| 1 | 
gezelter | 
1639 | 
#!@PYTHON_EXECUTABLE@ | 
| 2 | 
xsun | 
1214 | 
"""Pressure Correlation function | 
| 3 | 
  | 
  | 
 | 
| 4 | 
  | 
  | 
Computes various correlation functions of the pressure and pressure tensor | 
| 5 | 
  | 
  | 
that have been stored in a stat file.   These can be used to compute | 
| 6 | 
  | 
  | 
shear and bulk viscosities.  | 
| 7 | 
  | 
  | 
 | 
| 8 | 
  | 
  | 
Usage: stat2visco  | 
| 9 | 
  | 
  | 
 | 
| 10 | 
  | 
  | 
Options: | 
| 11 | 
  | 
  | 
  -h, --help              show this help | 
| 12 | 
  | 
  | 
  -f, --stat-file=...     use specified stat file | 
| 13 | 
  | 
  | 
  -o, --output-file=...   use specified output (.pcorr) file | 
| 14 | 
  | 
  | 
  -g, --green-kubo        use Green-Kubo formulae (noisy!) | 
| 15 | 
  | 
  | 
  -e, --einstein          use Einstein relation (best) | 
| 16 | 
  | 
  | 
  -s, --shear             compute the shear viscosity (the off-diagonal  | 
| 17 | 
  | 
  | 
                          pressure tensor values must be present in the .stat | 
| 18 | 
  | 
  | 
                          file) | 
| 19 | 
  | 
  | 
 | 
| 20 | 
  | 
  | 
The Green-Kubo formulae option will compute: V*<(P(t)-<P>)*(P(0)-<P>)>/kT , | 
| 21 | 
  | 
  | 
which may be integrated to give a slowly-converging value for the viscosity. | 
| 22 | 
  | 
  | 
 | 
| 23 | 
  | 
  | 
The Einstein relation option will compute: V*<(\int_0^t (P(t')-<P>)dt')^2>/2kT, | 
| 24 | 
  | 
  | 
which will grow approximately linearly in time.  The long-time slope of this | 
| 25 | 
  | 
  | 
function will be the viscosity. | 
| 26 | 
  | 
  | 
 | 
| 27 | 
  | 
  | 
Example: | 
| 28 | 
  | 
  | 
   stat2visco -f ring5.stat -o ring5.pcorr -e -s | 
| 29 | 
  | 
  | 
 | 
| 30 | 
  | 
  | 
""" | 
| 31 | 
  | 
  | 
 | 
| 32 | 
  | 
  | 
__author__ = "Dan Gezelter (gezelter@nd.edu)" | 
| 33 | 
gezelter | 
1442 | 
__version__ = "$Revision$" | 
| 34 | 
  | 
  | 
__date__ = "$Date$" | 
| 35 | 
xsun | 
1214 | 
 | 
| 36 | 
  | 
  | 
__copyright__ = "Copyright (c) 2007 by the University of Notre Dame" | 
| 37 | 
gezelter | 
1390 | 
__license__ = "OpenMD" | 
| 38 | 
xsun | 
1214 | 
 | 
| 39 | 
  | 
  | 
import sys | 
| 40 | 
  | 
  | 
import getopt | 
| 41 | 
  | 
  | 
import string | 
| 42 | 
  | 
  | 
import math | 
| 43 | 
  | 
  | 
 | 
| 44 | 
  | 
  | 
def usage(): | 
| 45 | 
  | 
  | 
    print __doc__ | 
| 46 | 
  | 
  | 
 | 
| 47 | 
  | 
  | 
def readStatFile(statFileName): | 
| 48 | 
  | 
  | 
 | 
| 49 | 
  | 
  | 
    global time | 
| 50 | 
  | 
  | 
    global temperature | 
| 51 | 
  | 
  | 
    global pressure | 
| 52 | 
  | 
  | 
    global volume | 
| 53 | 
  | 
  | 
    time = [] | 
| 54 | 
  | 
  | 
    temperature = [] | 
| 55 | 
  | 
  | 
    pressure = [] | 
| 56 | 
  | 
  | 
    volume = [] | 
| 57 | 
  | 
  | 
 | 
| 58 | 
  | 
  | 
    if (doShear): | 
| 59 | 
  | 
  | 
        global Pxx | 
| 60 | 
  | 
  | 
        global Pyy | 
| 61 | 
  | 
  | 
        global Pzz | 
| 62 | 
  | 
  | 
        global Pxy | 
| 63 | 
  | 
  | 
        global Pxz | 
| 64 | 
  | 
  | 
        global Pyz | 
| 65 | 
  | 
  | 
         | 
| 66 | 
  | 
  | 
        Pxx = [] | 
| 67 | 
  | 
  | 
        Pyy = [] | 
| 68 | 
  | 
  | 
        Pzz = [] | 
| 69 | 
  | 
  | 
        Pxy = [] | 
| 70 | 
  | 
  | 
        Pxz = [] | 
| 71 | 
  | 
  | 
        Pyz = [] | 
| 72 | 
  | 
  | 
 | 
| 73 | 
  | 
  | 
    statFile = open(statFileName, 'r') | 
| 74 | 
  | 
  | 
    line = statFile.readline() | 
| 75 | 
  | 
  | 
 | 
| 76 | 
  | 
  | 
    print "reading File" | 
| 77 | 
  | 
  | 
    pressSum = 0.0 | 
| 78 | 
  | 
  | 
    volSum = 0.0 | 
| 79 | 
  | 
  | 
    tempSum = 0.0 | 
| 80 | 
  | 
  | 
    line = statFile.readline() | 
| 81 | 
  | 
  | 
    while 1: | 
| 82 | 
  | 
  | 
        L = line.split() | 
| 83 | 
  | 
  | 
        time.append(float(L[0])) | 
| 84 | 
  | 
  | 
        temperature.append(float(L[4])) | 
| 85 | 
  | 
  | 
        # | 
| 86 | 
gezelter | 
1390 | 
        # OpenMD prints out pressure in units of atm. | 
| 87 | 
xsun | 
1214 | 
        # | 
| 88 | 
  | 
  | 
        pressure.append(float(L[5])) | 
| 89 | 
  | 
  | 
        volume.append(float(L[6])) | 
| 90 | 
  | 
  | 
 | 
| 91 | 
  | 
  | 
        if doShear: | 
| 92 | 
  | 
  | 
            if (len(L) > 16): | 
| 93 | 
  | 
  | 
                # | 
| 94 | 
gezelter | 
1390 | 
                # OpenMD prints out the pressure tensor in units of amu*fs^-2*Ang^-1 | 
| 95 | 
xsun | 
1214 | 
                # | 
| 96 | 
  | 
  | 
                Pxx.append(float(L[8])) | 
| 97 | 
  | 
  | 
                Pyy.append(float(L[12])) | 
| 98 | 
  | 
  | 
                Pzz.append(float(L[16])) | 
| 99 | 
  | 
  | 
                # | 
| 100 | 
  | 
  | 
                # symmetrize the off-diagonal terms in the pressure tensor | 
| 101 | 
  | 
  | 
                # | 
| 102 | 
  | 
  | 
                Pxy.append(0.5*(float(L[9])  + float(L[11]))) | 
| 103 | 
  | 
  | 
                Pxz.append(0.5*(float(L[10]) + float(L[14]))) | 
| 104 | 
  | 
  | 
                Pyz.append(0.5*(float(L[13]) + float(L[15]))) | 
| 105 | 
  | 
  | 
            else: | 
| 106 | 
  | 
  | 
                print "Not enough columns are present in the .stat file" | 
| 107 | 
  | 
  | 
                print "to calculate the shear viscosity..." | 
| 108 | 
  | 
  | 
                print  | 
| 109 | 
  | 
  | 
                print "stat2visco expects to find all 9 elements of the" | 
| 110 | 
  | 
  | 
                print "pressure tensor in columns 9-17 of the .stat file" | 
| 111 | 
  | 
  | 
                print | 
| 112 | 
  | 
  | 
                print "You may need to set the statFileFormat string" | 
| 113 | 
gezelter | 
1390 | 
                print "explicitly in your .md file when running OpenMD." | 
| 114 | 
  | 
  | 
                print "Consult the OpenMD documentation for more details." | 
| 115 | 
xsun | 
1214 | 
                sys.exit() | 
| 116 | 
  | 
  | 
                 | 
| 117 | 
  | 
  | 
        line = statFile.readline() | 
| 118 | 
  | 
  | 
        if not line: break | 
| 119 | 
  | 
  | 
         | 
| 120 | 
  | 
  | 
    statFile.close() | 
| 121 | 
  | 
  | 
     | 
| 122 | 
  | 
  | 
def computeAverages(): | 
| 123 | 
  | 
  | 
 | 
| 124 | 
  | 
  | 
    global tempAve | 
| 125 | 
  | 
  | 
    global pressAve | 
| 126 | 
  | 
  | 
    global volAve | 
| 127 | 
  | 
  | 
    global pvAve | 
| 128 | 
  | 
  | 
     | 
| 129 | 
  | 
  | 
    print "computing Averages" | 
| 130 | 
  | 
  | 
 | 
| 131 | 
  | 
  | 
    tempSum = 0.0 | 
| 132 | 
  | 
  | 
    pressSum = 0.0 | 
| 133 | 
  | 
  | 
    volSum = 0.0 | 
| 134 | 
  | 
  | 
    pvSum = 0.0 | 
| 135 | 
  | 
  | 
 | 
| 136 | 
  | 
  | 
    temp2Sum = 0.0 | 
| 137 | 
  | 
  | 
    press2Sum = 0.0 | 
| 138 | 
  | 
  | 
    vol2Sum = 0.0 | 
| 139 | 
  | 
  | 
    pv2Sum = 0.0 | 
| 140 | 
  | 
  | 
     | 
| 141 | 
  | 
  | 
    # converts amu*fs^-2*Ang^-1 -> atm | 
| 142 | 
  | 
  | 
    pressureConvert = 1.63882576e8 | 
| 143 | 
  | 
  | 
 | 
| 144 | 
  | 
  | 
    for i in range(len(time)): | 
| 145 | 
  | 
  | 
        tempSum = tempSum + temperature[i] | 
| 146 | 
  | 
  | 
        pressSum = pressSum + pressure[i] | 
| 147 | 
  | 
  | 
        volSum = volSum + volume[i] | 
| 148 | 
  | 
  | 
        # in units of amu Ang^2 fs^-1 | 
| 149 | 
  | 
  | 
        pvTerm = pressure[i]*volume[i] / pressureConvert | 
| 150 | 
  | 
  | 
        pvSum = pvSum + pvTerm | 
| 151 | 
  | 
  | 
        temp2Sum = temp2Sum + math.pow(temperature[i],2) | 
| 152 | 
  | 
  | 
        press2Sum = press2Sum + math.pow(pressure[i],2) | 
| 153 | 
  | 
  | 
        vol2Sum = vol2Sum + math.pow(volume[i],2) | 
| 154 | 
  | 
  | 
        pv2Sum = pv2Sum + math.pow(pvTerm,2) | 
| 155 | 
  | 
  | 
 | 
| 156 | 
  | 
  | 
    tempAve = tempSum / float(len(time)) | 
| 157 | 
  | 
  | 
    pressAve = pressSum / float(len(time)) | 
| 158 | 
  | 
  | 
    volAve = volSum / float(len(time)) | 
| 159 | 
  | 
  | 
    pvAve = pvSum / float(len(time)) | 
| 160 | 
  | 
  | 
 | 
| 161 | 
  | 
  | 
    tempSdev = math.sqrt(temp2Sum / float(len(time)) - math.pow(tempAve,2)) | 
| 162 | 
  | 
  | 
