| 1 | 
gezelter | 
1798 | 
#!@PYTHON_EXECUTABLE@ | 
| 2 | 
  | 
  | 
"""principalAxisCalculator | 
| 3 | 
  | 
  | 
 | 
| 4 | 
  | 
  | 
Opens an XYZ file and computes the moments of inertia and principal axes | 
| 5 | 
  | 
  | 
for the structure in the XYZ file.  Optionally rotate the structure so that | 
| 6 | 
  | 
  | 
the long axis (that with the smallest eigenvalue) is pointing along the | 
| 7 | 
  | 
  | 
z-axis. | 
| 8 | 
  | 
  | 
 | 
| 9 | 
  | 
  | 
Usage: principalAxisCalculator | 
| 10 | 
  | 
  | 
 | 
| 11 | 
  | 
  | 
Options: | 
| 12 | 
  | 
  | 
  -h,  --help              show this help | 
| 13 | 
  | 
  | 
  -x,  --xyz=...           use specified XYZ (.xyz) file for the structure | 
| 14 | 
  | 
  | 
  -o,  --out=...           rotate the structure so that the smallest eigenvalue | 
| 15 | 
  | 
  | 
                           of the rotation matrix points along the z-axis. | 
| 16 | 
  | 
  | 
 | 
| 17 | 
  | 
  | 
Example: | 
| 18 | 
  | 
  | 
   principalAxisCalculator -x junk.xyz -o rot.xyz  | 
| 19 | 
  | 
  | 
 | 
| 20 | 
  | 
  | 
""" | 
| 21 | 
  | 
  | 
 | 
| 22 | 
  | 
  | 
__author__ = "Dan Gezelter (gezelter@nd.edu)" | 
| 23 | 
  | 
  | 
__version__ = "$Revision$" | 
| 24 | 
  | 
  | 
__date__ = "$Date$" | 
| 25 | 
  | 
  | 
__copyright__ = "Copyright (c) 2006 by the University of Notre Dame" | 
| 26 | 
  | 
  | 
__license__ = "OpenMD" | 
| 27 | 
  | 
  | 
 | 
| 28 | 
  | 
  | 
import sys | 
| 29 | 
  | 
  | 
import getopt | 
| 30 | 
  | 
  | 
import string | 
| 31 | 
  | 
  | 
import math | 
| 32 | 
  | 
  | 
import random | 
| 33 | 
  | 
  | 
from sets import * | 
| 34 | 
  | 
  | 
import numpy | 
| 35 | 
  | 
  | 
 | 
| 36 | 
  | 
  | 
 | 
| 37 | 
  | 
  | 
_haveXYZFileName = 0 | 
| 38 | 
  | 
  | 
_haveOutFileName = 0 | 
| 39 | 
  | 
  | 
 | 
| 40 | 
  | 
  | 
positions = [] | 
| 41 | 
  | 
  | 
indices = [] | 
| 42 | 
  | 
  | 
atypes = [] | 
| 43 | 
  | 
  | 
Hmass = 1.0079 | 
| 44 | 
  | 
  | 
Cmass = 12.011 | 
| 45 | 
  | 
  | 
Omass = 15.999 | 
| 46 | 
  | 
  | 
Nmass = 14.007 | 
| 47 | 
  | 
  | 
Smass = 32.066 | 
| 48 | 
kstocke1 | 
1701 | 
Aumass = 196.466569 | 
| 49 | 
gezelter | 
1528 | 
Au1mass = 196.466569 | 
| 50 | 
  | 
  | 
Au2mass =   0.5 | 
| 51 | 
gezelter | 
1798 | 
 | 
| 52 | 
  | 
  | 
def usage(): | 
| 53 | 
  | 
  | 
    print __doc__ | 
| 54 | 
  | 
  | 
 | 
| 55 | 
  | 
  | 
def add(x,y): | 
| 56 | 
  | 
  | 
    return x+y | 
| 57 | 
  | 
  | 
 | 
| 58 | 
  | 
  | 
def sum(seq): | 
| 59 | 
  | 
  | 
    return reduce(add, seq) | 
| 60 | 
  | 
  | 
 | 
| 61 | 
  | 
  | 
def readFile(XYZFileName): | 
| 62 | 
  | 
  | 
    print "reading XYZ file" | 
| 63 | 
  | 
  | 
 | 
| 64 | 
  | 
  | 
    XYZFile = open(XYZFileName, 'r')         | 
| 65 | 
  | 
  | 
    # Find number of atoms first | 
| 66 | 
  | 
  | 
    line = XYZFile.readline() | 
| 67 | 
  | 
  | 
    L = line.split() | 
| 68 | 
  | 
  | 
    nAtoms = int(L[0]) | 
| 69 | 
  | 
  | 
    # skip comment line | 
| 70 | 
  | 
  | 
    line = XYZFile.readline() | 
| 71 | 
  | 
  | 
    for i in range(nAtoms): | 
| 72 | 
  | 
  | 
        line = XYZFile.readline() | 
| 73 | 
  | 
  | 
        L = line.split() | 
| 74 | 
  | 
  | 
        myIndex = i | 
| 75 | 
  | 
  | 
        indices.append(myIndex) | 
| 76 | 
  | 
  | 
        atomType = L[0] | 
| 77 | 
  | 
  | 
        atypes.append(atomType) | 
| 78 | 
  | 
  | 
        x = float(L[1]) | 
| 79 | 
  | 
  | 
        y = float(L[2]) | 
| 80 | 
  | 
  | 
        z = float(L[3]) | 
| 81 | 
  | 
  | 
        positions.append([x, y, z]) | 
| 82 | 
  | 
  | 
    XYZFile.close() | 
| 83 | 
  | 
  | 
 | 
| 84 | 
  | 
  | 
 | 
| 85 | 
  | 
  | 
def findCOM(): | 
| 86 | 
  | 
  | 
    #find center of mass | 
| 87 | 
  | 
  | 
    Xcom = 0.0 | 
| 88 | 
  | 
  | 
    Ycom = 0.0 | 
| 89 | 
  | 
  | 
    Zcom = 0.0 | 
| 90 | 
  | 
  | 
    totalMass = 0.0 | 
| 91 | 
  | 
  | 
 | 
| 92 | 
  | 
  | 
    for i in range(0,len(indices)): | 
| 93 | 
  | 
  | 
        if (atypes[i] == "H"): | 
| 94 | 
  | 
  | 
            myMass = Hmass | 
| 95 | 
  | 
  | 
        elif (atypes[i] == "C"): | 
| 96 | 
  | 
  | 
            myMass = Cmass | 
| 97 | 
  | 
  | 
        elif (atypes[i] == "O"): | 
| 98 | 
  | 
  | 
            myMass = Omass | 
| 99 | 
  | 
  | 
        elif (atypes[i] == "N"): | 
| 100 | 
  | 
  | 
            myMass = Nmass | 
| 101 | 
  | 
  | 
        elif (atypes[i] == "S"): | 
| 102 | 
  | 
  | 
            myMass = Smass | 
| 103 | 
  | 
  | 
        elif (atypes[i] == "Au1"): | 
| 104 | 
  | 
  | 
            myMass = Au1mass | 
| 105 | 
  | 
  | 
        elif (atypes[i] == "Au2"): | 
| 106 | 
  | 
  | 
            myMass = Au2mass | 
| 107 | 
  | 
  | 
        elif (atypes[i] == "Au"): | 
| 108 | 
  | 
  | 
            myMass = Aumass | 
| 109 | 
  | 
  | 
        else: | 
| 110 | 
  | 
  | 
            print "unknown atom type! %s" % (atypes[i]) | 
| 111 | 
  | 
  | 
         | 
| 112 | 
  | 
  | 
        Xcom = Xcom + myMass * positions[i][0] | 
| 113 | 
  | 
  | 
        Ycom = Ycom + myMass * positions[i][1] | 
| 114 | 
  | 
  | 
        Zcom = Zcom + myMass * positions[i][2] | 
