6 |
|
* redistribute this software in source and binary code form, provided |
7 |
|
* that the following conditions are met: |
8 |
|
* |
9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
10 |
< |
* publication of scientific results based in part on use of the |
11 |
< |
* program. An acceptable form of acknowledgement is citation of |
12 |
< |
* the article in which the program was described (Matthew |
13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
< |
* |
18 |
< |
* 2. Redistributions of source code must retain the above copyright |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
* |
12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
* documentation and/or other materials provided with the |
15 |
|
* distribution. |
28 |
|
* arising out of the use of or inability to use software, even if the |
29 |
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
+ |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
|
*/ |
41 |
|
|
42 |
|
/** |
50 |
|
#include "brains/ForceManager.hpp" |
51 |
|
#include "primitives/Molecule.hpp" |
52 |
|
#include "UseTheForce/doForces_interface.h" |
53 |
< |
#define __C |
53 |
> |
#define __OPENMD_C |
54 |
|
#include "UseTheForce/DarkSide/fInteractionMap.h" |
55 |
|
#include "utils/simError.h" |
56 |
|
#include "primitives/Bond.hpp" |
57 |
|
#include "primitives/Bend.hpp" |
58 |
< |
namespace oopse { |
58 |
> |
#include "primitives/Torsion.hpp" |
59 |
> |
#include "primitives/Inversion.hpp" |
60 |
|
|
61 |
< |
void ForceManager::calcForces(bool needPotential, bool needStress) { |
61 |
> |
namespace OpenMD { |
62 |
> |
|
63 |
> |
ForceManager::ForceManager(SimInfo * info) : info_(info), |
64 |
> |
NBforcesInitialized_(false) { |
65 |
> |
std::cerr << __PRETTY_FUNCTION__ << "\n"; |
66 |
> |
lj_ = new LJ(info_->getForceField()); |
67 |
> |
} |
68 |
> |
|
69 |
> |
void ForceManager::calcForces() { |
70 |
|
|
71 |
+ |
std::cerr << __PRETTY_FUNCTION__ << "\n"; |
72 |
|
if (!info_->isFortranInitialized()) { |
73 |
|
info_->update(); |
74 |
|
} |
75 |
|
|
76 |
+ |
if (!NBforcesInitialized_) { |
77 |
+ |
lj_->initialize(); |
78 |
+ |
} |
79 |
+ |
|
80 |
|
preCalculation(); |
81 |
|
|
82 |
|
calcShortRangeInteraction(); |
83 |
|
|
84 |
< |
calcLongRangeInteraction(needPotential, needStress); |
84 |
> |
calcLongRangeInteraction(); |
85 |
|
|
86 |
< |
postCalculation(needStress); |
86 |
> |
postCalculation(); |
87 |
|
|
88 |
|
} |
89 |
|
|
97 |
|
|
98 |
|
// forces are zeroed here, before any are accumulated. |
99 |
|
// NOTE: do not rezero the forces in Fortran. |
100 |
< |
|
100 |
> |
|
101 |
|
for (mol = info_->beginMolecule(mi); mol != NULL; |
102 |
|
mol = info_->nextMolecule(mi)) { |
103 |
|
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
104 |
|
atom->zeroForcesAndTorques(); |
105 |
|
} |
106 |
< |
|
106 |
> |
|
107 |
|
//change the positions of atoms which belong to the rigidbodies |
108 |
|
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
109 |
|
rb = mol->nextRigidBody(rbIter)) { |
110 |
|
rb->zeroForcesAndTorques(); |
111 |
|
} |
112 |
+ |
|
113 |
|
} |
114 |
|
|
115 |
|
// Zero out the stress tensor |
123 |
|
Bond* bond; |
124 |
|
Bend* bend; |
125 |
|
Torsion* torsion; |
126 |
+ |
Inversion* inversion; |
127 |
|
SimInfo::MoleculeIterator mi; |
128 |
|
Molecule::RigidBodyIterator rbIter; |
129 |
|
Molecule::BondIterator bondIter;; |
130 |
|
Molecule::BendIterator bendIter; |
131 |
|
Molecule::TorsionIterator torsionIter; |
132 |
+ |
Molecule::InversionIterator inversionIter; |
133 |
|
RealType bondPotential = 0.0; |
134 |
|
RealType bendPotential = 0.0; |
135 |
|
RealType torsionPotential = 0.0; |
136 |
+ |
RealType inversionPotential = 0.0; |
137 |
|
|
138 |
|
//calculate short range interactions |
139 |
|
for (mol = info_->beginMolecule(mi); mol != NULL; |
157 |
|
RealType angle; |
158 |
|
bend->calcForce(angle); |
159 |
|
RealType currBendPot = bend->getPotential(); |
160 |
+ |
|
161 |
|
bendPotential += bend->getPotential(); |
162 |
|
std::map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend); |
163 |
|
if (i == bendDataSets.end()) { |
194 |
|
i->second.prev.potential = i->second.curr.potential; |
195 |
|
i->second.curr.angle = angle; |
196 |
|
i->second.curr.potential = currTorsionPot; |
197 |
+ |
i->second.deltaV = fabs(i->second.curr.potential - |
198 |
+ |
i->second.prev.potential); |
199 |
+ |
} |
200 |
+ |
} |
201 |
+ |
|
202 |
+ |
for (inversion = mol->beginInversion(inversionIter); |
203 |
+ |
inversion != NULL; |
204 |
+ |
inversion = mol->nextInversion(inversionIter)) { |
205 |
+ |
RealType angle; |
206 |
+ |
inversion->calcForce(angle); |
207 |
+ |
RealType currInversionPot = inversion->getPotential(); |
208 |
+ |
inversionPotential += inversion->getPotential(); |
209 |
+ |
std::map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion); |
210 |
+ |
if (i == inversionDataSets.end()) { |
211 |
+ |
InversionDataSet dataSet; |
212 |
+ |
dataSet.prev.angle = dataSet.curr.angle = angle; |
213 |
+ |
dataSet.prev.potential = dataSet.curr.potential = currInversionPot; |
214 |
+ |
dataSet.deltaV = 0.0; |
215 |
+ |
inversionDataSets.insert(std::map<Inversion*, InversionDataSet>::value_type(inversion, dataSet)); |
216 |
+ |
}else { |
217 |
+ |
i->second.prev.angle = i->second.curr.angle; |
218 |
+ |
i->second.prev.potential = i->second.curr.potential; |
219 |
+ |
i->second.curr.angle = angle; |
220 |
+ |
i->second.curr.potential = currInversionPot; |
221 |
|
i->second.deltaV = fabs(i->second.curr.potential - |
222 |
|
i->second.prev.potential); |
223 |
|
} |
225 |
|
} |
226 |
|
|
227 |
|
RealType shortRangePotential = bondPotential + bendPotential + |
228 |
< |
torsionPotential; |
228 |
> |
torsionPotential + inversionPotential; |
229 |
|
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
230 |
|
curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential; |
231 |
|
curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential; |
232 |
|
curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential; |
233 |
|
curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential; |
234 |
+ |
curSnapshot->statData[Stats::INVERSION_POTENTIAL] = inversionPotential; |
235 |
|
|
236 |
|
} |
237 |
|
|
238 |
< |
void ForceManager::calcLongRangeInteraction(bool needPotential, |
195 |
< |
bool needStress) { |
238 |
> |
void ForceManager::calcLongRangeInteraction() { |
239 |
|
Snapshot* curSnapshot; |
240 |
|
DataStorage* config; |
241 |
|
RealType* frc; |
244 |
|
RealType* A; |
245 |
|
RealType* electroFrame; |
246 |
|
RealType* rc; |
247 |
+ |
RealType* particlePot; |
248 |
|
|
249 |
|
//get current snapshot from SimInfo |
250 |
|
curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
256 |
|
trq = config->getArrayPointer(DataStorage::dslTorque); |
257 |
|
A = config->getArrayPointer(DataStorage::dslAmat); |
258 |
|
electroFrame = config->getArrayPointer(DataStorage::dslElectroFrame); |
259 |
+ |
particlePot = config->getArrayPointer(DataStorage::dslParticlePot); |
260 |
|
|
261 |
|
//calculate the center of mass of cutoff group |
262 |
|
SimInfo::MoleculeIterator mi; |
288 |
|
RealType longRangePotential[LR_POT_TYPES]; |
289 |
|
RealType lrPot = 0.0; |
290 |
|
Vector3d totalDipole; |
246 |
– |
short int passedCalcPot = needPotential; |
247 |
– |
short int passedCalcStress = needStress; |
291 |
|
int isError = 0; |
292 |
|
|
293 |
|
for (int i=0; i<LR_POT_TYPES;i++){ |
302 |
|
trq, |
303 |
|
tau.getArrayPointer(), |
304 |
|
longRangePotential, |
305 |
< |
&passedCalcPot, |
263 |
< |
&passedCalcStress, |
305 |
> |
particlePot, |
306 |
|
&isError ); |
307 |
|
|
308 |
|
if( isError ){ |
331 |
|
} |
332 |
|
|
333 |
|
|
334 |
< |
void ForceManager::postCalculation(bool needStress) { |
334 |
> |
void ForceManager::postCalculation() { |
335 |
|
SimInfo::MoleculeIterator mi; |
336 |
|
Molecule* mol; |
337 |
|
Molecule::RigidBodyIterator rbIter; |
344 |
|
mol = info_->nextMolecule(mi)) { |
345 |
|
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
346 |
|
rb = mol->nextRigidBody(rbIter)) { |
347 |
< |
if (needStress) { |
348 |
< |
Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial(); |
307 |
< |
tau += rbTau; |
308 |
< |
} else{ |
309 |
< |
rb->calcForcesAndTorques(); |
310 |
< |
} |
347 |
> |
Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial(); |
348 |
> |
tau += rbTau; |
349 |
|
} |
350 |
|
} |
351 |
< |
|
314 |
< |
if (needStress) { |
351 |
> |
|
352 |
|
#ifdef IS_MPI |
353 |
< |
Mat3x3d tmpTau(tau); |
354 |
< |
MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(), |
355 |
< |
9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
353 |
> |
Mat3x3d tmpTau(tau); |
354 |
> |
MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(), |
355 |
> |
9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
356 |
|
#endif |
357 |
< |
curSnapshot->statData.setTau(tau); |
321 |
< |
} |
357 |
> |
curSnapshot->statData.setTau(tau); |
358 |
|
} |
359 |
|
|
360 |
< |
} //end namespace oopse |
360 |
> |
} //end namespace OpenMD |