384 +              }
1385 + #endif
1386 +            }
1387 +          }
1388 +        }
1389 +      }
1390 +    } else {
1391 +      // branch to do all cutoff group pairs
1392 + #ifdef IS_MPI
1393 +      for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1394 +        for (int j2 = 0; j2 < nGroupsInCol_; j2++) {      
1395 +          dr = cgColData.position[j2] - cgRowData.position[j1];
1396 +          snap_->wrapVector(dr);
1397 +          cuts = getGroupCutoffs( j1, j2 );
1398 +          if (dr.lengthSquare() < cuts.third) {
1399 +            neighborList.push_back(make_pair(j1, j2));
1400 +          }
1401 +        }
1402 +      }
1403 + #else
1404 +      for (int j1 = 0; j1 < nGroups_ - 1; j1++) {
1405 +        for (int j2 = j1 + 1; j2 < nGroups_; j2++) {
1406 +          dr = snap_->cgData.position[j2] - snap_->cgData.position[j1];
1407 +          snap_->wrapVector(dr);
1408 +          cuts = getGroupCutoffs( j1, j2 );
1409 +          if (dr.lengthSquare() < cuts.third) {
1410 +            neighborList.push_back(make_pair(j1, j2));
1411 +          }
1412 +        }
1413 +      }        
1414 + #endif
1415 +    }
1416 +      
1417 +    // save the local cutoff group positions for the check that is
1418 +    // done on each loop:
1419 +    saved_CG_positions_.clear();
1420 +    for (int i = 0; i < nGroups_; i++)
1421 +      saved_CG_positions_.push_back(snap_->cgData.position[i]);
1422 +    
1423 +    return neighborList;
1424 +  }
1425 + } //end namespace OpenMD

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines