ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/ForceManager.cpp
(Generate patch)

Comparing:
trunk/src/brains/ForceManager.cpp (file contents), Revision 770 by tim, Fri Dec 2 15:38:03 2005 UTC vs.
branches/development/src/brains/ForceManager.cpp (file contents), Revision 1469 by gezelter, Mon Jul 19 14:07:59 2010 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42   /**
# Line 50 | Line 50
50   #include "brains/ForceManager.hpp"
51   #include "primitives/Molecule.hpp"
52   #include "UseTheForce/doForces_interface.h"
53 < #define __C
53 > #define __OPENMD_C
54   #include "UseTheForce/DarkSide/fInteractionMap.h"
55   #include "utils/simError.h"
56 + #include "primitives/Bond.hpp"
57   #include "primitives/Bend.hpp"
58 < #include "primitives/Bend.hpp"
59 < namespace oopse {
58 > #include "primitives/Torsion.hpp"
59 > #include "primitives/Inversion.hpp"
60  
61 < /*
62 <  struct BendOrderStruct {
63 <    Bend* bend;
64 <    BendDataSet dataSet;
65 <  };
66 <  struct TorsionOrderStruct {
66 <    Torsion* torsion;
67 <    TorsionDataSet dataSet;
68 <  };
69 <
70 <  bool  BendSortFunctor(const BendOrderStruct& b1, const BendOrderStruct& b2) {
71 <    return b1.dataSet.deltaV < b2.dataSet.deltaV;
61 > namespace OpenMD {
62 >  
63 >  ForceManager::ForceManager(SimInfo * info) : info_(info),
64 >                                               NBforcesInitialized_(false) {
65 >    std::cerr << __PRETTY_FUNCTION__ << "\n";
66 >    lj_ = new LJ(info_->getForceField());
67    }
68 <
69 <  bool  TorsionSortFunctor(const TorsionOrderStruct& t1, const TorsionOrderStruct& t2) {
70 <    return t1.dataSet.deltaV < t2.dataSet.deltaV;
71 <  }
77 <  */
78 <  void ForceManager::calcForces(bool needPotential, bool needStress) {
79 <
68 >
69 >  void ForceManager::calcForces() {
70 >    
71 >    std::cerr << __PRETTY_FUNCTION__ << "\n";
72      if (!info_->isFortranInitialized()) {
73        info_->update();
74      }
75 +    
76 +    if (!NBforcesInitialized_) {
77 +      lj_->initialize();    
78 +    }
79  
80      preCalculation();
81      
82      calcShortRangeInteraction();
83  
84 <    calcLongRangeInteraction(needPotential, needStress);
84 >    calcLongRangeInteraction();
85  
86      postCalculation();
91
92 /*
93    std::vector<BendOrderStruct> bendOrderStruct;
94    for(std::map<Bend*, BendDataSet>::iterator i = bendDataSets.begin(); i != bendDataSets.end(); ++i) {
95        BendOrderStruct tmp;
96        tmp.bend= const_cast<Bend*>(i->first);
97        tmp.dataSet = i->second;
98        bendOrderStruct.push_back(tmp);
99    }
100
101    std::vector<TorsionOrderStruct> torsionOrderStruct;
102    for(std::map<Torsion*, TorsionDataSet>::iterator j = torsionDataSets.begin(); j != torsionDataSets.end(); ++j) {
103        TorsionOrderStruct tmp;
104        tmp.torsion = const_cast<Torsion*>(j->first);
105        tmp.dataSet = j->second;
106        torsionOrderStruct.push_back(tmp);
107    }
87      
109    std::sort(bendOrderStruct.begin(), bendOrderStruct.end(), std::ptr_fun(BendSortFunctor));
110    std::sort(torsionOrderStruct.begin(), torsionOrderStruct.end(), std::ptr_fun(TorsionSortFunctor));
111    std::cout << "bend" << std::endl;
112    for (std::vector<BendOrderStruct>::iterator k = bendOrderStruct.begin(); k != bendOrderStruct.end(); ++k) {
113        Bend* bend = k->bend;
114        std::cout << "atom1=" <<bend->getAtomA()->getGlobalIndex() << ",atom2 = "<< bend->getAtomB()->getGlobalIndex() << ",atom3="<<bend->getAtomC()->getGlobalIndex() << " ";
115        std::cout << "deltaV=" << k->dataSet.deltaV << ",p_theta=" << k->dataSet.prev.angle <<",p_pot=" << k->dataSet.prev.potential<< ",c_theta=" << k->dataSet.curr.angle << ", c_pot = " << k->dataSet.curr.potential <<std::endl;
116    }
117    std::cout << "torsio" << std::endl;
118    for (std::vector<TorsionOrderStruct>::iterator l = torsionOrderStruct.begin(); l != torsionOrderStruct.end(); ++l) {
119        Torsion* torsion = l->torsion;
