6 |
|
* redistribute this software in source and binary code form, provided |
7 |
|
* that the following conditions are met: |
8 |
|
* |
9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
10 |
< |
* publication of scientific results based in part on use of the |
11 |
< |
* program. An acceptable form of acknowledgement is citation of |
12 |
< |
* the article in which the program was described (Matthew |
13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
< |
* |
18 |
< |
* 2. Redistributions of source code must retain the above copyright |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
* |
12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
* documentation and/or other materials provided with the |
15 |
|
* distribution. |
28 |
|
* arising out of the use of or inability to use software, even if the |
29 |
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
+ |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
|
*/ |
41 |
|
|
42 |
|
/** |
50 |
|
#include "brains/ForceManager.hpp" |
51 |
|
#include "primitives/Molecule.hpp" |
52 |
|
#include "UseTheForce/doForces_interface.h" |
53 |
< |
#define __C |
53 |
> |
#define __OPENMD_C |
54 |
|
#include "UseTheForce/DarkSide/fInteractionMap.h" |
55 |
|
#include "utils/simError.h" |
56 |
|
#include "primitives/Bond.hpp" |
57 |
|
#include "primitives/Bend.hpp" |
58 |
< |
namespace oopse { |
58 |
> |
#include "primitives/Torsion.hpp" |
59 |
> |
#include "primitives/Inversion.hpp" |
60 |
|
|
61 |
< |
void ForceManager::calcForces(bool needPotential, bool needStress) { |
61 |
> |
namespace OpenMD { |
62 |
> |
|
63 |
> |
ForceManager::ForceManager(SimInfo * info) : info_(info), |
64 |
> |
NBforcesInitialized_(false) { |
65 |
> |
lj_ = LJ::Instance(); |
66 |
> |
lj_->setForceField(info_->getForceField()); |
67 |
> |
|
68 |
> |
gb_ = GB::Instance(); |
69 |
> |
gb_->setForceField(info_->getForceField()); |
70 |
> |
|
71 |
> |
sticky_ = Sticky::Instance(); |
72 |
> |
sticky_->setForceField(info_->getForceField()); |
73 |
> |
|
74 |
> |
eam_ = EAM::Instance(); |
75 |
> |
eam_->setForceField(info_->getForceField()); |
76 |
> |
} |
77 |
> |
|
78 |
> |
void ForceManager::calcForces() { |
79 |
|
|
80 |
|
if (!info_->isFortranInitialized()) { |
81 |
|
info_->update(); |
85 |
|
|
86 |
|
calcShortRangeInteraction(); |
87 |
|
|
88 |
< |
calcLongRangeInteraction(needPotential, needStress); |
88 |
> |
calcLongRangeInteraction(); |
89 |
|
|
90 |
< |
postCalculation(needStress); |
90 |
> |
postCalculation(); |
91 |
|
|
92 |
|
} |
93 |
|
|
101 |
|
|
102 |
|
// forces are zeroed here, before any are accumulated. |
103 |
|
// NOTE: do not rezero the forces in Fortran. |
104 |
< |
|
104 |
> |
|
105 |
|
for (mol = info_->beginMolecule(mi); mol != NULL; |
106 |
|
mol = info_->nextMolecule(mi)) { |
107 |
|
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
108 |
|
atom->zeroForcesAndTorques(); |
109 |
|
} |
110 |
< |
|
110 |
> |
|
111 |
|
//change the positions of atoms which belong to the rigidbodies |
112 |
|
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
113 |
|
rb = mol->nextRigidBody(rbIter)) { |
114 |
|
rb->zeroForcesAndTorques(); |
115 |
|
} |
116 |
+ |
|
117 |
|
} |
118 |
|
|
119 |
|
// Zero out the stress tensor |
127 |
|
Bond* bond; |
128 |
|
Bend* bend; |
129 |
|
Torsion* torsion; |
130 |
+ |
Inversion* inversion; |
131 |
|
SimInfo::MoleculeIterator mi; |
132 |
|
Molecule::RigidBodyIterator rbIter; |
133 |
|
Molecule::BondIterator bondIter;; |
134 |
|
Molecule::BendIterator bendIter; |
135 |
|
Molecule::TorsionIterator torsionIter; |
136 |
+ |
Molecule::InversionIterator inversionIter; |
137 |
|
RealType bondPotential = 0.0; |
138 |
|
RealType bendPotential = 0.0; |
139 |
|
RealType torsionPotential = 0.0; |
140 |
+ |
RealType inversionPotential = 0.0; |
141 |
|
|
142 |
|
//calculate short range interactions |
143 |
|
for (mol = info_->beginMolecule(mi); mol != NULL; |
161 |
|
RealType angle; |
162 |
|
bend->calcForce(angle); |
163 |
|
RealType currBendPot = bend->getPotential(); |
164 |
+ |
|
165 |
|
bendPotential += bend->getPotential(); |
166 |
|
std::map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend); |
167 |
|
if (i == bendDataSets.end()) { |
198 |
|
i->second.prev.potential = i->second.curr.potential; |
199 |
|
i->second.curr.angle = angle; |
200 |
|
i->second.curr.potential = currTorsionPot; |
201 |
+ |
i->second.deltaV = fabs(i->second.curr.potential - |
202 |
+ |
i->second.prev.potential); |
203 |
+ |
} |
204 |
+ |
} |
205 |
+ |
|
206 |
+ |
for (inversion = mol->beginInversion(inversionIter); |
