| 6 |  | * redistribute this software in source and binary code form, provided | 
| 7 |  | * that the following conditions are met: | 
| 8 |  | * | 
| 9 | < | * 1. Acknowledgement of the program authors must be made in any | 
| 10 | < | *    publication of scientific results based in part on use of the | 
| 11 | < | *    program.  An acceptable form of acknowledgement is citation of | 
| 12 | < | *    the article in which the program was described (Matthew | 
| 13 | < | *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 | < | *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 | < | *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 | < | *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 | < | * | 
| 18 | < | * 2. Redistributions of source code must retain the above copyright | 
| 9 | > | * 1. Redistributions of source code must retain the above copyright | 
| 10 |  | *    notice, this list of conditions and the following disclaimer. | 
| 11 |  | * | 
| 12 | < | * 3. Redistributions in binary form must reproduce the above copyright | 
| 12 | > | * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 |  | *    notice, this list of conditions and the following disclaimer in the | 
| 14 |  | *    documentation and/or other materials provided with the | 
| 15 |  | *    distribution. | 
| 28 |  | * arising out of the use of or inability to use software, even if the | 
| 29 |  | * University of Notre Dame has been advised of the possibility of | 
| 30 |  | * such damages. | 
| 31 | + | * | 
| 32 | + | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | + | * research, please cite the appropriate papers when you publish your | 
| 34 | + | * work.  Good starting points are: | 
| 35 | + | * | 
| 36 | + | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 | + | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | + | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | 
| 39 | + | * [4]  Vardeman & Gezelter, in progress (2009). | 
| 40 |  | */ | 
| 41 |  |  | 
| 42 |  | /** | 
| 50 |  | #include "brains/ForceManager.hpp" | 
| 51 |  | #include "primitives/Molecule.hpp" | 
| 52 |  | #include "UseTheForce/doForces_interface.h" | 
| 53 | < | #define __OOPSE_C | 
| 53 | > | #define __OPENMD_C | 
| 54 |  | #include "UseTheForce/DarkSide/fInteractionMap.h" | 
| 55 |  | #include "utils/simError.h" | 
| 56 |  | #include "primitives/Bond.hpp" | 
| 57 |  | #include "primitives/Bend.hpp" | 
| 58 |  | #include "primitives/Torsion.hpp" | 
| 59 |  | #include "primitives/Inversion.hpp" | 
| 60 | – | namespace oopse { | 
| 60 |  |  | 
| 61 | < | void ForceManager::calcForces(bool needPotential, bool needStress) { | 
| 61 | > | namespace OpenMD { | 
| 62 | > |  | 
| 63 | > | ForceManager::ForceManager(SimInfo * info) : info_(info), | 
| 64 | > | NBforcesInitialized_(false) { | 
| 65 | > | } | 
| 66 | > |  | 
| 67 | > | void ForceManager::calcForces() { | 
| 68 |  |  | 
| 69 | + |  | 
| 70 |  | if (!info_->isFortranInitialized()) { | 
| 71 |  | info_->update(); | 
| 72 | + | nbiMan_->setSimInfo(info_); | 
| 73 | + | nbiMan_->initialize(); | 
| 74 | + | info_->setupFortran(); | 
| 75 |  | } | 
| 76 |  |  | 
| 77 |  | preCalculation(); | 
| 78 |  |  | 
| 79 |  | calcShortRangeInteraction(); | 
| 80 |  |  | 
