| 1 |
tim |
891 |
/* |
| 2 |
|
|
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
| 3 |
|
|
* |
| 4 |
|
|
* The University of Notre Dame grants you ("Licensee") a |
| 5 |
|
|
* non-exclusive, royalty free, license to use, modify and |
| 6 |
|
|
* redistribute this software in source and binary code form, provided |
| 7 |
|
|
* that the following conditions are met: |
| 8 |
|
|
* |
| 9 |
|
|
* 1. Acknowledgement of the program authors must be made in any |
| 10 |
|
|
* publication of scientific results based in part on use of the |
| 11 |
|
|
* program. An acceptable form of acknowledgement is citation of |
| 12 |
|
|
* the article in which the program was described (Matthew |
| 13 |
|
|
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
| 14 |
|
|
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
| 15 |
|
|
* Parallel Simulation Engine for Molecular Dynamics," |
| 16 |
|
|
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
| 17 |
|
|
* |
| 18 |
|
|
* 2. Redistributions of source code must retain the above copyright |
| 19 |
|
|
* notice, this list of conditions and the following disclaimer. |
| 20 |
|
|
* |
| 21 |
|
|
* 3. Redistributions in binary form must reproduce the above copyright |
| 22 |
|
|
* notice, this list of conditions and the following disclaimer in the |
| 23 |
|
|
* documentation and/or other materials provided with the |
| 24 |
|
|
* distribution. |
| 25 |
|
|
* |
| 26 |
|
|
* This software is provided "AS IS," without a warranty of any |
| 27 |
|
|
* kind. All express or implied conditions, representations and |
| 28 |
|
|
* warranties, including any implied warranty of merchantability, |
| 29 |
|
|
* fitness for a particular purpose or non-infringement, are hereby |
| 30 |
|
|
* excluded. The University of Notre Dame and its licensors shall not |
| 31 |
|
|
* be liable for any damages suffered by licensee as a result of |
| 32 |
|
|
* using, modifying or distributing the software or its |
| 33 |
|
|
* derivatives. In no event will the University of Notre Dame or its |
| 34 |
|
|
* licensors be liable for any lost revenue, profit or data, or for |
| 35 |
|
|
* direct, indirect, special, consequential, incidental or punitive |
| 36 |
|
|
* damages, however caused and regardless of the theory of liability, |
| 37 |
|
|
* arising out of the use of or inability to use software, even if the |
| 38 |
|
|
* University of Notre Dame has been advised of the possibility of |
| 39 |
|
|
* such damages. |
| 40 |
|
|
*/ |
| 41 |
|
|
|
| 42 |
|
|
#include "applications/hydrodynamics/HydrodynamicsModel.hpp" |
| 43 |
|
|
#include "math/LU.hpp" |
| 44 |
|
|
#include "math/DynamicRectMatrix.hpp" |
| 45 |