    pressSdev = math.sqrt(press2Sum / float(len(time)) - math.pow(pressAve,2)) | 
| 163 | 
  | 
  | 
    if (vol2Sum / float(len(time)) < math.pow(volAve,2)): | 
| 164 | 
  | 
  | 
        volSdev = 0.0 | 
| 165 | 
  | 
  | 
    else: | 
| 166 | 
  | 
  | 
        volSdev = math.sqrt(vol2Sum / float(len(time)) - math.pow(volAve,2)) | 
| 167 | 
  | 
  | 
    pvSdev = math.sqrt(pv2Sum / float(len(time)) - math.pow(pvAve,2)) | 
| 168 | 
  | 
  | 
 | 
| 169 | 
  | 
  | 
    print "   Average pressure = %f +/- %f (atm)" % (pressAve, pressSdev) | 
| 170 | 
  | 
  | 
    print "     Average volume = %f +/- %f (Angst^3)" % (volAve, volSdev) | 
| 171 | 
  | 
  | 
    print "Average temperature = %f +/- %f (K)" % (tempAve, tempSdev) | 
| 172 | 
  | 
  | 
    print " Average PV product = %f +/- %f (amu Angst^2 fs^-1)" % (pvAve, pvSdev) | 
| 173 | 
  | 
  | 
 | 
| 174 | 
  | 
  | 
def computeCorrelations(outputFileName): | 
| 175 | 
  | 
  | 
 | 
| 176 | 
  | 
  | 
    # converts amu*fs^-2*Ang^-1 -> atm | 
| 177 | 
  | 
  | 
    pressureConvert = 1.63882576e8 | 
| 178 | 
  | 
  | 
     | 
| 179 | 
  | 
  | 
    # Boltzmann's constant amu*Ang^2*fs^-2/K | 
| 180 | 
  | 
  | 
    kB = 8.31451e-7 | 
| 181 | 
  | 
  | 
 | 
| 182 | 
  | 
  | 
    # converts amu Ang^-1 fs^-1  ->  g cm^-1 s^-1 | 
| 183 | 
  | 
  | 
    viscoConvert = 0.16605387 | 
| 184 | 
  | 
  | 
     | 
| 185 | 
  | 
  | 
    preV = viscoConvert * volAve / (kB * tempAve) | 
| 186 | 
  | 
  | 
    preVi = viscoConvert / (volAve * kB * tempAve) | 
| 187 | 
  | 
  | 
     | 
| 188 | 
  | 
  | 
    if doGreenKubo: | 
| 189 | 
  | 
  | 
        gkPcorr = [] | 
| 190 | 
  | 
  | 
        if doShear: | 
| 191 | 
  | 
  | 
            gkXYcorr = [] | 
| 192 | 
  | 
  | 
            gkXZcorr = [] | 
| 193 | 
  | 
  | 
            gkYZcorr = [] | 
| 194 | 
  | 
  | 
        print "computing Green-Kubo-style Correlation Function"         | 
| 195 | 
  | 
  | 
        # i corresponds to dt | 
| 196 | 
  | 
  | 
        for i in range(len(time)): | 
| 197 | 
  | 
  | 
            # j is the starting time for the correlation | 
| 198 | 
  | 
  | 
            pp = 0.0 | 
| 199 | 
  | 
  | 
            if doShear: | 
| 200 | 
  | 
  | 
                ppXY = 0.0 | 
| 201 | 
  | 
  | 
                ppXZ = 0.0 | 
| 202 | 
  | 
  | 
                ppYZ = 0.0 | 
| 203 | 
  | 
  | 
            for j in range( len(time) - i ): | 
| 204 | 
  | 
  | 
                pv1 = pressure[j]*volume[j]/pressureConvert - pvAve | 
| 205 | 
  | 
  | 
                pv2 = pressure[j+i]*volume[j+i]/pressureConvert - pvAve | 
| 206 | 
  | 
  | 
                pp = pp + pv1*pv2 | 
| 207 | 
  | 
  | 
                if doShear: | 
| 208 | 
  | 
  | 
                    ppXY = ppXY + Pxy[j+i]*Pxy[j] | 