| 81 | < | calcLongRangeInteraction(needPotential, needStress); | 
| 81 | > | calcLongRangeInteraction(); | 
| 82 |  |  | 
| 83 | < | postCalculation(needStress); | 
| 83 | > | postCalculation(); | 
| 84 |  |  | 
| 85 |  | } | 
| 86 |  |  | 
| 91 |  | Atom* atom; | 
| 92 |  | Molecule::RigidBodyIterator rbIter; | 
| 93 |  | RigidBody* rb; | 
| 94 | + | Molecule::CutoffGroupIterator ci; | 
| 95 | + | CutoffGroup* cg; | 
| 96 |  |  | 
| 97 |  | // forces are zeroed here, before any are accumulated. | 
| 98 |  | // NOTE: do not rezero the forces in Fortran. | 
| 108 |  | rb = mol->nextRigidBody(rbIter)) { | 
| 109 |  | rb->zeroForcesAndTorques(); | 
| 110 |  | } | 
| 111 | < |  | 
| 111 | > |  | 
| 112 | > | if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){ | 
| 113 | > | std::cerr << "should not see me \n"; | 
| 114 | > | for(cg = mol->beginCutoffGroup(ci); cg != NULL; | 
| 115 | > | cg = mol->nextCutoffGroup(ci)) { | 
| 116 | > | //calculate the center of mass of cutoff group | 
| 117 | > | cg->updateCOM(); | 
| 118 | > | } | 
| 119 | > | } | 
| 120 |  | } | 
| 121 | < |  | 
| 121 | > |  | 
| 122 |  | // Zero out the stress tensor | 
| 123 |  | tau *= 0.0; | 
| 124 |  |  | 
| 164 |  | RealType angle; | 
| 165 |  | bend->calcForce(angle); | 
| 166 |  | RealType currBendPot = bend->getPotential(); | 
| 167 | + |  | 
| 168 |  | bendPotential += bend->getPotential(); | 
| 169 |  | std::map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend); | 
| 170 |  | if (i == bendDataSets.end()) { | 
| 242 |  |  | 
| 243 |  | } | 
| 244 |  |  | 
| 245 | < | void ForceManager::calcLongRangeInteraction(bool needPotential, | 
| 226 | < | bool needStress) { | 
| 245 | > | void ForceManager::calcLongRangeInteraction() { | 
| 246 |  | Snapshot* curSnapshot; | 
| 247 |  | DataStorage* config; | 
| 248 | + | DataStorage* cgConfig; | 
| 249 |  | RealType* frc; | 
| 250 |  | RealType* pos; | 
| 251 |  | RealType* trq; | 
| 259 |  |  | 
| 260 |  | //get array pointers | 
| 261 |  | config = &(curSnapshot->atomData); | 
| 262 | + | cgConfig = &(curSnapshot->cgData); | 
| 263 |  | frc = config->getArrayPointer(DataStorage::dslForce); | 
| 264 |  | pos = config->getArrayPointer(DataStorage::dslPosition); | 
| 265 |  | trq = config->getArrayPointer(DataStorage::dslTorque); | 
| 267 |  | electroFrame = config->getArrayPointer(DataStorage::dslElectroFrame); | 
| 268 |  | particlePot = config->getArrayPointer(DataStorage::dslParticlePot); | 
| 269 |  |  | 
| 270 | < | //calculate the center of mass of cutoff group | 
| 271 | < | SimInfo::MoleculeIterator mi; | 
| 272 | < | Molecule* mol; | 
| 252 | < | Molecule::CutoffGroupIterator ci; | 
| 253 | < | CutoffGroup* cg; | 
| 254 | < | Vector3d com; | 
| 255 | < | std::vector<Vector3d> rcGroup; | 
| 256 | < |  | 
| 257 | < | if(info_->getNCutoffGroups() > 0){ | 
| 258 | < |  | 
| 259 | < | for (mol = info_->beginMolecule(mi); mol != NULL; | 
| 260 | < | mol = info_->nextMolecule(mi)) { | 
| 261 | < | for(cg = mol->beginCutoffGroup(ci); cg != NULL; | 
| 262 | < | cg = mol->nextCutoffGroup(ci)) { | 
| 263 | < | cg->getCOM(com); | 
| 264 | < | rcGroup.push_back(com); | 
| 265 | < | } | 
| 266 | < | }// end for (mol) | 
| 267 | < |  | 
| 268 | < | rc = rcGroup[0].getArrayPointer(); | 
