| 1 |
gezelter |
1663 |
#!/usr/bin/env python |
| 2 |
|
|
"""Water Replacer |
| 3 |
|
|
|
| 4 |
|
|
Finds atomistic waters in an xyz file and generates a meta-data file |
| 5 |
|
|
with center of mass and orientational coordinates for rigid body |
| 6 |
|
|
waters. |
| 7 |
|
|
|
| 8 |
|
|
Usage: waterReplacer |
| 9 |
|
|
|
| 10 |
|
|
Options: |
| 11 |
|
|
-h, --help show this help |
| 12 |
|
|
-x, use the specified input (.xyz) file |
| 13 |
|
|
-o, --output-file=... use specified output (.md) file |
| 14 |
|
|
|
| 15 |
|
|
|
| 16 |
|
|
Example: |
| 17 |
|
|
waterReplacer -x basal.xyz -o basal.md |
| 18 |
|
|
|
| 19 |
|
|
""" |
| 20 |
|
|
|
| 21 |
|
|
__author__ = "Dan Gezelter (gezelter@nd.edu)" |
| 22 |
|
|
__version__ = "$Revision: 1646 $" |
| 23 |
|
|
__date__ = "$Date: 2011-09-26 09:30:00 -0400 (Mon, 26 Sep 2011) $" |
| 24 |
|
|
__copyright__ = "Copyright (c) 2011 by the University of Notre Dame" |
| 25 |
|
|
__license__ = "OpenMD" |
| 26 |
|
|
|
| 27 |
|
|
import sys |
| 28 |
|
|
import getopt |
| 29 |
|
|
import string |
| 30 |
|
|
import math |
| 31 |
|
|
import random |
| 32 |
|
|
import numpy |
| 33 |
|
|
|
| 34 |
|
|
_haveXYZFileName = 0 |
| 35 |
|
|
_haveOutputFileName = 0 |
| 36 |
|
|
|
| 37 |
|
|
atypes = [] |
| 38 |
|
|
positions = [] |
| 39 |
|
|
metaData = [] |
| 40 |
|
|
frameData = [] |
| 41 |
|
|
WaterPos = [] |
| 42 |
|
|
WaterQuats = [] |
| 43 |
|
|
indices = [] |
| 44 |
|
|
Hmat = [] |
| 45 |
|
|
BoxInv = [] |
| 46 |
|
|
H = [] |
| 47 |
|
|
Eliminate = [] |
| 48 |
|
|
|
| 49 |
|
|
#Hmat = zeros([3,3],Float) |
| 50 |
|
|
#BoxInv = zeros([3],Float) |
| 51 |
|
|
|
| 52 |
|
|
def usage(): |
| 53 |
|
|
print __doc__ |
| 54 |
|
|
|
| 55 |
|
|
def readFile(XYZFileName): |
| 56 |
|
|
print "reading XYZ file" |
| 57 |
|
|
|
| 58 |
|
|
XYZFile = open(XYZFileName, 'r') |
| 59 |
|
|
# Find number of atoms first |
| 60 |
|
|
line = XYZFile.readline() |
| 61 |
|
|
L = line.split() |
| 62 |
|
|
nAtoms = int(L[0]) |
| 63 |
|
|
# skip comment line |
| 64 |
|
|
line = XYZFile.readline() |
| 65 |
|
|
for i in range(nAtoms): |
| 66 |
|
|
line = XYZFile.readline() |
| 67 |
|
|
L = line.split() |
| 68 |
|
|
myIndex = i |
| 69 |
|
|
indices.append(myIndex) |
| 70 |
|
|
atomType = L[0] |
| 71 |
|
|
atypes.append(atomType) |
| 72 |
|
|
x = float(L[1]) |
| 73 |
|
|
y = float(L[2]) |
| 74 |
|
|
z = float(L[3]) |
| 75 |
|
|
positions.append([x, y, z]) |
| 76 |
|
|
XYZFile.close() |
| 77 |
|
|
|
| 78 |
|
|
def findWaters(): |
| 79 |
|
|
print "finding water molecules" |
| 80 |
|
|