120        std::cout << "atom1=" <<torsion->getAtomA()->getGlobalIndex() << ",atom2 = "<< torsion->getAtomB()->getGlobalIndex() << ",atom3="<<torsion->getAtomC()->getGlobalIndex() << ",atom4="<<torsion->getAtomD()->getGlobalIndex()<< " ";
121        std::cout << "deltaV=" << l->dataSet.deltaV << ",p_theta=" << l->dataSet.prev.angle <<",p_pot=" << l->dataSet.prev.potential<< ",c_theta=" << l->dataSet.curr.angle << ", c_pot = " << l->dataSet.curr.potential <<std::endl;
122    }
123   */
88    }
89 <
89 >  
90    void ForceManager::preCalculation() {
91      SimInfo::MoleculeIterator mi;
92      Molecule* mol;
# Line 133 | Line 97 | namespace oopse {
97      
98      // forces are zeroed here, before any are accumulated.
99      // NOTE: do not rezero the forces in Fortran.
100 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
100 >    
101 >    for (mol = info_->beginMolecule(mi); mol != NULL;
102 >         mol = info_->nextMolecule(mi)) {
103        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
104          atom->zeroForcesAndTorques();
105        }
106 <        
106 >          
107        //change the positions of atoms which belong to the rigidbodies
108 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
108 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
109 >           rb = mol->nextRigidBody(rbIter)) {
110          rb->zeroForcesAndTorques();
111        }        
112 +          
113      }
114      
115 +    // Zero out the stress tensor
116 +    tau *= 0.0;
117 +    
118    }
119 <
119 >  
120    void ForceManager::calcShortRangeInteraction() {
121      Molecule* mol;
122      RigidBody* rb;
123      Bond* bond;
124      Bend* bend;
125      Torsion* torsion;
126 +    Inversion* inversion;
127      SimInfo::MoleculeIterator mi;
128      Molecule::RigidBodyIterator rbIter;
129      Molecule::BondIterator bondIter;;
130      Molecule::BendIterator  bendIter;
131      Molecule::TorsionIterator  torsionIter;
132 <    double bondPotential = 0.0;
133 <    double bendPotential = 0.0;
134 <    double torsionPotential = 0.0;
132 >    Molecule::InversionIterator  inversionIter;
133 >    RealType bondPotential = 0.0;
134 >    RealType bendPotential = 0.0;
135 >    RealType torsionPotential = 0.0;
136 >    RealType inversionPotential = 0.0;
137  
138      //calculate short range interactions    
139 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
139 >    for (mol = info_->beginMolecule(mi); mol != NULL;
140 >         mol = info_->nextMolecule(mi)) {
141  
142        //change the positions of atoms which belong to the rigidbodies
143 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
144 <          rb->updateAtoms();
143 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
144 >           rb = mol->nextRigidBody(rbIter)) {
145 >        rb->updateAtoms();
146        }
147  
148 <      for (bond = mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
148 >      for (bond = mol->beginBond(bondIter); bond != NULL;
149 >           bond = mol->nextBond(bondIter)) {
150          bond->calcForce();
151          bondPotential += bond->getPotential();
152        }
153  
154 <
155 <      for (bend = mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
156 <
157 <          double angle;
158 <            bend->calcForce(angle);
159 <          double currBendPot = bend->getPotential();          
160 <            bendPotential += bend->getPotential();
161 <          std::map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend);
162 <          if (i == bendDataSets.end()) {
163 <            BendDataSet dataSet;
164 <            dataSet.prev.angle = dataSet.curr.angle = angle;
165 <            dataSet.prev.potential = dataSet.curr.potential = currBendPot;
166 <            dataSet.deltaV = 0.0;
167 <            bendDataSets.insert(std::map<Bend*, BendDataSet>::value_type(bend, dataSet));
168 <          }else {
169 <            i->second.prev.angle = i->second.curr.angle;
170 <            i->second.prev.potential = i->second.curr.potential;
171 <            i->second.curr.angle = angle;
172 <            i->second.curr.potential = currBendPot;
173 <            i->second.deltaV =  fabs(i->second.curr.potential -  i->second.prev.potential);
174 <          }
175 <      }
176 <
200 <      for (torsion = mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
201 <        double angle;
202 <          torsion->calcForce(angle);
203 <        double currTorsionPot = torsion->getPotential();
204 <          torsionPotential += torsion->getPotential();
205 <          std::map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion);
206 <          if (i == torsionDataSets.end()) {
207 <            TorsionDataSet dataSet;
208 <            dataSet.prev.angle = dataSet.curr.angle = angle;
209 <            dataSet.prev.potential = dataSet.curr.potential = currTorsionPot;
210 <            dataSet.deltaV = 0.0;
211 <            torsionDataSets.insert(std::map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet));
212 <          }else {
213 <            i->second.prev.angle = i->second.curr.angle;
214 <            i->second.prev.potential = i->second.curr.potential;
215 <            i->second.curr.angle = angle;
216 <            i->second.curr.potential = currTorsionPot;
217 <            i->second.deltaV =  fabs(i->second.curr.potential -  i->second.prev.potential);
218 <          }      
154 >      for (bend = mol->beginBend(bendIter); bend != NULL;
155 >           bend = mol->nextBend(bendIter)) {
156 >        
157 >        RealType angle;
158 >        bend->calcForce(angle);
159 >        RealType currBendPot = bend->getPotential();          
160 >        
161 >        bendPotential += bend->getPotential();
162 >        std::map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend);
163 >        if (i == bendDataSets.end()) {
164 >          BendDataSet dataSet;
165 >          dataSet.prev.angle = dataSet.curr.angle = angle;
166 >          dataSet.prev.potential = dataSet.curr.potential = currBendPot;
167 >          dataSet.deltaV = 0.0;
168 >          bendDataSets.insert(std::map<Bend*, BendDataSet>::value_type(bend, dataSet));
169 >        }else {
170 >          i->second.prev.angle = i->second.curr.angle;
171 >          i->second.prev.potential = i->second.curr.potential;
172 >          i->second.curr.angle = angle;
173 >          i->second.curr.potential = currBendPot;
174 >          i->second.deltaV =  fabs(i->second.curr.potential -  
175 >                                   i->second.prev.potential);
176 >        }
177        }
178 +      
179 +      for (torsion = mol->beginTorsion(torsionIter); torsion != NULL;
180 +           torsion = mol->nextTorsion(torsionIter)) {
181 +        RealType angle;
182 +        torsion->calcForce(angle);
183 +        RealType currTorsionPot = torsion->getPotential();
184 +        torsionPotential += torsion->getPotential();
185 +        std::map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion);
186 +        if (i == torsionDataSets.end()) {
187 +          TorsionDataSet dataSet;
188 +          dataSet.prev.angle = dataSet.curr.angle = angle;
189 +          dataSet.prev.potential = dataSet.curr.potential = currTorsionPot;
190 +          dataSet.deltaV = 0.0;
191 +          torsionDataSets.insert(std::map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet));
192 +        }else {
193 +          i->second.prev.angle = i->second.curr.angle;
194 +          i->second.prev.potential = i->second.curr.potential;
195 +          i->second.curr.angle = angle;
196 +          i->second.curr.potential = currTorsionPot;
197 +          i->second.deltaV =  fabs(i->second.curr.potential -  
198 +                                   i->second.prev.potential);
199 +        }      
200 +      }      
201  
202 +      for (inversion = mol->beginInversion(inversionIter);
203 +           inversion != NULL;
204 +           inversion = mol->nextInversion(inversionIter)) {