| 115 | 
  | 
  | 
        totalMass = totalMass + myMass | 
| 116 | 
  | 
  | 
 | 
| 117 | 
  | 
  | 
    Xcom = Xcom / totalMass | 
| 118 | 
  | 
  | 
    Ycom = Ycom / totalMass | 
| 119 | 
  | 
  | 
    Zcom = Zcom / totalMass | 
| 120 | 
  | 
  | 
 | 
| 121 | 
  | 
  | 
    COM = [Xcom, Ycom, Zcom] | 
| 122 | 
  | 
  | 
 | 
| 123 | 
  | 
  | 
    return COM | 
| 124 | 
  | 
  | 
 | 
| 125 | 
  | 
  | 
def findMoments(): | 
| 126 | 
  | 
  | 
 | 
| 127 | 
  | 
  | 
    COM = findCOM() | 
| 128 | 
  | 
  | 
     | 
| 129 | 
  | 
  | 
    #find inertia tensor matrix elements | 
| 130 | 
  | 
  | 
 | 
| 131 | 
  | 
  | 
    I = numpy.zeros((3,3), numpy.float) | 
| 132 | 
  | 
  | 
     | 
| 133 | 
  | 
  | 
    for i in range(0,len(indices)): | 
| 134 | 
  | 
  | 
        if (atypes[i] == "H"): | 
| 135 | 
  | 
  | 
            myMass = Hmass | 
| 136 | 
  | 
  | 
        elif (atypes[i] == "C"): | 
| 137 | 
  | 
  | 
            myMass = Cmass | 
| 138 | 
  | 
  | 
        elif (atypes[i] == "O"): | 
| 139 | 
  | 
  | 
            myMass = Omass | 
| 140 | 
  | 
  | 
        elif (atypes[i] == "N"): | 
| 141 | 
  | 
  | 
            myMass = Nmass | 
| 142 | 
  | 
  | 
        elif (atypes[i] == "S"): | 
| 143 | 
  | 
  | 
            myMass = Smass | 
| 144 | 
  | 
  | 
        elif (atypes[i] == "Au1"): | 
| 145 | 
  | 
  | 
            myMass = Au1mass | 
| 146 | 
  | 
  | 
        elif (atypes[i] == "Au2"): | 
| 147 | 
  | 
  | 
            myMass = Au2mass | 
| 148 | 
  | 
  | 
        elif (atypes[i] == "Au"): | 
| 149 | 
  | 
  | 
            myMass = Aumass | 
| 150 | 
  | 
  | 
        else: | 
| 151 | 
  | 
  | 
            print "unknown atom type!" | 
| 152 | 
  | 
  | 
 | 
| 153 | 
  | 
  | 
        dx = positions[i][0] - COM[0] | 
| 154 | 
  | 
  | 
        dy = positions[i][1] - COM[1] | 
| 155 | 
  | 
  | 
        dz = positions[i][2] - COM[2] | 
| 156 | 
  | 
  | 
 | 
| 157 | 
  | 
  | 
        I[0,0] = I[0,0] + myMass * ( dy * dy + dz * dz ) | 
| 158 | 
  | 
  | 
        I[1,1] = I[1,1] + myMass * ( dx * dx + dz * dz ) | 
| 159 | 
  | 
  | 
        I[2,2] = I[2,2] + myMass * ( dx * dx + dy * dy ) | 
| 160 | 
  | 
  | 
 | 
| 161 | 
  | 
  | 
        I[0,1] = I[0,1] - myMass * ( dx * dy ) | 
| 162 | 
  | 
  | 
        I[0,2] = I[0,2] - myMass * ( dx * dz ) | 
| 163 | 
  | 
  | 
 | 
| 164 | 
  | 
  | 
        I[1,2] = I[1,2] - myMass * ( dy * dz ) | 
| 165 | 
  | 
  | 
 | 
| 166 | 
  | 
  | 
        I[1,0] = I[0,1] | 
| 167 | 
  | 
  | 
        I[2,0] = I[0,2] | 
| 168 | 
  | 
  | 
        I[2,1] = I[1,2] | 