|
|
#include "math/SquareMatrix3.hpp" |
| 46 |
|
|
namespace oopse { |
| 47 |
|
|
/** |
| 48 |
|
|
* Reference: |
| 49 |
|
|
* Beatriz Carrasco and Jose Gracia de la Torre, Hydrodynamic Properties of Rigid Particles: |
| 50 |
|
|
* Comparison of Different Modeling and Computational Procedures. |
| 51 |
|
|
* Biophysical Journal, 75(6), 3044, 1999 |
| 52 |
|
|
*/ |
| 53 |
|
|
bool HydrodynamicsModel::calcHydrodyanmicsProps(double eta) { |
| 54 |
|
|
if (!createBeads(beads_)) { |
| 55 |
|
|
std::cout << "can not create beads" << std::endl; |
| 56 |
|
|
return false; |
| 57 |
|
|
} |
| 58 |
|
|
|
| 59 |
|
|
int nbeads = beads_.size(); |
| 60 |
|
|
DynamicRectMatrix<double> B(3*nbeads, 3*nbeads); |
| 61 |
|
|
DynamicRectMatrix<double> C(3*nbeads, 3*nbeads); |
| 62 |
|
|
Mat3x3d I; |
| 63 |
|
|
for (std::size_t i = 0; i < nbeads; ++i) { |
| 64 |
|
|
for (std::size_t j = 0; j < nbeads; ++j) { |
| 65 |
|
|
Mat3x3d Tij; |
| 66 |
|
|
if (i != j ) { |
| 67 |
|
|
Vector3d Rij = beads_[i].pos - beads_[j].pos; |
| 68 |
|
|
double rij = Rij.length(); |
| 69 |
|
|
double rij2 = rij * rij; |
| 70 |
|
|
double sumSigma2OverRij2 = ((beads_[i].radius*beads_[i].radius) + (beads_[i].radius*beads_[i].radius)) / rij2; |
| 71 |
|
|
Mat3x3d tmpMat; |
| 72 |
|
|
tmpMat = outProduct(beads_[i].pos, beads_[j].pos) / rij2; |
| 73 |
|
|
double constant = 8.0 * NumericConstant::PI * eta * rij; |
| 74 |
|
|
Tij = ((1.0 + sumSigma2OverRij2/3.0) * I + (1.0 - sumSigma2OverRij2) * tmpMat ) / constant; |
| 75 |
|
|
}else { |
| 76 |
|
|
double constant = 1.0 / (6.0 * NumericConstant::PI * eta * beads_[i].radius); |
| 77 |
|
|
Tij(0, 0) = constant; |
| 78 |
|
|
Tij(1, 1) = constant; |
| 79 |
|
|
Tij(2, 2) = constant; |
| 80 |
|
|
} |
| 81 |
|
|
B.setSubMatrix(i*3, j*3, Tij); |
| 82 |
|
|
} |
| 83 |
|
|
} |
| 84 |
|
|
|
| 85 |
|
|
//invert B Matrix |
| 86 |
|
|
invertMatrix(B, C); |
| 87 |
|
|
|
| 88 |
|
|
//prepare U Matrix relative to arbitrary origin O(0.0, 0.0, 0.0) |
| 89 |
|
|
std::vector<Mat3x3d> U; |
| 90 |
|
|
for (int i = 0; i < nbeads; ++i) { |
| 91 |
|
|
Mat3x3d currU; |
| 92 |
|
|
currU.setupSkewMat(beads_[i].pos); |
| 93 |
|
|
U.push_back(currU); |
| 94 |
|
|
} |
| 95 |
|
|
|
| 96 |
|
|
//calculate Xi matrix at arbitrary origin O |
| 97 |
|
|
Mat3x3d Xitt; |
| 98 |
|
|
Mat3x3d Xirr; |
| 99 |
|
|
Mat3x3d Xitr; |
| 100 |
|
|
|
| 101 |
|
|
for (std::size_t i = 0; i < nbeads; ++i) { |
| 102 |
|
|
for (std::size_t j = 0; j < nbeads; ++j) { |
| 103 |
|
|
Mat3x3d Cij; |
| 104 |
|
|
C.getSubMatrix(i*3, j*3, Cij); |
| 105 |
|
|
|
| 106 |
|
|
Xitt += Cij; |
| 107 |
|
|
Xirr += U[i] * Cij; |
| 108 |
|
|
Xitr += U[i] * Cij * U[j]; |
| 109 |
|
|
} |
| 110 |
