6 |
|
* redistribute this software in source and binary code form, provided |
7 |
|
* that the following conditions are met: |
8 |
|
* |
9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
10 |
< |
* publication of scientific results based in part on use of the |
11 |
< |
* program. An acceptable form of acknowledgement is citation of |
12 |
< |
* the article in which the program was described (Matthew |
13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
< |
* |
18 |
< |
* 2. Redistributions of source code must retain the above copyright |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
* |
12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
* documentation and/or other materials provided with the |
15 |
|
* distribution. |
28 |
|
* arising out of the use of or inability to use software, even if the |
29 |
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
+ |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
|
*/ |
41 |
|
|
42 |
|
/** |
50 |
|
#include "brains/ForceManager.hpp" |
51 |
|
#include "primitives/Molecule.hpp" |
52 |
|
#include "UseTheForce/doForces_interface.h" |
53 |
< |
#define __C |
53 |
> |
#define __OPENMD_C |
54 |
|
#include "UseTheForce/DarkSide/fInteractionMap.h" |
55 |
|
#include "utils/simError.h" |
56 |
|
#include "primitives/Bond.hpp" |
57 |
|
#include "primitives/Bend.hpp" |
58 |
< |
namespace oopse { |
58 |
> |
#include "primitives/Torsion.hpp" |
59 |
> |
#include "primitives/Inversion.hpp" |
60 |
> |
#include "parallel/ForceMatrixDecomposition.hpp" |
61 |
> |
//#include "parallel/ForceSerialDecomposition.hpp" |
62 |
|
|
63 |
< |
void ForceManager::calcForces(bool needPotential, bool needStress) { |
63 |
> |
using namespace std; |
64 |
> |
namespace OpenMD { |
65 |
> |
|
66 |
> |
ForceManager::ForceManager(SimInfo * info) : info_(info) { |
67 |
> |
|
68 |
> |
#ifdef IS_MPI |
69 |
> |
fDecomp_ = new ForceMatrixDecomposition(info_); |
70 |
> |
#else |
71 |
> |
// fDecomp_ = new ForceSerialDecomposition(info); |
72 |
> |
#endif |
73 |
> |
} |
74 |
> |
|
75 |
> |
void ForceManager::calcForces() { |
76 |
|
|
77 |
|
if (!info_->isFortranInitialized()) { |
78 |
|
info_->update(); |
79 |
+ |
interactionMan_->setSimInfo(info_); |
80 |
+ |
interactionMan_->initialize(); |
81 |
+ |
swfun_ = interactionMan_->getSwitchingFunction(); |
82 |
+ |
fDecomp_->distributeInitialData(); |
83 |
+ |
info_->setupFortran(); |
84 |
|
} |
85 |
|
|
86 |
< |
preCalculation(); |
86 |
> |
preCalculation(); |
87 |
> |
shortRangeInteractions(); |
88 |
> |
longRangeInteractions(); |
89 |
> |
postCalculation(); |
90 |
|
|
68 |
– |
calcShortRangeInteraction(); |
69 |
– |
|
70 |
– |
calcLongRangeInteraction(needPotential, needStress); |
71 |
– |
|
72 |
– |
postCalculation(needStress); |
73 |
– |
|
91 |
|
} |
92 |
|
|
93 |
|
void ForceManager::preCalculation() { |
97 |
|
Atom* atom; |
98 |
|
Molecule::RigidBodyIterator rbIter; |
99 |
|
RigidBody* rb; |
100 |
+ |
Molecule::CutoffGroupIterator ci; |
101 |
+ |
CutoffGroup* cg; |
102 |
|
|
103 |
|
// forces are zeroed here, before any are accumulated. |
104 |
< |
// NOTE: do not rezero the forces in Fortran. |
86 |
< |
|
104 |
> |
|
105 |
|
for (mol = info_->beginMolecule(mi); mol != NULL; |
106 |
|
mol = info_->nextMolecule(mi)) { |
107 |
|
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
108 |
|
atom->zeroForcesAndTorques(); |
109 |
|
} |
110 |
< |
|
110 |
> |
|
111 |
|
//change the positions of atoms which belong to the rigidbodies |
112 |
|
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
113 |
|
rb = mol->nextRigidBody(rbIter)) { |
114 |
|
rb->zeroForcesAndTorques(); |
115 |
|
} |
116 |
+ |
|
117 |
+ |
if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){ |
118 |
+ |
for(cg = mol->beginCutoffGroup(ci); cg != NULL; |
119 |
+ |
cg = mol->nextCutoffGroup(ci)) { |
120 |
+ |
//calculate the center of mass of cutoff group |
121 |
+ |
cg->updateCOM(); |
122 |
+ |
} |
123 |
+ |
} |
124 |
|
} |
125 |
< |
|
125 |
> |
|
126 |
|
// Zero out the stress tensor |
127 |
|
tau *= 0.0; |
128 |
|
|
129 |
|
} |
130 |
|
|
131 |
< |
void ForceManager::calcShortRangeInteraction() { |
131 |
> |
void ForceManager::shortRangeInteractions() { |
132 |
|
Molecule* mol; |
133 |
|
RigidBody* rb; |
134 |
|
Bond* bond; |
135 |
|
Bend* bend; |
136 |
|
Torsion* torsion; |
137 |
+ |
Inversion* inversion; |
138 |
|
SimInfo::MoleculeIterator mi; |
139 |
|
Molecule::RigidBodyIterator rbIter; |
140 |
|
Molecule::BondIterator bondIter;; |
141 |
|
Molecule::BendIterator bendIter; |
142 |
|
Molecule::TorsionIterator torsionIter; |
143 |
+ |
Molecule::InversionIterator inversionIter; |
144 |
|
RealType bondPotential = 0.0; |
145 |
|
RealType bendPotential = 0.0; |
146 |
|
RealType torsionPotential = 0.0; |
147 |
+ |
RealType inversionPotential = 0.0; |
148 |
|
|
149 |
|
//calculate short range interactions |
150 |
|
for (mol = info_->beginMolecule(mi); mol != NULL; |
168 |
|
RealType angle; |
169 |
|
bend->calcForce(angle); |
170 |
|
RealType currBendPot = bend->getPotential(); |
171 |
+ |
|
172 |
|
bendPotential += bend->getPotential(); |
173 |
< |
std::map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend); |
173 |
> |
map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend); |
174 |
|
if (i == bendDataSets.end()) { |
175 |
|
BendDataSet dataSet; |
176 |
|
dataSet.prev.angle = dataSet.curr.angle = angle; |
177 |
|
dataSet.prev.potential = dataSet.curr.potential = currBendPot; |
178 |
|
dataSet.deltaV = 0.0; |
179 |
< |
bendDataSets.insert(std::map<Bend*, BendDataSet>::value_type(bend, dataSet)); |
179 |
> |
bendDataSets.insert(map<Bend*, BendDataSet>::value_type(bend, dataSet)); |
180 |
|
}else { |
181 |
|
i->second.prev.angle = i->second.curr.angle; |
182 |
|
i->second.prev.potential = i->second.curr.potential; |
193 |
|
torsion->calcForce(angle); |
194 |
|
RealType currTorsionPot = torsion->getPotential(); |
195 |
|
torsionPotential += torsion->getPotential(); |
196 |
< |
std::map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion); |
196 |
> |
map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion); |
197 |
|
if (i == torsionDataSets.end()) { |
198 |
|
TorsionDataSet dataSet; |
199 |
|
dataSet.prev.angle = dataSet.curr.angle = angle; |
200 |
|
dataSet.prev.potential = dataSet.curr.potential = currTorsionPot; |
201 |
|
dataSet.deltaV = 0.0; |
202 |
< |
torsionDataSets.insert(std::map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet)); |
202 |
> |
torsionDataSets.insert(map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet)); |
203 |
|
}else { |
204 |
|
i->second.prev.angle = i->second.curr.angle; |
205 |
|
i->second.prev.potential = i->second.curr.potential; |
209 |
|
i->second.prev.potential); |
210 |
|
} |
211 |
|
} |
212 |
+ |
|
213 |
+ |
for (inversion = mol->beginInversion(inversionIter); |
214 |
+ |
inversion != NULL; |
215 |
+ |
inversion = mol->nextInversion(inversionIter)) { |
216 |
+ |
RealType angle; |
217 |
+ |
inversion->calcForce(angle); |
218 |
+ |
RealType currInversionPot = inversion->getPotential(); |
219 |
+ |
inversionPotential += inversion->getPotential(); |
220 |
+ |
map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion); |
221 |
+ |
if (i == inversionDataSets.end()) { |
222 |
+ |
InversionDataSet dataSet; |
223 |
+ |
dataSet.prev.angle = dataSet.curr.angle = angle; |
224 |
+ |
dataSet.prev.potential = dataSet.curr.potential = currInversionPot; |
225 |
+ |
dataSet.deltaV = 0.0; |
226 |
+ |
inversionDataSets.insert(map<Inversion*, InversionDataSet>::value_type(inversion, dataSet)); |
227 |
+ |
}else { |
228 |
+ |
i->second.prev.angle = i->second.curr.angle; |
229 |
+ |
i->second.prev.potential = i->second.curr.potential; |
230 |
+ |
i->second.curr.angle = angle; |
231 |
+ |
i->second.curr.potential = currInversionPot; |
232 |
+ |
i->second.deltaV = fabs(i->second.curr.potential - |
233 |
+ |
i->second.prev.potential); |
234 |
+ |
} |
235 |
+ |
} |
236 |
|
} |
237 |
|
|
238 |
|
RealType shortRangePotential = bondPotential + bendPotential + |
239 |
< |
torsionPotential; |
239 |
> |
torsionPotential + inversionPotential; |
240 |
|
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
241 |
|
curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential; |
242 |
|
curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential; |
243 |
|
curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential; |
244 |
|
curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential; |
245 |
< |
|
245 |
> |
curSnapshot->statData[Stats::INVERSION_POTENTIAL] = inversionPotential; |
246 |
|
} |
247 |
|
|
248 |
< |
void ForceManager::calcLongRangeInteraction(bool needPotential, |
195 |
< |
bool needStress) { |
196 |
< |
Snapshot* curSnapshot; |
197 |
< |
DataStorage* config; |
198 |
< |
RealType* frc; |
199 |
< |
RealType* pos; |
200 |
< |
RealType* trq; |
201 |
< |
RealType* A; |
202 |
< |
RealType* electroFrame; |
203 |
< |
RealType* rc; |
204 |
< |
|
205 |
< |
//get current snapshot from SimInfo |
206 |
< |
curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
207 |
< |
|
208 |
< |
//get array pointers |
209 |
< |
config = &(curSnapshot->atomData); |
210 |
< |
frc = config->getArrayPointer(DataStorage::dslForce); |
211 |
< |
pos = config->getArrayPointer(DataStorage::dslPosition); |
212 |
< |
trq = config->getArrayPointer(DataStorage::dslTorque); |
213 |
< |
A = config->getArrayPointer(DataStorage::dslAmat); |
214 |
< |
electroFrame = config->getArrayPointer(DataStorage::dslElectroFrame); |
248 |
> |
void ForceManager::longRangeInteractions() { |
249 |
|
|
250 |
< |
//calculate the center of mass of cutoff group |
251 |
< |
SimInfo::MoleculeIterator mi; |
252 |
< |
Molecule* mol; |
253 |
< |
Molecule::CutoffGroupIterator ci; |
254 |
< |
CutoffGroup* cg; |
255 |
< |
Vector3d com; |
256 |
< |
std::vector<Vector3d> rcGroup; |
257 |
< |
|
258 |
< |
if(info_->getNCutoffGroups() > 0){ |
259 |
< |
|
260 |
< |
for (mol = info_->beginMolecule(mi); mol != NULL; |
261 |
< |
mol = info_->nextMolecule(mi)) { |
262 |
< |
for(cg = mol->beginCutoffGroup(ci); cg != NULL; |
263 |
< |
cg = mol->nextCutoffGroup(ci)) { |
230 |
< |
cg->getCOM(com); |
231 |
< |
rcGroup.push_back(com); |
232 |
< |
} |
233 |
< |
}// end for (mol) |
234 |
< |
|
235 |
< |
rc = rcGroup[0].getArrayPointer(); |
250 |
> |
// some of this initial stuff will go away: |
251 |
> |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
252 |
> |
DataStorage* config = &(curSnapshot->atomData); |
253 |
> |
DataStorage* cgConfig = &(curSnapshot->cgData); |
254 |
> |
RealType* frc = config->getArrayPointer(DataStorage::dslForce); |
255 |
> |
RealType* pos = config->getArrayPointer(DataStorage::dslPosition); |
256 |
> |
RealType* trq = config->getArrayPointer(DataStorage::dslTorque); |
257 |
> |
RealType* A = config->getArrayPointer(DataStorage::dslAmat); |
258 |
> |
RealType* electroFrame = config->getArrayPointer(DataStorage::dslElectroFrame); |
259 |
> |
RealType* particlePot = config->getArrayPointer(DataStorage::dslParticlePot); |
260 |
> |
RealType* rc; |
261 |
> |
|
262 |
> |
if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){ |
263 |
> |
rc = cgConfig->getArrayPointer(DataStorage::dslPosition); |
264 |
|
} else { |
265 |
|
// center of mass of the group is the same as position of the atom |
266 |
|
// if cutoff group does not exist |
270 |
|
//initialize data before passing to fortran |
271 |
|
RealType longRangePotential[LR_POT_TYPES]; |
272 |
|
RealType lrPot = 0.0; |
245 |
– |
Vector3d totalDipole; |
246 |
– |
short int passedCalcPot = needPotential; |
247 |
– |
short int passedCalcStress = needStress; |
273 |
|
int isError = 0; |
274 |
|
|
275 |
|
for (int i=0; i<LR_POT_TYPES;i++){ |
276 |
|
longRangePotential[i]=0.0; //Initialize array |
277 |
|
} |
278 |
< |
|
279 |
< |
doForceLoop(pos, |
280 |
< |
rc, |
281 |
< |
A, |
282 |
< |
electroFrame, |
283 |
< |
frc, |
284 |
< |
trq, |
285 |
< |
tau.getArrayPointer(), |
286 |
< |
longRangePotential, |
287 |
< |
&passedCalcPot, |
288 |
< |
&passedCalcStress, |
289 |
< |
&isError ); |
290 |
< |
|
291 |
< |
if( isError ){ |
292 |
< |
sprintf( painCave.errMsg, |
293 |
< |
"Error returned from the fortran force calculation.\n" ); |
294 |
< |
painCave.isFatal = 1; |
295 |
< |
simError(); |
278 |
> |
|
279 |
> |
// new stuff starts here: |
280 |
> |
|
281 |
> |
fDecomp_->distributeData(); |
282 |
> |
|
283 |
> |
int cg1, cg2, atom1, atom2; |
284 |
> |
Vector3d d_grp, dag; |
285 |
> |
RealType rgrpsq, rgrp; |
286 |
> |
RealType vij; |
287 |
> |
Vector3d fij, fg; |
288 |
> |
pair<int, int> gtypes; |
289 |
> |
RealType rCutSq; |
290 |
> |
bool in_switching_region; |
291 |
> |
RealType sw, dswdr, swderiv; |
292 |
> |
vector<int> atomListColumn, atomListRow, atomListLocal; |
293 |
> |
InteractionData idat; |
294 |
> |
SelfData sdat; |
295 |
> |
RealType mf; |
296 |
> |
|
297 |
> |
int loopStart, loopEnd; |
298 |
> |
|
299 |
> |
loopEnd = PAIR_LOOP; |
300 |
> |
if (info_->requiresPrepair() ) { |
301 |
> |
loopStart = PREPAIR_LOOP; |
302 |
> |
} else { |
303 |
> |
loopStart = PAIR_LOOP; |
304 |
|
} |
305 |
< |
for (int i=0; i<LR_POT_TYPES;i++){ |
306 |
< |
lrPot += longRangePotential[i]; //Quick hack |
274 |
< |
} |
275 |
< |
|
276 |
< |
// grab the simulation box dipole moment if specified |
277 |
< |
if (info_->getCalcBoxDipole()){ |
278 |
< |
getAccumulatedBoxDipole(totalDipole.getArrayPointer()); |
305 |
> |
|
306 |
> |
for (int iLoop = loopStart; iLoop < loopEnd; iLoop++) { |
307 |
|
|
308 |
< |
curSnapshot->statData[Stats::BOX_DIPOLE_X] = totalDipole(0); |
309 |
< |
curSnapshot->statData[Stats::BOX_DIPOLE_Y] = totalDipole(1); |
310 |
< |
curSnapshot->statData[Stats::BOX_DIPOLE_Z] = totalDipole(2); |
308 |
> |
if (iLoop == loopStart) { |
309 |
> |
bool update_nlist = fDecomp_->checkNeighborList(); |
310 |
> |
if (update_nlist) |
311 |
> |
neighborList = fDecomp_->buildNeighborList(); |
312 |
> |
} |
313 |
> |
|
314 |
> |
for (vector<pair<int, int> >::iterator it = neighborList.begin(); |
315 |
> |
it != neighborList.end(); ++it) { |
316 |
> |
|
317 |
> |
cg1 = (*it).first; |
318 |
> |
cg2 = (*it).second; |
319 |
> |
|
320 |
> |
gtypes = fDecomp_->getGroupTypes(cg1, cg2); |
321 |
> |
d_grp = fDecomp_->getIntergroupVector(cg1, cg2); |
322 |
> |
curSnapshot->wrapVector(d_grp); |
323 |
> |
rgrpsq = d_grp.lengthSquare(); |
324 |
> |
rCutSq = groupCutoffMap[gtypes].first; |
325 |
> |
|
326 |
> |
if (rgrpsq < rCutSq) { |
327 |
> |
idat.rcut = groupCutoffMap[gtypes].second; |
328 |
> |
if (iLoop == PAIR_LOOP) { |
329 |
> |
vij *= 0.0; |
330 |
> |
fij = V3Zero; |
331 |
> |
} |
332 |
> |
|
333 |
> |
in_switching_region = swfun_->getSwitch(rgrpsq, idat.sw, dswdr, rgrp); |
334 |
> |
atomListRow = fDecomp_->getAtomsInGroupRow(cg1); |
335 |
> |
atomListColumn = fDecomp_->getAtomsInGroupColumn(cg2); |
336 |
> |
|
337 |
> |
for (vector<int>::iterator ia = atomListRow.begin(); |
338 |
> |
ia != atomListRow.end(); ++ia) { |
339 |
> |
atom1 = (*ia); |
340 |
> |
|
341 |
> |
for (vector<int>::iterator jb = atomListColumn.begin(); |
342 |
> |
jb != atomListColumn.end(); ++jb) { |
343 |
> |
atom2 = (*jb); |
344 |
> |
|
345 |
> |
if (!fDecomp_->skipAtomPair(atom1, atom2)) { |
346 |
> |
|
347 |
> |
idat = fDecomp_->fillInteractionData(atom1, atom2); |
348 |
> |
|
349 |
> |
if (atomListRow.size() == 1 && atomListColumn.size() == 1) { |
350 |
> |
idat.d = d_grp; |
351 |
> |
idat.r2 = rgrpsq; |
352 |
> |
} else { |
353 |
> |
idat.d = fDecomp_->getInteratomicVector(atom1, atom2); |
354 |
> |
curSnapshot->wrapVector(idat.d); |
355 |
> |
idat.r2 = idat.d.lengthSquare(); |
356 |
> |
} |
357 |
> |
|
358 |
> |
idat.rij = sqrt(idat.r2); |
359 |
> |
|
360 |
> |
if (iLoop == PREPAIR_LOOP) { |
361 |
> |
interactionMan_->doPrePair(idat); |
362 |
> |
} else { |
363 |
> |
interactionMan_->doPair(idat); |
364 |
> |
vij += idat.vpair; |
365 |
> |
fij += idat.f1; |
366 |
> |
tau -= outProduct(idat.d, idat.f1); |
367 |
> |
} |
368 |
> |
} |
369 |
> |
} |
370 |
> |
} |
371 |
> |
|
372 |
> |
if (iLoop == PAIR_LOOP) { |
373 |
> |
if (in_switching_region) { |
374 |
> |
swderiv = vij * dswdr / rgrp; |
375 |
> |
fg = swderiv * d_grp; |
376 |
> |
|
377 |
> |
fij += fg; |
378 |
> |
|
379 |
> |
if (atomListRow.size() == 1 && atomListColumn.size() == 1) { |
380 |
> |
tau -= outProduct(idat.d, fg); |
381 |
> |
} |
382 |
> |
|
383 |
> |
for (vector<int>::iterator ia = atomListRow.begin(); |
384 |
> |
ia != atomListRow.end(); ++ia) { |
385 |
> |
atom1 = (*ia); |
386 |
> |
mf = fDecomp_->getMfactRow(atom1); |
387 |
> |
// fg is the force on atom ia due to cutoff group's |
388 |
> |
// presence in switching region |
389 |
> |
fg = swderiv * d_grp * mf; |
390 |
> |
fDecomp_->addForceToAtomRow(atom1, fg); |
391 |
> |
|
392 |
> |
if (atomListRow.size() > 1) { |
393 |
> |
if (info_->usesAtomicVirial()) { |
394 |
> |
// find the distance between the atom |
395 |
> |
// and the center of the cutoff group: |
396 |
> |
dag = fDecomp_->getAtomToGroupVectorRow(atom1, cg1); |
397 |
> |
tau -= outProduct(dag, fg); |
398 |
> |
} |
399 |
> |
} |
400 |
> |
} |
401 |
> |
for (vector<int>::iterator jb = atomListColumn.begin(); |
402 |
> |
jb != atomListColumn.end(); ++jb) { |
403 |
> |
atom2 = (*jb); |
404 |
> |
mf = fDecomp_->getMfactColumn(atom2); |
405 |
> |
// fg is the force on atom jb due to cutoff group's |
406 |
> |
// presence in switching region |
407 |
> |
fg = -swderiv * d_grp * mf; |
408 |
> |
fDecomp_->addForceToAtomColumn(atom2, fg); |
409 |
> |
|
410 |
> |
if (atomListColumn.size() > 1) { |
411 |
> |
if (info_->usesAtomicVirial()) { |
412 |
> |
// find the distance between the atom |
413 |
> |
// and the center of the cutoff group: |
414 |
> |
dag = fDecomp_->getAtomToGroupVectorColumn(atom2, cg2); |
415 |
> |
tau -= outProduct(dag, fg); |
416 |
> |
} |
417 |
> |
} |
418 |
> |
} |
419 |
> |
} |
420 |
> |
//if (!SIM_uses_AtomicVirial) { |
421 |
> |
// tau -= outProduct(d_grp, fij); |
422 |
> |
//} |
423 |
> |
} |
424 |
> |
} |
425 |
> |
} |
426 |
> |
|
427 |
> |
if (iLoop == PREPAIR_LOOP) { |
428 |
> |
if (info_->requiresPrepair()) { |
429 |
> |
fDecomp_->collectIntermediateData(); |
430 |
> |
atomListLocal = fDecomp_->getAtomList(); |
431 |
> |
for (vector<int>::iterator ia = atomListLocal.begin(); |
432 |
> |
ia != atomListLocal.end(); ++ia) { |
433 |
> |
atom1 = (*ia); |
434 |
> |
sdat = fDecomp_->fillSelfData(atom1); |
435 |
> |
interactionMan_->doPreForce(sdat); |
436 |
> |
} |
437 |
> |
fDecomp_->distributeIntermediateData(); |
438 |
> |
} |
439 |
> |
} |
440 |
> |
|
441 |
|
} |
442 |
|
|
443 |
+ |
fDecomp_->collectData(); |
444 |
+ |
|
445 |
+ |
if (info_->requiresSkipCorrection() || info_->requiresSelfCorrection()) { |
446 |
+ |
atomListLocal = fDecomp_->getAtomList(); |
447 |
+ |
for (vector<int>::iterator ia = atomListLocal.begin(); |
448 |
+ |
ia != atomListLocal.end(); ++ia) { |
449 |
+ |
atom1 = (*ia); |
450 |
+ |
|
451 |
+ |
if (info_->requiresSkipCorrection()) { |
452 |
+ |
vector<int> skipList = fDecomp_->getSkipsForAtom(atom1); |
453 |
+ |
for (vector<int>::iterator jb = skipList.begin(); |
454 |
+ |
jb != skipList.end(); ++jb) { |
455 |
+ |
atom2 = (*jb); |
456 |
+ |
idat = fDecomp_->fillSkipData(atom1, atom2); |
457 |
+ |
interactionMan_->doSkipCorrection(idat); |
458 |
+ |
} |
459 |
+ |
} |
460 |
+ |
|
461 |
+ |
if (info_->requiresSelfCorrection()) { |
462 |
+ |
sdat = fDecomp_->fillSelfData(atom1); |
463 |
+ |
interactionMan_->doSelfCorrection(sdat); |
464 |
+ |
} |
465 |
+ |
} |
466 |
+ |
} |
467 |
+ |
|
468 |
+ |
for (int i=0; i<LR_POT_TYPES;i++){ |
469 |
+ |
lrPot += longRangePotential[i]; //Quick hack |
470 |
+ |
} |
471 |
+ |
|
472 |
|
//store the tau and long range potential |
473 |
|
curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot; |
474 |
|
curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VDW_POT]; |
476 |
|
} |
477 |
|
|
478 |
|
|
479 |
< |
void ForceManager::postCalculation(bool needStress) { |
479 |
> |
void ForceManager::postCalculation() { |
480 |
|
SimInfo::MoleculeIterator mi; |
481 |
|
Molecule* mol; |
482 |
|
Molecule::RigidBodyIterator rbIter; |
489 |
|
mol = info_->nextMolecule(mi)) { |
490 |
|
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
491 |
|
rb = mol->nextRigidBody(rbIter)) { |
492 |
< |
if (needStress) { |
493 |
< |
Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial(); |
307 |
< |
tau += rbTau; |
308 |
< |
} else{ |
309 |
< |
rb->calcForcesAndTorques(); |
310 |
< |
} |
492 |
> |
Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial(); |
493 |
> |
tau += rbTau; |
494 |
|
} |
495 |
|
} |
496 |
< |
|
314 |
< |
if (needStress) { |
496 |
> |
|
497 |
|
#ifdef IS_MPI |
498 |
< |
Mat3x3d tmpTau(tau); |
499 |
< |
MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(), |
500 |
< |
9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
498 |
> |
Mat3x3d tmpTau(tau); |
499 |
> |
MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(), |
500 |
> |
9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
501 |
|
#endif |
502 |
< |
curSnapshot->statData.setTau(tau); |
321 |
< |
} |
502 |
> |
curSnapshot->statData.setTau(tau); |
503 |
|
} |
504 |
|
|
505 |
< |
} //end namespace oopse |
505 |
> |
} //end namespace OpenMD |