| 209 | 
  | 
  | 
                    ppXZ = ppXZ + Pxz[j+i]*Pxz[j]  | 
| 210 | 
  | 
  | 
                    ppYZ = ppYZ + Pyz[j+i]*Pyz[j]  | 
| 211 | 
  | 
  | 
 | 
| 212 | 
  | 
  | 
            gkPcorr.append(pp / float(len(time) - i)) | 
| 213 | 
  | 
  | 
            if doShear: | 
| 214 | 
  | 
  | 
                gkXYcorr.append(ppXY / float(len(time)-i)) | 
| 215 | 
  | 
  | 
                gkXZcorr.append(ppXZ / float(len(time)-i)) | 
| 216 | 
  | 
  | 
                gkYZcorr.append(ppYZ / float(len(time)-i)) | 
| 217 | 
  | 
  | 
 | 
| 218 | 
  | 
  | 
 | 
| 219 | 
  | 
  | 
    if doEinstein: | 
| 220 | 
  | 
  | 
        print "computing Einstein-style Correlation Function" | 
| 221 | 
  | 
  | 
 | 
| 222 | 
  | 
  | 
        # Precompute sum variables to aid integration. | 
| 223 | 
  | 
  | 
        # The integral from t0 -> t0 + t  can be easily obtained | 
| 224 | 
  | 
  | 
        # from the precomputed sum variables:  sum[t0+t] - sum[t0-1] | 
| 225 | 
  | 
  | 
        pSum = [] | 
| 226 | 
  | 
  | 
        pSum.append( (pressure[0] - pressAve) / pressureConvert) | 
| 227 | 
  | 
  | 
        for i in range(1, len(time)): | 
| 228 | 
  | 
  | 
            pSum.append(pSum[i-1] + (pressure[i]-pressAve)/pressureConvert ) | 
| 229 | 
  | 
  | 
 | 
| 230 | 
  | 
  | 
        if doShear: | 
| 231 | 
  | 
  | 
            xySum = [] | 
| 232 | 
  | 
  | 
            xySum.append(Pxy[0]) | 
| 233 | 
  | 
  | 
            xzSum = [] | 
| 234 | 
  | 
  | 
            xzSum.append(Pxz[0]) | 
| 235 | 
  | 
  | 
            yzSum = [] | 
| 236 | 
  | 
  | 
            yzSum.append(Pyz[0]) | 
| 237 | 
  | 
  | 
            for i in range(1, len(time)): | 
| 238 | 
  | 
  | 
                xySum.append(xySum[i-1] + Pxy[i]) | 
| 239 | 
  | 
  | 
                xzSum.append(xzSum[i-1] + Pxz[i]) | 
| 240 | 
  | 
  | 
                yzSum.append(yzSum[i-1] + Pyz[i]) | 
| 241 | 
  | 
  | 
 | 
| 242 | 
  | 
  | 
 | 
| 243 | 
  | 
  | 
        ePcorr = [] | 
| 244 | 
  | 
  | 
        dt = time[1] - time[0] | 
| 245 | 
  | 
  | 
 | 
| 246 | 
  | 
  | 
        if doShear: | 
| 247 | 
  | 
  | 
            eXYcorr = [] | 
| 248 | 
  | 
  | 
            eXZcorr = [] | 
| 249 | 
  | 
  | 
            eYZcorr = [] | 
| 250 | 
  | 
  | 
 | 
| 251 | 
  | 
  | 
        # i corresponds to the total duration of the integral | 
| 252 | 
  | 
  | 
        for i in range(len(time)): | 
| 253 | 
  | 
  | 
            pIntSum = 0.0 | 
| 254 | 
  | 
  | 
            if doShear: | 
| 255 | 
  | 
  | 
                xyIntSum = 0.0 | 
| 256 | 
  | 
  | 
                xzIntSum = 0.0 | 
| 257 | 
  | 
  | 
                yzIntSum = 0.0 | 
| 258 | 
  | 
  | 
            # j corresponds to the starting point of the integral | 
| 259 | 
  | 
  | 
            for j in range(len(time) - i): | 
| 260 | 
  | 
  | 
                if (j == 0): | 
| 261 | 
  | 
  | 
                    pInt = dt*pSum[j+i] | 
| 262 | 
  | 
  | 
                    if doShear: | 
| 263 | 
  | 
  | 
                        xyInt = dt*xySum[j+i] | 
| 264 | 
  | 
  | 
                        xzInt = dt*xzSum[j+i] | 
| 265 | 
  | 
  | 
                        yzInt = dt*yzSum[j+i] | 
| 266 | 
  | 
  | 
                else: | 
| 267 | 
  | 
  | 
                    pInt = dt*(pSum[j+i] - pSum[j-1]) | 
| 268 | 
  | 
  | 
                    if doShear: | 
| 269 | 
  | 
  | 
                        xyInt = dt*(xySum[j+i] - xySum[j-1]) | 
| 270 | 
  | 
  | 
                        xzInt = dt*(xzSum[j+i] - xzSum[j-1]) | 
| 271 | 
  | 
  | 
                        yzInt = dt*(yzSum[j+i] - yzSum[j-1]) | 
| 272 | 
  | 
  | 
                     | 
| 273 | 
  | 
  | 
                pIntSum = pIntSum + pInt*pInt | 
| 274 | 
  | 
  | 
                if doShear: | 
| 275 | 
  | 
  | 
                    xyIntSum = xyIntSum + xyInt*xyInt | 
| 276 | 
  | 
  | 
                    xzIntSum = xzIntSum + xzInt*xzInt | 
| 277 | 
  | 
  | 
                    yzIntSum = yzIntSum + yzInt*yzInt | 
| 278 | 
  | 
  | 
            ePcorr.append(pIntSum / float(len(time)-i)) | 
| 279 | 
  | 
  | 
            if doShear: | 
| 280 | 
  | 
  | 
                eXYcorr.append(xyIntSum / float(len(time)-i)) | 
| 281 | 
  | 
  | 
                eXZcorr.append(xzIntSum / float(len(time)-i)) | 
| 282 | 
  | 
  | 
                eYZcorr.append(yzIntSum / float(len(time)-i)) | 
| 283 | 
  | 
  | 
 | 
| 284 | 
  | 
  | 
 | 
| 285 | 
  | 
  | 
    outputFile = open(outputFileName, 'w') | 
| 286 | 
  | 
  | 
    for i in range(len(time)): | 
| 287 | 
  | 
  | 
        if doGreenKubo: | 
| 288 | 
  | 
  | 
            if doShear: | 
| 289 | 
  | 
  | 
                outputFile.write("%f\t%13e\t%13e\t%13e\t%13e\n" % (time[i], preVi*gkPcorr[i], preV*gkXYcorr[i], preV*gkXZcorr[i], preV*gkYZcorr[i])) | 
| 290 | 
  | 
  | 
            else: | 
| 291 | 
  | 
  | 
                outputFile.write("%f\t%13e\n" % (time[i], preVi*gkPcorr[i])) | 
| 292 | 
  | 
  | 
             | 
| 293 | 
  | 
  | 
        if doEinstein: | 
| 294 | 
  | 
  | 
            if doShear: | 
| 295 | 
  | 
  | 
                outputFile.write("%f\t%13e\t%13e\t%13e\t%13e\n" % (time[i], 0.5*preV*ePcorr[i], 0.5*preV*eXYcorr[i], 0.5*preV*eXZcorr[i], 0.5*preV*eYZcorr[i])) | 
| 296 | 
  | 
  | 
            else: | 
| 297 | 
  | 
  | 
                outputFile.write("%f\t%13e\n" % (time[i], 0.5*preV*ePcorr[i])) | 
| 298 | 
  | 
  | 
    outputFile.close() | 
| 299 | 
  | 
  | 
 | 