207 |
+ |
inversion != NULL; |
208 |
+ |
inversion = mol->nextInversion(inversionIter)) { |
209 |
+ |
RealType angle; |
210 |
+ |
inversion->calcForce(angle); |
211 |
+ |
RealType currInversionPot = inversion->getPotential(); |
212 |
+ |
inversionPotential += inversion->getPotential(); |
213 |
+ |
std::map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion); |
214 |
+ |
if (i == inversionDataSets.end()) { |
215 |
+ |
InversionDataSet dataSet; |
216 |
+ |
dataSet.prev.angle = dataSet.curr.angle = angle; |
217 |
+ |
dataSet.prev.potential = dataSet.curr.potential = currInversionPot; |
218 |
+ |
dataSet.deltaV = 0.0; |
219 |
+ |
inversionDataSets.insert(std::map<Inversion*, InversionDataSet>::value_type(inversion, dataSet)); |
220 |
+ |
}else { |
221 |
+ |
i->second.prev.angle = i->second.curr.angle; |
222 |
+ |
i->second.prev.potential = i->second.curr.potential; |
223 |
+ |
i->second.curr.angle = angle; |
224 |
+ |
i->second.curr.potential = currInversionPot; |
225 |
|
i->second.deltaV = fabs(i->second.curr.potential - |
226 |
|
i->second.prev.potential); |
227 |
|
} |
229 |
|
} |
230 |
|
|
231 |
|
RealType shortRangePotential = bondPotential + bendPotential + |
232 |
< |
torsionPotential; |
232 |
> |
torsionPotential + inversionPotential; |
233 |
|
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
234 |
|
curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential; |
235 |
|
curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential; |
236 |
|
curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential; |
237 |
|
curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential; |
238 |
+ |
curSnapshot->statData[Stats::INVERSION_POTENTIAL] = inversionPotential; |
239 |
|
|
240 |
|
} |
241 |
|
|
242 |
< |
void ForceManager::calcLongRangeInteraction(bool needPotential, |
195 |
< |
bool needStress) { |
242 |
> |
void ForceManager::calcLongRangeInteraction() { |
243 |
|
Snapshot* curSnapshot; |
244 |
|
DataStorage* config; |
245 |
|
RealType* frc; |
248 |
|
RealType* A; |
249 |
|
RealType* electroFrame; |
250 |
|
RealType* rc; |
251 |
+ |
RealType* particlePot; |
252 |
|
|
253 |
|
//get current snapshot from SimInfo |
254 |
|
curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
260 |
|
trq = config->getArrayPointer(DataStorage::dslTorque); |
261 |
|
A = config->getArrayPointer(DataStorage::dslAmat); |
262 |
|
electroFrame = config->getArrayPointer(DataStorage::dslElectroFrame); |
263 |
+ |
particlePot = config->getArrayPointer(DataStorage::dslParticlePot); |
264 |
|
|
265 |
|
//calculate the center of mass of cutoff group |
266 |
|
SimInfo::MoleculeIterator mi; |
292 |
|
RealType longRangePotential[LR_POT_TYPES]; |
293 |
|
RealType lrPot = 0.0; |
294 |
|
Vector3d totalDipole; |
246 |
– |
short int passedCalcPot = needPotential; |
247 |
– |
short int passedCalcStress = needStress; |
295 |
|
int isError = 0; |
296 |
|
|
297 |
|
for (int i=0; i<LR_POT_TYPES;i++){ |
306 |
|
trq, |
307 |
|
tau.getArrayPointer(), |
308 |
|
longRangePotential, |
309 |
< |
&passedCalcPot, |
263 |
< |
&passedCalcStress, |
309 |
> |
particlePot, |
310 |
|
&isError ); |
311 |
|
|
312 |
|
if( isError ){ |
335 |
|
} |
336 |
|
|
337 |
|
|
338 |
< |
void ForceManager::postCalculation(bool needStress) { |
338 |
> |
void ForceManager::postCalculation() { |
339 |
|
SimInfo::MoleculeIterator mi; |
340 |
|
Molecule* mol; |
341 |
|
Molecule::RigidBodyIterator rbIter; |
348 |
|
mol = info_->nextMolecule(mi)) { |
349 |
|
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
350 |
|
rb = mol->nextRigidBody(rbIter)) { |
351 |
< |
if (needStress) { |
352 |
< |
Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial(); |
307 |
< |
tau += rbTau; |
308 |
< |
} else{ |
309 |
< |
rb->calcForcesAndTorques(); |
310 |
< |
} |
351 |
> |
Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial(); |
352 |
> |
tau += rbTau; |
353 |
|
} |
354 |
|
} |
355 |
< |
|
314 |
< |
if (needStress) { |
355 |
> |
|
356 |
|
#ifdef IS_MPI |
357 |
< |
Mat3x3d tmpTau(tau); |
358 |
< |
MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(), |
359 |
< |
9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
357 |
> |
Mat3x3d tmpTau(tau); |
358 |
> |
MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(), |
359 |
> |
9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
360 |
|
#endif |
361 |
< |
curSnapshot->statData.setTau(tau); |
321 |
< |
} |
361 |
> |
curSnapshot->statData.setTau(tau); |
362 |
|
} |
363 |
|
|
364 |
< |
} //end namespace oopse |
364 |
> |
} //end namespace OpenMD |