|
|
} |
| 111 |
|
|
|
| 112 |
|
|
//invert Xi to get Diffusion Tensor at arbitrary origin O |
| 113 |
|
|
RectMatrix<double, 6, 6> Xi; |
| 114 |
|
|
RectMatrix<double, 6, 6> Do; |
| 115 |
|
|
Xi.setSubMatrix(0, 0, Xitt); |
| 116 |
|
|
Xi.setSubMatrix(0, 3, Xitr.transpose()); |
| 117 |
|
|
Xi.setSubMatrix(3, 0, Xitr); |
| 118 |
|
|
Xi.setSubMatrix(3, 3, Xitt); |
| 119 |
|
|
invertMatrix(Xi, Do); |
| 120 |
|
|
|
| 121 |
|
|
Mat3x3d Dott; //translational diffusion tensor at arbitrary origin O |
| 122 |
|
|
Mat3x3d Dorr; //rotational diffusion tensor at arbitrary origin O |
| 123 |
|
|
Mat3x3d Dotr; //translation-rotation couplingl diffusion tensor at arbitrary origin O |
| 124 |
|
|
Do.getSubMatrix(0, 0 , Dott); |
| 125 |
|
|
Do.getSubMatrix(3, 0, Dotr); |
| 126 |
|
|
Do.getSubMatrix(3, 3, Dorr); |
| 127 |
|
|
|
| 128 |
|
|
//calculate center of diffusion |
| 129 |
|
|
Mat3x3d tmpMat; |
| 130 |
|
|
tmpMat(0, 0) = Dorr(1, 1) + Dorr(2, 2); |
| 131 |
|
|
tmpMat(0, 1) = - Dorr(0, 1); |
| 132 |
|
|
tmpMat(0, 2) = -Dorr(0, 2); |
| 133 |
|
|
tmpMat(1, 0) = -Dorr(0, 1); |
| 134 |
|
|
tmpMat(1, 1) = Dorr(0, 0) + Dorr(2, 2); |
| 135 |
|
|
tmpMat(1, 2) = -Dorr(1, 2); |
| 136 |
|
|
tmpMat(2, 0) = -Dorr(0, 2); |
| 137 |
|
|
tmpMat(2, 1) = -Dorr(1, 2); |
| 138 |
|
|
tmpMat(2, 2) = Dorr(1, 1) + Dorr(0, 0); |
| 139 |
|
|
|
| 140 |
|
|
Vector3d tmpVec; |
| 141 |
|
|
tmpVec[0] = Dotr(1, 2) - Dotr(2, 1); |
| 142 |
|
|
tmpVec[1] = Dotr(2, 0) - Dotr(0, 2); |
| 143 |
|
|
tmpVec[2] = Dotr(0, 1) - Dotr(1, 0); |
| 144 |
|
|
|
| 145 |
|
|
Vector3d rod = tmpMat.inverse() * tmpVec; |
| 146 |
|
|
|
| 147 |
|
|
//calculate Diffusion Tensor at center of diffusion |
| 148 |
|
|
Mat3x3d Uod; |
| 149 |
|
|
Uod.setupSkewMat(rod); |
| 150 |
|
|
|
| 151 |
|
|
Mat3x3d Ddtt; //translational diffusion tensor at diffusion center |
| 152 |
|
|
Mat3x3d Ddtr; //rotational diffusion tensor at diffusion center |
| 153 |
|
|
Mat3x3d Ddrr; //translation-rotation couplingl diffusion tensor at diffusion tensor |
| 154 |
|
|
|
| 155 |
|
|
Ddtt = Dott - Uod * Dorr * Uod + Dotr.transpose() * Uod - Uod * Dotr; |
| 156 |
|
|
Ddrr = Dorr; |
| 157 |
|
|
Ddtr = Dotr + Dorr * Uod; |
| 158 |
|
|
|
| 159 |
|
|
props_.diffCenter = rod; |
| 160 |
|
|
props_.transDiff = Ddtt; |
| 161 |
|
|
props_.transRotDiff = Ddtr; |
| 162 |
|
|
props_.rotDiff = Ddrr; |
| 163 |
|
|
|
| 164 |
|
|
return true; |
| 165 |
|
|
} |
| 166 |
|
|
|
| 167 |
|
|
void HydrodynamicsModel::writeBeads(std::ostream& os) { |
| 168 |
|
|
|
| 169 |
|
|
} |
| 170 |
|
|
|
| 171 |
|
|
void HydrodynamicsModel::writeDiffCenterAndDiffTensor(std::ostream& os) { |
| 172 |
|
|
|
| 173 |
|
|
} |
| 174 |
|
|
|
| 175 |
|
|
} |