| 270 | > | if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){ | 
| 271 | > | std::cerr << "should not see me \n"; | 
| 272 | > | rc = cgConfig->getArrayPointer(DataStorage::dslPosition); | 
| 273 |  | } else { | 
| 274 |  | // center of mass of the group is the same as position of the atom | 
| 275 |  | // if cutoff group does not exist | 
| 279 |  | //initialize data before passing to fortran | 
| 280 |  | RealType longRangePotential[LR_POT_TYPES]; | 
| 281 |  | RealType lrPot = 0.0; | 
| 278 | – | Vector3d totalDipole; | 
| 279 | – | short int passedCalcPot = needPotential; | 
| 280 | – | short int passedCalcStress = needStress; | 
| 282 |  | int isError = 0; | 
| 283 |  |  | 
| 284 |  | for (int i=0; i<LR_POT_TYPES;i++){ | 
| 294 |  | tau.getArrayPointer(), | 
| 295 |  | longRangePotential, | 
| 296 |  | particlePot, | 
| 296 | – | &passedCalcPot, | 
| 297 | – | &passedCalcStress, | 
| 297 |  | &isError ); | 
| 298 |  |  | 
| 299 |  | if( isError ){ | 
| 305 |  | for (int i=0; i<LR_POT_TYPES;i++){ | 
| 306 |  | lrPot += longRangePotential[i]; //Quick hack | 
| 307 |  | } | 
| 308 | < |  | 
| 310 | < | // grab the simulation box dipole moment if specified | 
| 311 | < | if (info_->getCalcBoxDipole()){ | 
| 312 | < | getAccumulatedBoxDipole(totalDipole.getArrayPointer()); | 
| 313 | < |  | 
| 314 | < | curSnapshot->statData[Stats::BOX_DIPOLE_X] = totalDipole(0); | 
| 315 | < | curSnapshot->statData[Stats::BOX_DIPOLE_Y] = totalDipole(1); | 
| 316 | < | curSnapshot->statData[Stats::BOX_DIPOLE_Z] = totalDipole(2); | 
| 317 | < | } | 
| 318 | < |  | 
| 308 | > |  | 
| 309 |  | //store the tau and long range potential | 
| 310 |  | curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot; | 
| 311 |  | curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VDW_POT]; | 
| 313 |  | } | 
| 314 |  |  | 
| 315 |  |  | 
| 316 | < | void ForceManager::postCalculation(bool needStress) { | 
| 316 | > | void ForceManager::postCalculation() { | 
| 317 |  | SimInfo::MoleculeIterator mi; | 
| 318 |  | Molecule* mol; | 
| 319 |  | Molecule::RigidBodyIterator rbIter; | 
| 326 |  | mol = info_->nextMolecule(mi)) { | 
| 327 |  | for (rb = mol->beginRigidBody(rbIter); rb != NULL; | 
| 328 |  | rb = mol->nextRigidBody(rbIter)) { | 
| 329 | < | if (needStress) { | 
| 330 | < | Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial(); | 
| 341 | < | tau += rbTau; | 
| 342 | < | } else{ | 
| 343 | < | rb->calcForcesAndTorques(); | 
| 344 | < | } | 
| 329 | > | Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial(); | 
| 330 | > | tau += rbTau; | 
| 331 |  | } | 
| 332 |  | } | 
| 333 | < |  | 
| 348 | < | if (needStress) { | 
| 333 | > |  | 
| 334 |  | #ifdef IS_MPI | 
| 335 | < | Mat3x3d tmpTau(tau); | 
| 336 | < | MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(), | 
| 337 | < | 9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); | 
| 335 | > | Mat3x3d tmpTau(tau); | 
| 336 | > | MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(), | 
| 337 | > | 9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); | 
| 338 |  | #endif | 
| 339 | < | curSnapshot->statData.setTau(tau); | 
| 355 | < | } | 
| 339 | > | curSnapshot->statData.setTau(tau); | 
| 340 |  | } | 
| 341 |  |  | 
| 342 | < | } //end namespace oopse | 
| 342 | > | } //end namespace OpenMD |