# simpler since we only have to find H atoms within a few |
| 81 |
|
|
# angstroms of each water: |
| 82 |
|
|
|
| 83 |
|
|
hCovRad = 0.32 |
| 84 |
|
|
oCovRad = 0.73 |
| 85 |
|
|
covTol = 0.45 |
| 86 |
|
|
OHbond = hCovRad + oCovRad + covTol |
| 87 |
|
|
Hmass = 1.0079 |
| 88 |
|
|
Omass = 15.9994 |
| 89 |
|
|
# initialize H array to an error condition |
| 90 |
|
|
H.append(-1) |
| 91 |
|
|
H.append(-1) |
| 92 |
|
|
|
| 93 |
|
|
for i in range(len(indices)): |
| 94 |
|
|
if (atypes[i] == "O"): |
| 95 |
|
|
nH = 0 |
| 96 |
|
|
H[0] = -1 |
| 97 |
|
|
H[1] = -1 |
| 98 |
|
|
COM = [0.0, 0.0, 0.0] |
| 99 |
|
|
opos = positions[i] |
| 100 |
|
|
for j in range(len(indices)): |
| 101 |
|
|
if (atypes[j] == "H"): |
| 102 |
|
|
hpos = positions[j] |
| 103 |
|
|
dx = opos[0] - hpos[0] |
| 104 |
|
|
dy = opos[1] - hpos[1] |
| 105 |
|
|
dz = opos[2] - hpos[2] |
| 106 |
|
|
dist = math.sqrt(dx*dx + dy*dy + dz*dz) |
| 107 |
|
|
if (dist < OHbond): |
| 108 |
|
|
if (nH >= 2): |
| 109 |
|
|
print "oxygen %d had too many hydrogens" % (i) |
| 110 |
|
|
sys.exit(1) |
| 111 |
|
|
H[nH] = j |
| 112 |
|
|
nH = nH + 1 |
| 113 |
|
|
if (nH != 2): |
| 114 |
|
|
print "oxygen %d had %d hydrogens, skipping" % (i, nH) |
| 115 |
|
|
if (nH == 2): |
| 116 |
|
|
Xcom = Omass * opos[0] + Hmass*(positions[H[0]][0] + positions[H[1]][0]) |
| 117 |
|
|
Ycom = Omass * opos[1] + Hmass*(positions[H[0]][1] + positions[H[1]][1]) |
| 118 |
|
|
Zcom = Omass * opos[2] + Hmass*(positions[H[0]][2] + positions[H[1]][2]) |
| 119 |
|
|
|
| 120 |
|
|
totalMass = Omass + 2.0*Hmass |
| 121 |
|
|
Xcom = Xcom / totalMass |
| 122 |
|
|
Ycom = Ycom / totalMass |
| 123 |
|
|
Zcom = Zcom / totalMass |
| 124 |
|
|
COM = [Xcom, Ycom, Zcom] |
| 125 |
|
|
WaterPos.append(COM) |
| 126 |
|
|
bisector = [0.0, 0.0, 0.0] |
| 127 |
|
|
ux = [0.0, 0.0, 0.0] |
| 128 |
|
|
uy = [0.0, 0.0, 0.0] |
| 129 |
|
|
uz = [0.0, 0.0, 0.0] |
| 130 |
|
|
RotMat = numpy.zeros((3,3), numpy.float) |
| 131 |
|
|
|
| 132 |
|
|
for j in range(3): |
| 133 |
|
|
bisector[j] = 0.5*(positions[H[0]][j] + positions[H[1]][j]) |
| 134 |
|
|
uz[j] = bisector[j] - opos[j] |
| 135 |
|
|
uy[j] = positions[H[0]][j] - positions[H[1]][j] |
| 136 |
|
|
|
| 137 |
|
|
uz = normalize(uz) |
| 138 |
|
|
uy = normalize(uy) |
| 139 |
|
|
ux = cross(uy, uz) |
| 140 |
|
|
ux = normalize(ux) |
| 141 |
|
|
|
| 142 |
|
|
q = [0.0, 0.0, 0.0, 0.0] |
| 143 |
|
|
|
| 144 |
|
|
# RotMat to Quat code is out of OpenMD's SquareMatrix3.hpp code: |
| 145 |
|
|
|
| 146 |
|
|
RotMat[0] = ux |
| 147 |
|
|
RotMat[1] = uy |
| 148 |
|
|
RotMat[2] = uz |
| 149 |
|
|
|
| 150 |
|
|
t = RotMat[0][0] + RotMat[1][1] + RotMat[2][2] + 1.0 |
| 151 |
|
|
|
| 152 |
|
|
if( t > 1e-6 ): |
| 153 |
|
|
s = 0.5 / math.sqrt( t ) |
| 154 |
|
|
q[0] = 0.25 / s |
| 155 |
|
|
q[1] = (RotMat[1][2] - RotMat[2][1]) * s |
| 156 |
|
|
q[2] = (RotMat[2][0] - RotMat[0][2]) * s |
| 157 |
|
|
q[3] = (RotMat[0][1] - RotMat[1][0]) * s |
| 158 |
|
|
else: |
| 159 |
|
|
ad1 = RotMat[0][0] |
| 160 |
|
|
ad2 = RotMat[1][1] |
| 161 |
|
|
ad3 = RotMat[2][2] |
| 162 |
|
|
|
| 163 |
|
|
if( ad1 >= ad2 and ad1 >= ad3 ): |
| 164 |
|
|
s = 0.5 / math.sqrt( 1.0 + RotMat[0][0] - RotMat[1][1] - RotMat[2][2] ) |
| 165 |
|
|
q[0] = (RotMat[1][2] - RotMat[2][1]) * s |
| 166 |
|
|
q[1] = 0.25 / s |
| 167 |
|
|
q[2] = (RotMat[0][1] + RotMat[1][0]) * s |
| 168 |
|
|
q[3] = (RotMat[0][2] + RotMat[2][0]) * s |
| 169 |
|
|
elif ( ad2 >= ad1 and ad2 >= ad3 ): |
| 170 |
|
|
s = 0.5 / math.sqrt( 1.0 + RotMat[1][1] - RotMat[0][0] - RotMat[2][2] ) |
| 171 |
|
|
q[0] = (RotMat[2][0] - RotMat[0][2] ) * s |
| 172 |
|
|
q[1] = (RotMat[0][1] + RotMat[1][0]) * s |
| 173 |
|
|
q[2] = 0.25 / s |
| 174 |
|
|
q[3] = (RotMat[1][2] + RotMat[2][1]) * s |
| 175 |
|
|
else: |
| 176 |
|
|
s = 0.5 / math.sqrt( 1.0 + RotMat[2][2] - RotMat[0][0] - RotMat[1][1] ) |
| 177 |
|
|
q[0] = (RotMat[0][1] - RotMat[1][0]) * s |
| 178 |
|
|
q[1] = (RotMat[0][2] + RotMat[2][0]) * s |
| 179 |
|
|
q[2] = (RotMat[1][2] + RotMat[2][1]) * s |
| 180 |
|
|
q[3] = 0.25 / s |
| 181 |
|
|
|
| 182 |
|
|
WaterQuats.append(q) |
| 183 |
|
|
Eliminate.append(i) |
| 184 |
|
|
Eliminate.append(H[0]) |
| 185 |
|
|
Eliminate.append(H[1]) |
| 186 |
|
|
|
| 187 |
|
|
|
| 188 |
|
|
def writeFile(outputFileName): |
| 189 |
|
|
outputFile = open(outputFileName, 'w') |
| 190 |
|
|
|
| 191 |
|
|
outputFile.write("<OpenMD version=1>\n"); |
| 192 |
|
|
|
| 193 |
|
|
for metaline in metaData: |
| 194 |
|
|
outputFile.write(metaline) |
| 195 |
|
|
|
| 196 |
|
|
outputFile.write(" <Snapshot>\n") |
| 197 |
|
|
|
| 198 |
|
|
for frameline in frameData: |
| 199 |
|
|
outputFile.write(frameline) |
| 200 |
|
|
|
| 201 |
|
|
outputFile.write(" <StuntDoubles>\n") |
| 202 |
|
|
|
| 203 |
|
|
sdFormat = 'pvqj' |
| 204 |
|
|
|
| 205 |
|
|
index = 0 |
| 206 |
|
|
for i in range(len(WaterPos)): |
| 207 |
|
|
outputFile.write("%10d %7s %18.10g %18.10g %18.10g %13e %13e %13e %13e %13e %13e %13e %13e %13e %13e\n" % (index, sdFormat, WaterPos[i][0], WaterPos[i][1], WaterPos[i][2], 0.0, 0.0, 0.0, WaterQuats[i][0], WaterQuats[i][1], WaterQuats[i][2], WaterQuats[i][3], 0.0, 0.0, 0.0)) |