| 300 | 
  | 
  | 
def main(argv): | 
| 301 | 
  | 
  | 
    global doGreenKubo | 
| 302 | 
  | 
  | 
    global doEinstein | 
| 303 | 
  | 
  | 
    global doShear | 
| 304 | 
  | 
  | 
    global haveStatFileName | 
| 305 | 
  | 
  | 
    global haveOutputFileName | 
| 306 | 
  | 
  | 
     | 
| 307 | 
  | 
  | 
    haveStatFileName = False | 
| 308 | 
  | 
  | 
    haveOutputFileName = False | 
| 309 | 
  | 
  | 
    doShear = False | 
| 310 | 
  | 
  | 
    doGreenKubo = False | 
| 311 | 
  | 
  | 
    doEinstein = False | 
| 312 | 
  | 
  | 
  | 
| 313 | 
  | 
  | 
    try:                                 | 
| 314 | 
  | 
  | 
        opts, args = getopt.getopt(argv, "hgesf:o:", ["help", "green-kubo", "einstein", "shear", "stat-file=", "output-file="])  | 
| 315 | 
  | 
  | 
    except getopt.GetoptError:            | 
| 316 | 
  | 
  | 
        usage()                           | 
| 317 | 
  | 
  | 
        sys.exit(2)                      | 
| 318 | 
  | 
  | 
    for opt, arg in opts:                 | 
| 319 | 
  | 
  | 
        if opt in ("-h", "--help"):       | 
| 320 | 
  | 
  | 
            usage()                      | 
| 321 | 
  | 
  | 
            sys.exit() | 
| 322 | 
  | 
  | 
        elif opt in ("-g", "--green-kubo"): | 
| 323 | 
  | 
  | 
            doGreenKubo = True | 
| 324 | 
  | 
  | 
        elif opt in ("-e", "--einstein"): | 
| 325 | 
  | 
  | 
            doEinstein = True | 
| 326 | 
  | 
  | 
        elif opt in ("-s", "--shear"): | 
| 327 | 
  | 
  | 
            doShear = True | 
| 328 | 
  | 
  | 
        elif opt in ("-f", "--stat-file"):  | 
| 329 | 
  | 
  | 
            statFileName = arg | 
| 330 | 
  | 
  | 
            haveStatFileName = True | 
| 331 | 
  | 
  | 
        elif opt in ("-o", "--output-file"):  | 
| 332 | 
  | 
  | 
            outputFileName = arg | 
| 333 | 
  | 
  | 
            haveOutputFileName = True | 
| 334 | 
  | 
  | 
    if (not haveStatFileName): | 
| 335 | 
  | 
  | 
        usage()  | 
| 336 | 
  | 
  | 
        print "No stat file was specified" | 
| 337 | 
  | 
  | 
        sys.exit() | 
| 338 | 
  | 
  | 
    if (not haveOutputFileName): | 
| 339 | 
  | 
  | 
        usage() | 
| 340 | 
  | 
  | 
        print "No output file was specified" | 
| 341 | 
  | 
  | 
        sys.exit() | 
| 342 | 
  | 
  | 
         | 
| 343 | 
  | 
  | 
    readStatFile(statFileName); | 
| 344 | 
  | 
  | 
    computeAverages(); | 
| 345 | 
  | 
  | 
    computeCorrelations(outputFileName); | 
| 346 | 
  | 
  | 
 | 
| 347 | 
  | 
  | 
if __name__ == "__main__": | 
| 348 | 
  | 
  | 
    if len(sys.argv) == 1: | 
| 349 | 
  | 
  | 
        usage() | 
| 350 | 
  | 
  | 
        sys.exit() | 
| 351 | 
  | 
  | 
    main(sys.argv[1:]) |