| 169 | 
  | 
  | 
 | 
| 170 | 
  | 
  | 
    print "Inertia Tensor:" | 
| 171 | 
  | 
  | 
    print I | 
| 172 | 
  | 
  | 
    print | 
| 173 | 
  | 
  | 
 | 
| 174 | 
  | 
  | 
    (evals, evects) = numpy.linalg.eig(I) | 
| 175 | 
  | 
  | 
    print "evals:" | 
| 176 | 
  | 
  | 
    print evals | 
| 177 | 
  | 
  | 
    print  | 
| 178 | 
  | 
  | 
    print "evects:" | 
| 179 | 
  | 
  | 
    print evects | 
| 180 | 
  | 
  | 
    print | 
| 181 | 
  | 
  | 
 | 
| 182 | 
  | 
  | 
    return (COM, evals, evects) | 
| 183 | 
  | 
  | 
 | 
| 184 | 
  | 
  | 
def writeFile(OutFileName): | 
| 185 | 
  | 
  | 
 | 
| 186 | 
  | 
  | 
    (COM, evals, evects) = findMoments() | 
| 187 | 
  | 
  | 
 | 
| 188 | 
  | 
  | 
    # we need to re-order the axes so that the smallest moment of inertia | 
| 189 | 
  | 
  | 
    # (which corresponds to the long axis of the molecule) is along the z-axis | 
| 190 | 
  | 
  | 
    # we'll just reverse the order of the three axes: | 
| 191 | 
  | 
  | 
     | 
| 192 | 
  | 
  | 
    axOrder = numpy.argsort(evals)     | 
| 193 | 
  | 
  | 
    RotMat = numpy.zeros((3,3), numpy.float) | 
| 194 | 
  | 
  | 
    RotMat[0] = evects[axOrder[2]] | 
| 195 | 
  | 
  | 
    RotMat[1] = evects[axOrder[1]] | 
| 196 | 
  | 
  | 
    RotMat[2] = evects[axOrder[0]] | 
| 197 | 
  | 
  | 
 | 
| 198 | 
gezelter | 
1877 | 
    q = [0.0, 0.0, 0.0, 0.0] | 
| 199 | 
  | 
  | 
    myEuler = [0.0, 0.0, 0.0] | 
| 200 | 
  | 
  | 
 | 
| 201 | 
  | 
  | 
    # RotMat to Quat code is out of OpenMD's SquareMatrix3.hpp code: | 
| 202 | 
  | 
  | 
     | 
| 203 | 
  | 
  | 
    t = RotMat[0][0] + RotMat[1][1] + RotMat[2][2] + 1.0 | 
| 204 | 
  | 
  | 
         | 
| 205 | 
  | 
  | 
    if( t > 1e-6 ): | 
| 206 | 
  | 
  | 
        s = 0.5 / math.sqrt( t ) | 
| 207 | 
  | 
  | 
        q[0] = 0.25 / s | 
| 208 | 
  | 
  | 
        q[1] = (RotMat[1][2] - RotMat[2][1]) * s | 
| 209 | 
  | 
  | 
        q[2] = (RotMat[2][0] - RotMat[0][2]) * s | 
| 210 | 
  | 
  | 
        q[3] = (RotMat[0][1] - RotMat[1][0]) * s | 
| 211 | 
  | 
  | 
    else: | 
| 212 | 
  | 
  | 
        ad1 = RotMat[0][0] | 
| 213 | 
  | 
  | 
        ad2 = RotMat[1][1] | 
| 214 | 
  | 
  | 
        ad3 = RotMat[2][2] | 
| 215 | 
  | 
  | 
         | 
| 216 | 
  | 
  | 
        if( ad1 >= ad2 and ad1 >= ad3 ): | 
| 217 | 
  | 
  | 
            s = 0.5 / math.sqrt( 1.0 + RotMat[0][0] - RotMat[1][1] - RotMat[2][2] ) | 
| 218 | 
  | 
  | 
            q[0] = (RotMat[1][2] - RotMat[2][1]) * s | 
| 219 | 
  | 
  | 
            q[1] = 0.25 / s | 
| 220 | 
  | 
  | 
            q[2] = (RotMat[0][1] + RotMat[1][0]) * s | 
| 221 | 
  | 
  | 
            q[3] = (RotMat[0][2] + RotMat[2][0]) * s | 
| 222 | 
  | 
  | 
        elif ( ad2 >= ad1 and ad2 >= ad3 ): | 
| 223 | 
  | 
  | 
            s = 0.5 / math.sqrt( 1.0 + RotMat[1][1] - RotMat[0][0] - RotMat[2][2] ) | 
| 224 | 
  | 
  | 
            q[0] = (RotMat[2][0] - RotMat[0][2] ) * s | 
| 225 | 
  | 
  | 
            q[1] = (RotMat[0][1] + RotMat[1][0]) * s | 
| 226 | 
  | 
  | 
            q[2] = 0.25 / s | 
| 227 | 
  | 
  | 
            q[3] = (RotMat[1][2] + RotMat[2][1]) * s | 
| 228 | 
  | 
  | 
        else: | 
| 229 | 
  | 
  | 
            s = 0.5 / math.sqrt( 1.0 + RotMat[2][2] - RotMat[0][0] - RotMat[1][1] ) | 
| 230 | 
  | 
  | 
            q[0] = (RotMat[0][1] - RotMat[1][0]) * s | 
| 231 | 
  | 
  | 
            q[1] = (RotMat[0][2] + RotMat[2][0]) * s | 
| 232 | 
  | 
  | 
            q[2] = (RotMat[1][2] + RotMat[2][1]) * s         | 
| 233 | 
  | 
  | 
 | 
| 234 | 
  | 
  | 
    print "Quaternions:" | 
| 235 | 
  | 
  | 
    print q | 
| 236 | 
  | 
  | 
 | 
| 237 | 
  | 
  | 
    theta = math.acos(RotMat[2][2]) | 
| 238 | 
  | 
  | 
    ctheta = RotMat[2][2] | 
| 239 | 
  | 
  | 
    stheta = math.sqrt(1.0 - ctheta * ctheta) | 
| 240 | 
  | 
  | 
 | 
| 241 | 
  | 
  | 
    if (math.fabs(stheta) < 1e-6): | 
| 242 | 
  | 
  | 
        psi = 0.0 | 
| 243 | 
  | 
  | 
        phi = math.atan2(-RotMat[1][0], RotMat[0][0])  | 
| 244 | 
  | 
  | 
    else: | 
| 245 | 
  | 
  | 
        phi = math.atan2(RotMat[2][0], -RotMat[2][1]) | 
| 246 | 
  | 
  | 
        psi = math.atan2(RotMat[0][2], RotMat[1][2]) | 
| 247 | 
  | 
  | 
         | 
| 248 | 
  | 
  | 
    if (phi < 0): | 
| 249 | 
  | 
  | 
        phi = phi + 2.0 * math.pi; | 
| 250 | 
  | 
  | 
         | 
| 251 | 
  | 
  | 
    if (psi < 0): | 
| 252 | 
  | 
  | 
        psi = psi + 2.0 * math.pi; | 
| 253 | 
  | 
  | 
         | 
| 254 | 
  | 
  | 
    myEuler[0] = phi * 180.0 / math.pi; | 
| 255 | 
  | 
  | 
    myEuler[1] = theta * 180.0 / math.pi; | 
| 256 | 
  | 
  | 
    myEuler[2] = psi * 180.0 / math.pi; | 
| 257 | 
  | 
  | 
 | 
| 258 | 
  | 
  | 
    print "Euler Angles:" | 
| 259 | 
  | 
  | 
    print myEuler | 
| 260 | 
  | 
  | 
 | 
| 261 | 
gezelter | 
1798 | 
    nAtoms = len(indices) | 
| 262 | 
  | 
  | 
     | 
| 263 | 
  | 
  | 
    print "writing output XYZ file" | 
| 264 | 
  | 
  | 
 | 
| 265 | 
  | 
  | 
    OutFile = open(OutFileName, 'w')         | 
| 266 | 
  | 
  | 
 | 
| 267 | 
  | 
  | 
    OutFile.write('%10d\n' % (nAtoms)) | 
| 268 | 
  | 
  | 
    OutFile.write('\n') | 
| 269 | 
  | 
  | 
 | 
| 270 | 
  | 
  | 
    for i in range(nAtoms): | 
| 271 | 
  | 
  | 
 | 
| 272 | 
  | 
  | 
        dx = positions[i][0] - COM[0] | 
| 273 | 
  | 
  | 
        dy = positions[i][1] - COM[1] | 
| 274 | 
  | 
  | 
        dz = positions[i][2] - COM[2] | 
| 275 | 
  | 
  | 
 | 
| 276 | 
  | 
  | 
        r = numpy.array([dx,dy,dz]) | 
| 277 | 
  | 
  | 
        rnew = numpy.dot(RotMat, r) | 
| 278 | 
  | 
  | 
            | 
| 279 | 
  | 
  | 
        OutFile.write('%s\t%f\t%f\t%f\t%d\n' % (atypes[i], rnew[0], rnew[1], rnew[2], i)) | 
| 280 | 
  | 
  | 
    OutFile.close()         | 
| 281 | 
  | 
  | 
 | 
| 282 | 
  | 
  | 
def main(argv):                          | 
| 283 | 
  | 
  | 
    try:                                 | 
| 284 | 
  | 
  | 
        opts, args = getopt.getopt(argv, "hx:o:", ["help", "xyz=", "out="])  | 
| 285 | 
  | 
  | 
    except getopt.GetoptError:            | 
| 286 | 
  | 
  | 
        usage()                           | 
| 287 | 
  | 
  | 
        sys.exit(2)                      | 
| 288 | 
  | 
  | 
    for opt, arg in opts:                 | 
| 289 | 
  | 
  | 
        if opt in ("-h", "--help"):       | 
| 290 | 
  | 
  | 
            usage()                      | 
| 291 | 
  | 
  | 
            sys.exit()                   | 
| 292 | 
  | 
  | 
        elif opt in ("-x", "--xyz"):  | 
| 293 | 
  | 
  | 
            XYZFileName = arg | 
| 294 | 
  | 
  | 
            global _haveXYZFileName | 
| 295 | 
  | 
  | 
            _haveXYZFileName = 1 | 
| 296 | 
  | 
  | 
        elif opt in ("-o", "--out"):  | 
| 297 | 
  | 
  | 
            OutFileName = arg | 
| 298 | 
  | 
  | 
            global _haveOutFileName | 
| 299 | 
  | 
  | 
            _haveOutFileName = 1 | 
| 300 | 
  | 
  | 
 | 
| 301 | 
  | 
  | 
 | 
| 302 | 
  | 
  | 
    if (_haveXYZFileName != 1): | 
| 303 | 
  | 
  | 
        usage()  | 
| 304 | 
  | 
  | 
        print "No xyz file was specified" | 
| 305 | 
  | 
  | 
        sys.exit() | 
| 306 | 
  | 
  | 
 | 
| 307 | 
  | 
  | 
    readFile(XYZFileName) | 
| 308 | 
  | 
  | 
 | 
| 309 | 
  | 
  | 
    if (_haveOutFileName == 1): | 
| 310 | 
  | 
  | 
        writeFile(OutFileName) | 
| 311 | 
  | 
  | 
    else: | 
| 312 | 
  | 
  | 
        findMoments() | 
| 313 | 
  | 
  | 
         | 
| 314 | 
  | 
  | 
if __name__ == "__main__": | 
| 315 | 
  | 
  | 
    if len(sys.argv) == 1: | 
| 316 | 
  | 
  | 
        usage() | 
| 317 | 
  | 
  | 
        sys.exit() | 
| 318 | 
  | 
  | 
    main(sys.argv[1:]) |