| 208 |
|
|
index = index + 1 |
| 209 |
|
|
|
| 210 |
|
|
|
| 211 |
|
|
sdFormat = 'pv' |
| 212 |
|
|
for i in range(len(indices)): |
| 213 |
|
|
if i not in Eliminate: |
| 214 |
|
|
outputFile.write("%10d %7s %18.10g %18.10g %18.10g %13e %13e %13e \n" % (index, sdFormat, positions[i][0], positions[i][1], positions[i][2], 0.0, 0.0, 0.0)) |
| 215 |
|
|
|
| 216 |
|
|
outputFile.write(" </StuntDoubles>\n") |
| 217 |
|
|
outputFile.write(" </Snapshot>\n") |
| 218 |
|
|
outputFile.write("</OpenMD>\n") |
| 219 |
|
|
outputFile.close() |
| 220 |
|
|
|
| 221 |
|
|
def dot(L1, L2): |
| 222 |
|
|
myDot = 0.0 |
| 223 |
|
|
for i in range(len(L1)): |
| 224 |
|
|
myDot = myDot + L1[i]*L2[i] |
| 225 |
|
|
return myDot |
| 226 |
|
|
|
| 227 |
|
|
def normalize(L1): |
| 228 |
|
|
L2 = [] |
| 229 |
|
|
myLength = math.sqrt(dot(L1, L1)) |
| 230 |
|
|
for i in range(len(L1)): |
| 231 |
|
|
L2.append(L1[i] / myLength) |
| 232 |
|
|
return L2 |
| 233 |
|
|
|
| 234 |
|
|
def cross(L1, L2): |
| 235 |
|
|
# don't call this with anything other than length 3 lists please |
| 236 |
|
|
# or you'll be sorry |
| 237 |
|
|
L3 = [0.0, 0.0, 0.0] |
| 238 |
|
|
L3[0] = L1[1]*L2[2] - L1[2]*L2[1] |
| 239 |
|
|
L3[1] = L1[2]*L2[0] - L1[0]*L2[2] |
| 240 |
|
|
L3[2] = L1[0]*L2[1] - L1[1]*L2[0] |
| 241 |
|
|
return L3 |
| 242 |
|
|
|
| 243 |
|
|
def main(argv): |
| 244 |
|
|
try: |
| 245 |
|
|
opts, args = getopt.getopt(argv, "hx:o:", ["help", "xyz-file=", "output-file="]) |
| 246 |
|
|
except getopt.GetoptError: |
| 247 |
|
|
usage() |
| 248 |
|
|
sys.exit(2) |
| 249 |
|
|
for opt, arg in opts: |
| 250 |
|
|
if opt in ("-h", "--help"): |
| 251 |
|
|
usage() |
| 252 |
|
|
sys.exit() |
| 253 |
|
|
elif opt in ("-x", "--xyz-file"): |
| 254 |
|
|
xyzFileName = arg |
| 255 |
|
|
global _haveXYZFileName |
| 256 |
|
|
_haveXYZFileName = 1 |
| 257 |
|
|
elif opt in ("-o", "--output-file"): |
| 258 |
|
|
outputFileName = arg |
| 259 |
|
|
global _haveOutputFileName |
| 260 |
|
|
_haveOutputFileName = 1 |
| 261 |
|
|
if (_haveXYZFileName != 1): |
| 262 |
|
|
usage() |
| 263 |
|
|
print "No XYZ file was specified" |
| 264 |
|
|
sys.exit() |
| 265 |
|
|
if (_haveOutputFileName != 1): |
| 266 |
|
|
usage() |
| 267 |
|
|
print "No output file was specified" |
| 268 |
|
|
sys.exit() |
| 269 |
|
|
readFile(xyzFileName) |
| 270 |
|
|
findWaters() |
| 271 |
|
|
writeFile(outputFileName) |
| 272 |
|
|
|
| 273 |
|
|
if __name__ == "__main__": |
| 274 |
|
|
if len(sys.argv) == 1: |
| 275 |
|
|
usage() |
| 276 |
|
|
sys.exit() |
| 277 |
|
|
main(sys.argv[1:]) |