205 +        RealType angle;
206 +        inversion->calcForce(angle);
207 +        RealType currInversionPot = inversion->getPotential();
208 +        inversionPotential += inversion->getPotential();
209 +        std::map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion);
210 +        if (i == inversionDataSets.end()) {
211 +          InversionDataSet dataSet;
212 +          dataSet.prev.angle = dataSet.curr.angle = angle;
213 +          dataSet.prev.potential = dataSet.curr.potential = currInversionPot;
214 +          dataSet.deltaV = 0.0;
215 +          inversionDataSets.insert(std::map<Inversion*, InversionDataSet>::value_type(inversion, dataSet));
216 +        }else {
217 +          i->second.prev.angle = i->second.curr.angle;
218 +          i->second.prev.potential = i->second.curr.potential;
219 +          i->second.curr.angle = angle;
220 +          i->second.curr.potential = currInversionPot;
221 +          i->second.deltaV =  fabs(i->second.curr.potential -  
222 +                                   i->second.prev.potential);
223 +        }      
224 +      }      
225      }
226      
227 <    double  shortRangePotential = bondPotential + bendPotential + torsionPotential;    
227 >    RealType  shortRangePotential = bondPotential + bendPotential +
228 >      torsionPotential +  inversionPotential;    
229      Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
230      curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential;
231      curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential;
232      curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential;
233      curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential;
234 +    curSnapshot->statData[Stats::INVERSION_POTENTIAL] = inversionPotential;
235      
236    }
237 <
238 <  void ForceManager::calcLongRangeInteraction(bool needPotential, bool needStress) {
237 >  
238 >  void ForceManager::calcLongRangeInteraction() {
239      Snapshot* curSnapshot;
240      DataStorage* config;
241 <    double* frc;
242 <    double* pos;
243 <    double* trq;
244 <    double* A;
245 <    double* electroFrame;
246 <    double* rc;
241 >    RealType* frc;
242 >    RealType* pos;
243 >    RealType* trq;
244 >    RealType* A;
245 >    RealType* electroFrame;
246 >    RealType* rc;
247 >    RealType* particlePot;
248      
249      //get current snapshot from SimInfo
250      curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
251 <
251 >    
252      //get array pointers
253      config = &(curSnapshot->atomData);
254      frc = config->getArrayPointer(DataStorage::dslForce);
# Line 249 | Line 256 | namespace oopse {
256      trq = config->getArrayPointer(DataStorage::dslTorque);
257      A   = config->getArrayPointer(DataStorage::dslAmat);
258      electroFrame = config->getArrayPointer(DataStorage::dslElectroFrame);
259 +    particlePot = config->getArrayPointer(DataStorage::dslParticlePot);
260  
261      //calculate the center of mass of cutoff group
262      SimInfo::MoleculeIterator mi;
# Line 257 | Line 265 | namespace oopse {
265      CutoffGroup* cg;
266      Vector3d com;
267      std::vector<Vector3d> rcGroup;
268 <
268 >    
269      if(info_->getNCutoffGroups() > 0){
270 <
271 <      for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
272 <        for(cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
270 >      
271 >      for (mol = info_->beginMolecule(mi); mol != NULL;
272 >           mol = info_->nextMolecule(mi)) {
273 >        for(cg = mol->beginCutoffGroup(ci); cg != NULL;
274 >            cg = mol->nextCutoffGroup(ci)) {
275            cg->getCOM(com);
276            rcGroup.push_back(com);
277          }
# Line 269 | Line 279 | namespace oopse {
279        
280        rc = rcGroup[0].getArrayPointer();
281      } else {
282 <      // center of mass of the group is the same as position of the atom  if cutoff group does not exist
