73 |
|
dslZAngle = 32, |
74 |
|
dslForce = 64, |
75 |
|
dslTorque = 128, |
76 |
< |
dslParticlePot = 256 |
76 |
> |
dslParticlePot = 256, |
77 |
> |
dslDensity = 512, |
78 |
> |
dslFunctional = 1024, |
79 |
> |
dslFunctionalDerivative = 2048, |
80 |
> |
dslElectricField = 4096 |
81 |
|
}; |
82 |
|
|
83 |
|
|
84 |
|
DataStorage(); |
85 |
< |
DataStorage(int size, int storageLayout = 511); |
85 |
> |
DataStorage(int size, int storageLayout = 8191); |
86 |
|
/** return the size of this DataStorage. */ |
87 |
|
int getSize(); |
88 |
|
/** |
91 |
|
*/ |
92 |
|
void resize(int newSize); |
93 |
|
/** |
94 |
< |
* Reallocates memory manually. The main reason for using reserve() is efficiency |
95 |
< |
* if you know the capacity to which your std::vector must eventually grow, then it is usually more |
96 |
< |
* efficient to allocate that memory all at once. |
94 |
> |
* Reallocates memory manually. |
95 |
> |
* |
96 |
> |
* The main reason for using reserve() is efficiency if you know |
97 |
> |
* the capacity to which your std::vector must eventually grow, |
98 |
> |
* then it is usually more efficient to allocate that memory all |
99 |
> |
* at once. |
100 |
|
*/ |
101 |
|
void reserve(int size); |
102 |
|
/** |
103 |
|
* Copies data inside DataStorage class. |
104 |
< |
* Copy function actually call std::copy for every std::vector in DataStorage class. |
105 |
< |
* One Precondition of std::copy is that target is not within the range [soruce, soruce + num] |
104 |
> |
* |
105 |
> |
* Copy function actually call std::copy for every std::vector in |
106 |
> |
* DataStorage class. One Precondition of std::copy is that |
107 |
> |
* target is not within the range [soruce, soruce + num] |
108 |
> |
* |
109 |
|
* @param souce |
110 |
|
* @param num number of element to be moved |
111 |
|
* @param target |
118 |
|
/** Returns the pointer of internal array */ |
119 |
|
RealType *getArrayPointer(int whichArray); |
120 |
|
|
121 |
< |
std::vector<Vector3d> position; /** position array */ |
122 |
< |
std::vector<Vector3d> velocity; /** velocity array */ |
123 |
< |
std::vector<RotMat3x3d> aMat; /** rotation matrix array */ |
124 |
< |
std::vector<Vector3d> angularMomentum;/** angular momentum array (body-fixed) */ |
125 |
< |
std::vector<Mat3x3d> electroFrame; /** the lab frame unit std::vector array*/ |
126 |
< |
std::vector<RealType> zAngle; /** z -angle array */ |
127 |
< |
std::vector<Vector3d> force; /** force array */ |
128 |
< |
std::vector<Vector3d> torque; /** torque array */ |
129 |
< |
std::vector<RealType> particlePot; /** pair potential arrray */ |
121 |
> |
std::vector<Vector3d> position; /** position array */ |
122 |
> |
std::vector<Vector3d> velocity; /** velocity array */ |
123 |
> |
std::vector<RotMat3x3d> aMat; /** rotation matrix array */ |
124 |
> |
std::vector<Vector3d> angularMomentum; /** angular momentum array |
125 |
> |
(body-fixed) */ |
126 |
> |
std::vector<Mat3x3d> electroFrame; /** the lab frame unit vector array*/ |
127 |
> |
std::vector<RealType> zAngle; /** z-angle array */ |
128 |
> |
std::vector<Vector3d> force; /** force array */ |
129 |
> |
std::vector<Vector3d> torque; /** torque array */ |
130 |
> |
std::vector<RealType> particlePot; /** particle potential arrray */ |
131 |
> |
std::vector<RealType> density; /** electron density */ |
132 |
> |
std::vector<RealType> functional; /** density functional */ |
133 |
> |
std::vector<RealType> functionalDerivative; /** derivative of functional */ |
134 |
> |
std::vector<Vector3d> electricField; /** local electric field */ |
135 |
|
|
136 |
|
static int getBytesPerStuntDouble(int layout); |
137 |
|
|
138 |
|
private: |
139 |
|
|
140 |
< |
RealType* internalGetArrayPointer(std::vector<Vector3d>& v); |
126 |
< |
|
140 |
> |
RealType* internalGetArrayPointer(std::vector<Vector3d>& v); |
141 |
|
RealType* internalGetArrayPointer(std::vector<RotMat3x3d>& v); |
142 |
|
RealType* internalGetArrayPointer(std::vector<RealType>& v); |
143 |
|
|