282 >      // center of mass of the group is the same as position of the atom  
283 >      // if cutoff group does not exist
284        rc = pos;
285      }
275  
276    //initialize data before passing to fortran
277    double longRangePotential[LR_POT_TYPES];
278    double lrPot = 0.0;
286      
287 <    Mat3x3d tau;
288 <    short int passedCalcPot = needPotential;
289 <    short int passedCalcStress = needStress;
287 >    //initialize data before passing to fortran
288 >    RealType longRangePotential[LR_POT_TYPES];
289 >    RealType lrPot = 0.0;
290 >    Vector3d totalDipole;
291      int isError = 0;
292  
293      for (int i=0; i<LR_POT_TYPES;i++){
294        longRangePotential[i]=0.0; //Initialize array
295      }
296 <
297 <    doForceLoop( pos,
298 <                 rc,
299 <                 A,
300 <                 electroFrame,
301 <                 frc,
302 <                 trq,
303 <                 tau.getArrayPointer(),
304 <                 longRangePotential,
305 <                 &passedCalcPot,
306 <                 &passedCalcStress,
307 <                 &isError );
300 <
296 >    
297 >    doForceLoop(pos,
298 >                rc,
299 >                A,
300 >                electroFrame,
301 >                frc,
302 >                trq,
303 >                tau.getArrayPointer(),
304 >                longRangePotential,
305 >                particlePot,
306 >                &isError );
307 >    
308      if( isError ){
309        sprintf( painCave.errMsg,
310                 "Error returned from the fortran force calculation.\n" );
# Line 307 | Line 314 | namespace oopse {
314      for (int i=0; i<LR_POT_TYPES;i++){
315        lrPot += longRangePotential[i]; //Quick hack
316      }
317 <
317 >    
318 >    // grab the simulation box dipole moment if specified
319 >    if (info_->getCalcBoxDipole()){
320 >      getAccumulatedBoxDipole(totalDipole.getArrayPointer());
321 >      
322 >      curSnapshot->statData[Stats::BOX_DIPOLE_X] = totalDipole(0);
323 >      curSnapshot->statData[Stats::BOX_DIPOLE_Y] = totalDipole(1);
324 >      curSnapshot->statData[Stats::BOX_DIPOLE_Z] = totalDipole(2);
325 >    }
326 >    
327      //store the tau and long range potential    
328      curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot;
329      curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VDW_POT];
330      curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_POT];
315
316    curSnapshot->statData.setTau(tau);
331    }
332  
333 <
333 >  
334    void ForceManager::postCalculation() {
335      SimInfo::MoleculeIterator mi;
336      Molecule* mol;
337      Molecule::RigidBodyIterator rbIter;
338      RigidBody* rb;
339 +    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
340      
341      // collect the atomic forces onto rigid bodies
342 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
343 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
344 <        rb->calcForcesAndTorques();
342 >    
343 >    for (mol = info_->beginMolecule(mi); mol != NULL;
344 >         mol = info_->nextMolecule(mi)) {
345 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
346 >           rb = mol->nextRigidBody(rbIter)) {
347 >        Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial();
348 >        tau += rbTau;
349        }
350      }
351 <
351 >    
352 > #ifdef IS_MPI
353 >    Mat3x3d tmpTau(tau);
354 >    MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(),
355 >                  9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
356 > #endif
357 >    curSnapshot->statData.setTau(tau);
358    }
359  
360 < } //end namespace oopse
360 > } //end namespace OpenMD

Comparing:
trunk/src/brains/ForceManager.cpp (property svn:keywords), Revision 770 by tim, Fri Dec 2 15:38:03 2005 UTC vs.
branches/development/src/brains/ForceManager.cpp (property svn:keywords), Revision 1469 by gezelter, Mon Jul 19 14:07:59 2010 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines