ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/ForceManager.cpp
(Generate patch)

Comparing branches/development/src/brains/ForceManager.cpp (file contents):
Revision 1483 by gezelter, Tue Jul 27 21:17:31 2010 UTC vs.
Revision 1618 by gezelter, Mon Sep 12 17:09:26 2011 UTC

# Line 47 | Line 47
47   * @version 1.0
48   */
49  
50 +
51   #include "brains/ForceManager.hpp"
52   #include "primitives/Molecule.hpp"
52 #include "UseTheForce/doForces_interface.h"
53   #define __OPENMD_C
54 #include "UseTheForce/DarkSide/fInteractionMap.h"
54   #include "utils/simError.h"
55   #include "primitives/Bond.hpp"
56   #include "primitives/Bend.hpp"
57   #include "primitives/Torsion.hpp"
58   #include "primitives/Inversion.hpp"
59 + #include "nonbonded/NonBondedInteraction.hpp"
60 + #include "parallel/ForceMatrixDecomposition.hpp"
61  
62 + #include <cstdio>
63 + #include <iostream>
64 + #include <iomanip>
65 +
66 + using namespace std;
67   namespace OpenMD {
68    
69 <  ForceManager::ForceManager(SimInfo * info) : info_(info),
70 <                                               NBforcesInitialized_(false) {
71 <    lj_ = LJ::Instance();
72 <    lj_->setForceField(info_->getForceField());
69 >  ForceManager::ForceManager(SimInfo * info) : info_(info) {
70 >    forceField_ = info_->getForceField();
71 >    interactionMan_ = new InteractionManager();
72 >    fDecomp_ = new ForceMatrixDecomposition(info_, interactionMan_);
73 >  }
74  
75 <    gb_ = GB::Instance();
76 <    gb_->setForceField(info_->getForceField());
75 >  /**
76 >   * setupCutoffs
77 >   *
78 >   * Sets the values of cutoffRadius, switchingRadius, cutoffMethod,
79 >   * and cutoffPolicy
80 >   *
81 >   * cutoffRadius : realType
82 >   *  If the cutoffRadius was explicitly set, use that value.
83 >   *  If the cutoffRadius was not explicitly set:
84 >   *      Are there electrostatic atoms?  Use 12.0 Angstroms.
85 >   *      No electrostatic atoms?  Poll the atom types present in the
86 >   *      simulation for suggested cutoff values (e.g. 2.5 * sigma).
87 >   *      Use the maximum suggested value that was found.
88 >   *
89 >   * cutoffMethod : (one of HARD, SWITCHED, SHIFTED_FORCE,
90 >   *                        or SHIFTED_POTENTIAL)
91 >   *      If cutoffMethod was explicitly set, use that choice.
92 >   *      If cutoffMethod was not explicitly set, use SHIFTED_FORCE
93 >   *
94 >   * cutoffPolicy : (one of MIX, MAX, TRADITIONAL)
95 >   *      If cutoffPolicy was explicitly set, use that choice.
96 >   *      If cutoffPolicy was not explicitly set, use TRADITIONAL
97 >   *
98 >   * switchingRadius : realType
99 >   *  If the cutoffMethod was set to SWITCHED:
100 >   *      If the switchingRadius was explicitly set, use that value
101 >   *          (but do a sanity check first).
102 >   *      If the switchingRadius was not explicitly set: use 0.85 *
103 >   *      cutoffRadius_
104 >   *  If the cutoffMethod was not set to SWITCHED:
105 >   *      Set switchingRadius equal to cutoffRadius for safety.
106 >   */
107 >  void ForceManager::setupCutoffs() {
108 >    
109 >    Globals* simParams_ = info_->getSimParams();
110 >    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
111 >    int mdFileVersion;
112 >    
113 >    if (simParams_->haveMDfileVersion())
114 >      mdFileVersion = simParams_->getMDfileVersion();
115 >    else
116 >      mdFileVersion = 0;
117 >  
118 >    if (simParams_->haveCutoffRadius()) {
119 >      rCut_ = simParams_->getCutoffRadius();
120 >    } else {      
121 >      if (info_->usesElectrostaticAtoms()) {
122 >        sprintf(painCave.errMsg,
123 >                "ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n"
124 >                "\tOpenMD will use a default value of 12.0 angstroms"
125 >                "\tfor the cutoffRadius.\n");
126 >        painCave.isFatal = 0;
127 >        painCave.severity = OPENMD_INFO;
128 >        simError();
129 >        rCut_ = 12.0;
130 >      } else {
131 >        RealType thisCut;
132 >        set<AtomType*>::iterator i;
133 >        set<AtomType*> atomTypes;
134 >        atomTypes = info_->getSimulatedAtomTypes();        
135 >        for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
136 >          thisCut = interactionMan_->getSuggestedCutoffRadius((*i));
137 >          rCut_ = max(thisCut, rCut_);
138 >        }
139 >        sprintf(painCave.errMsg,
140 >                "ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n"
141 >                "\tOpenMD will use %lf angstroms.\n",
142 >                rCut_);
143 >        painCave.isFatal = 0;
144 >        painCave.severity = OPENMD_INFO;
145 >        simError();
146 >      }
147 >    }
148  
149 <    eam_ = EAM::Instance();
150 <    eam_->setForceField(info_->getForceField());
151 <  }
152 <
153 <  void ForceManager::calcForces() {
149 >    fDecomp_->setUserCutoff(rCut_);
150 >    interactionMan_->setCutoffRadius(rCut_);
151 >
152 >    map<string, CutoffMethod> stringToCutoffMethod;
153 >    stringToCutoffMethod["HARD"] = HARD;
154 >    stringToCutoffMethod["SWITCHED"] = SWITCHED;
155 >    stringToCutoffMethod["SHIFTED_POTENTIAL"] = SHIFTED_POTENTIAL;    
156 >    stringToCutoffMethod["SHIFTED_FORCE"] = SHIFTED_FORCE;
157 >  
158 >    if (simParams_->haveCutoffMethod()) {
159 >      string cutMeth = toUpperCopy(simParams_->getCutoffMethod());
160 >      map<string, CutoffMethod>::iterator i;
161 >      i = stringToCutoffMethod.find(cutMeth);
162 >      if (i == stringToCutoffMethod.end()) {
163 >        sprintf(painCave.errMsg,
164 >                "ForceManager::setupCutoffs: Could not find chosen cutoffMethod %s\n"
165 >                "\tShould be one of: "
166 >                "HARD, SWITCHED, SHIFTED_POTENTIAL, or SHIFTED_FORCE\n",
167 >                cutMeth.c_str());
168 >        painCave.isFatal = 1;
169 >        painCave.severity = OPENMD_ERROR;
170 >        simError();
171 >      } else {
172 >        cutoffMethod_ = i->second;
173 >      }
174 >    } else {
175 >      if (mdFileVersion > 1) {
176 >        sprintf(painCave.errMsg,
177 >                "ForceManager::setupCutoffs: No value was set for the cutoffMethod.\n"
178 >                "\tOpenMD will use SHIFTED_FORCE.\n");
179 >        painCave.isFatal = 0;
180 >        painCave.severity = OPENMD_INFO;
181 >        simError();
182 >        cutoffMethod_ = SHIFTED_FORCE;        
183 >      } else {
184 >        // handle the case where the old file version was in play
185 >        // (there should be no cutoffMethod, so we have to deduce it
186 >        // from other data).        
187 >
188 >        sprintf(painCave.errMsg,
189 >                "ForceManager::setupCutoffs : DEPRECATED FILE FORMAT!\n"
190 >                "\tOpenMD found a file which does not set a cutoffMethod.\n"
191 >                "\tOpenMD will attempt to deduce a cutoffMethod using the\n"
192 >                "\tbehavior of the older (version 1) code.  To remove this\n"
193 >                "\twarning, add an explicit cutoffMethod and change the top\n"
194 >                "\tof the file so that it begins with <OpenMD version=2>\n");
195 >        painCave.isFatal = 0;
196 >        painCave.severity = OPENMD_WARNING;
197 >        simError();            
198 >                
199 >        // The old file version tethered the shifting behavior to the
200 >        // electrostaticSummationMethod keyword.
201 >        
202 >        if (simParams_->haveElectrostaticSummationMethod()) {
203 >          std::string myMethod = simParams_->getElectrostaticSummationMethod();
204 >          toUpper(myMethod);
205 >        
206 >          if (myMethod == "SHIFTED_POTENTIAL") {
207 >            cutoffMethod_ = SHIFTED_POTENTIAL;
208 >          } else if (myMethod == "SHIFTED_FORCE") {
209 >            cutoffMethod_ = SHIFTED_FORCE;
210 >          }
211 >        
212 >          if (simParams_->haveSwitchingRadius())
213 >            rSwitch_ = simParams_->getSwitchingRadius();
214 >
215 >          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
216 >            if (simParams_->haveSwitchingRadius()){
217 >              sprintf(painCave.errMsg,
218 >                      "ForceManager::setupCutoffs : DEPRECATED ERROR MESSAGE\n"
219 >                      "\tA value was set for the switchingRadius\n"
220 >                      "\teven though the electrostaticSummationMethod was\n"
221 >                      "\tset to %s\n", myMethod.c_str());
222 >              painCave.severity = OPENMD_WARNING;
223 >              painCave.isFatal = 1;
224 >              simError();            
225 >            }
226 >          }
227 >          if (abs(rCut_ - rSwitch_) < 0.0001) {
228 >            if (cutoffMethod_ == SHIFTED_FORCE) {              
229 >              sprintf(painCave.errMsg,
230 >                      "ForceManager::setupCutoffs : DEPRECATED BEHAVIOR\n"
231 >                      "\tcutoffRadius and switchingRadius are set to the\n"
232 >                      "\tsame value.  OpenMD will use shifted force\n"
233 >                      "\tpotentials instead of switching functions.\n");
234 >              painCave.isFatal = 0;
235 >              painCave.severity = OPENMD_WARNING;
236 >              simError();            
237 >            } else {
238 >              cutoffMethod_ = SHIFTED_POTENTIAL;
239 >              sprintf(painCave.errMsg,
240 >                      "ForceManager::setupCutoffs : DEPRECATED BEHAVIOR\n"
241 >                      "\tcutoffRadius and switchingRadius are set to the\n"
242 >                      "\tsame value.  OpenMD will use shifted potentials\n"
243 >                      "\tinstead of switching functions.\n");
244 >              painCave.isFatal = 0;
245 >              painCave.severity = OPENMD_WARNING;
246 >              simError();            
247 >            }
248 >          }
249 >        }
250 >      }
251 >    }
252 >
253 >    map<string, CutoffPolicy> stringToCutoffPolicy;
254 >    stringToCutoffPolicy["MIX"] = MIX;
255 >    stringToCutoffPolicy["MAX"] = MAX;
256 >    stringToCutoffPolicy["TRADITIONAL"] = TRADITIONAL;    
257 >
258 >    std::string cutPolicy;
259 >    if (forceFieldOptions_.haveCutoffPolicy()){
260 >      cutPolicy = forceFieldOptions_.getCutoffPolicy();
261 >    }else if (simParams_->haveCutoffPolicy()) {
262 >      cutPolicy = simParams_->getCutoffPolicy();
263 >    }
264 >
265 >    if (!cutPolicy.empty()){
266 >      toUpper(cutPolicy);
267 >      map<string, CutoffPolicy>::iterator i;
268 >      i = stringToCutoffPolicy.find(cutPolicy);
269 >
270 >      if (i == stringToCutoffPolicy.end()) {
271 >        sprintf(painCave.errMsg,
272 >                "ForceManager::setupCutoffs: Could not find chosen cutoffPolicy %s\n"
273 >                "\tShould be one of: "
274 >                "MIX, MAX, or TRADITIONAL\n",
275 >                cutPolicy.c_str());
276 >        painCave.isFatal = 1;
277 >        painCave.severity = OPENMD_ERROR;
278 >        simError();
279 >      } else {
280 >        cutoffPolicy_ = i->second;
281 >      }
282 >    } else {
283 >      sprintf(painCave.errMsg,
284 >              "ForceManager::setupCutoffs: No value was set for the cutoffPolicy.\n"
285 >              "\tOpenMD will use TRADITIONAL.\n");
286 >      painCave.isFatal = 0;
287 >      painCave.severity = OPENMD_INFO;
288 >      simError();
289 >      cutoffPolicy_ = TRADITIONAL;        
290 >    }
291 >
292 >    fDecomp_->setCutoffPolicy(cutoffPolicy_);
293 >        
294 >    // create the switching function object:
295 >
296 >    switcher_ = new SwitchingFunction();
297 >  
298 >    if (cutoffMethod_ == SWITCHED) {
299 >      if (simParams_->haveSwitchingRadius()) {
300 >        rSwitch_ = simParams_->getSwitchingRadius();
301 >        if (rSwitch_ > rCut_) {        
302 >          sprintf(painCave.errMsg,
303 >                  "ForceManager::setupCutoffs: switchingRadius (%f) is larger "
304 >                  "than the cutoffRadius(%f)\n", rSwitch_, rCut_);
305 >          painCave.isFatal = 1;
306 >          painCave.severity = OPENMD_ERROR;
307 >          simError();
308 >        }
309 >      } else {      
310 >        rSwitch_ = 0.85 * rCut_;
311 >        sprintf(painCave.errMsg,
312 >                "ForceManager::setupCutoffs: No value was set for the switchingRadius.\n"
313 >                "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n"
314 >                "\tswitchingRadius = %f. for this simulation\n", rSwitch_);
315 >        painCave.isFatal = 0;
316 >        painCave.severity = OPENMD_WARNING;
317 >        simError();
318 >      }
319 >    } else {
320 >      if (mdFileVersion > 1) {
321 >        // throw an error if we define a switching radius and don't need one.
322 >        // older file versions should not do this.
323 >        if (simParams_->haveSwitchingRadius()) {
324 >          map<string, CutoffMethod>::const_iterator it;
325 >          string theMeth;
326 >          for (it = stringToCutoffMethod.begin();
327 >               it != stringToCutoffMethod.end(); ++it) {
328 >            if (it->second == cutoffMethod_) {
329 >              theMeth = it->first;
330 >              break;
331 >            }
332 >          }
333 >          sprintf(painCave.errMsg,
334 >                  "ForceManager::setupCutoffs: the cutoffMethod (%s)\n"
335 >                  "\tis not set to SWITCHED, so switchingRadius value\n"
336 >                  "\twill be ignored for this simulation\n", theMeth.c_str());
337 >          painCave.isFatal = 0;
338 >          painCave.severity = OPENMD_WARNING;
339 >          simError();
340 >        }
341 >      }
342 >      rSwitch_ = rCut_;
343 >    }
344      
345 <    if (!info_->isFortranInitialized()) {
345 >    // Default to cubic switching function.
346 >    sft_ = cubic;
347 >    if (simParams_->haveSwitchingFunctionType()) {
348 >      string funcType = simParams_->getSwitchingFunctionType();
349 >      toUpper(funcType);
350 >      if (funcType == "CUBIC") {
351 >        sft_ = cubic;
352 >      } else {
353 >        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
354 >          sft_ = fifth_order_poly;
355 >        } else {
356 >          // throw error        
357 >          sprintf( painCave.errMsg,
358 >                   "ForceManager::setupSwitching : Unknown switchingFunctionType. (Input file specified %s .)\n"
359 >                   "\tswitchingFunctionType must be one of: "
360 >                   "\"cubic\" or \"fifth_order_polynomial\".",
361 >                   funcType.c_str() );
362 >          painCave.isFatal = 1;
363 >          painCave.severity = OPENMD_ERROR;
364 >          simError();
365 >        }          
366 >      }
367 >    }
368 >    switcher_->setSwitchType(sft_);
369 >    switcher_->setSwitch(rSwitch_, rCut_);
370 >    interactionMan_->setSwitchingRadius(rSwitch_);
371 >  }
372 >
373 >
374 >
375 >  
376 >  void ForceManager::initialize() {
377 >
378 >    if (!info_->isTopologyDone()) {
379 >
380        info_->update();
381 +      interactionMan_->setSimInfo(info_);
382 +      interactionMan_->initialize();
383 +
384 +      // We want to delay the cutoffs until after the interaction
385 +      // manager has set up the atom-atom interactions so that we can
386 +      // query them for suggested cutoff values
387 +      setupCutoffs();
388 +
389 +      info_->prepareTopology();      
390      }
391 +
392 +    ForceFieldOptions& fopts = forceField_->getForceFieldOptions();
393      
394 <    preCalculation();
394 >    // Force fields can set options on how to scale van der Waals and
395 >    // electrostatic interactions for atoms connected via bonds, bends
396 >    // and torsions in this case the topological distance between
397 >    // atoms is:
398 >    // 0 = topologically unconnected
399 >    // 1 = bonded together
400 >    // 2 = connected via a bend
401 >    // 3 = connected via a torsion
402      
403 <    calcShortRangeInteraction();
403 >    vdwScale_.reserve(4);
404 >    fill(vdwScale_.begin(), vdwScale_.end(), 0.0);
405  
406 <    calcLongRangeInteraction();
406 >    electrostaticScale_.reserve(4);
407 >    fill(electrostaticScale_.begin(), electrostaticScale_.end(), 0.0);
408  
409 <    postCalculation();
409 >    vdwScale_[0] = 1.0;
410 >    vdwScale_[1] = fopts.getvdw12scale();
411 >    vdwScale_[2] = fopts.getvdw13scale();
412 >    vdwScale_[3] = fopts.getvdw14scale();
413      
414 +    electrostaticScale_[0] = 1.0;
415 +    electrostaticScale_[1] = fopts.getelectrostatic12scale();
416 +    electrostaticScale_[2] = fopts.getelectrostatic13scale();
417 +    electrostaticScale_[3] = fopts.getelectrostatic14scale();    
418 +    
419 +    fDecomp_->distributeInitialData();
420 +
421 +    initialized_ = true;
422 +
423    }
424 +
425 +  void ForceManager::calcForces() {
426 +    
427 +    if (!initialized_) initialize();
428 +
429 +    preCalculation();  
430 +    shortRangeInteractions();
431 +    longRangeInteractions();
432 +    postCalculation();    
433 +  }
434    
435    void ForceManager::preCalculation() {
436      SimInfo::MoleculeIterator mi;
# Line 95 | Line 439 | namespace OpenMD {
439      Atom* atom;
440      Molecule::RigidBodyIterator rbIter;
441      RigidBody* rb;
442 +    Molecule::CutoffGroupIterator ci;
443 +    CutoffGroup* cg;
444      
445      // forces are zeroed here, before any are accumulated.
100    // NOTE: do not rezero the forces in Fortran.
446      
447      for (mol = info_->beginMolecule(mi); mol != NULL;
448           mol = info_->nextMolecule(mi)) {
449 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
449 >      for(atom = mol->beginAtom(ai); atom != NULL;
450 >          atom = mol->nextAtom(ai)) {
451          atom->zeroForcesAndTorques();
452        }
453 <          
453 >      
454        //change the positions of atoms which belong to the rigidbodies
455        for (rb = mol->beginRigidBody(rbIter); rb != NULL;
456             rb = mol->nextRigidBody(rbIter)) {
457          rb->zeroForcesAndTorques();
458        }        
459 <          
459 >      
460 >      if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){
461 >        for(cg = mol->beginCutoffGroup(ci); cg != NULL;
462 >            cg = mol->nextCutoffGroup(ci)) {
463 >          //calculate the center of mass of cutoff group
464 >          cg->updateCOM();
465 >        }
466 >      }      
467      }
468      
469      // Zero out the stress tensor
# Line 118 | Line 471 | namespace OpenMD {
471      
472    }
473    
474 <  void ForceManager::calcShortRangeInteraction() {
474 >  void ForceManager::shortRangeInteractions() {
475      Molecule* mol;
476      RigidBody* rb;
477      Bond* bond;
# Line 160 | Line 513 | namespace OpenMD {
513          RealType currBendPot = bend->getPotential();          
514          
515          bendPotential += bend->getPotential();
516 <        std::map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend);
516 >        map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend);
517          if (i == bendDataSets.end()) {
518            BendDataSet dataSet;
519            dataSet.prev.angle = dataSet.curr.angle = angle;
520            dataSet.prev.potential = dataSet.curr.potential = currBendPot;
521            dataSet.deltaV = 0.0;
522 <          bendDataSets.insert(std::map<Bend*, BendDataSet>::value_type(bend, dataSet));
522 >          bendDataSets.insert(map<Bend*, BendDataSet>::value_type(bend,
523 >                                                                  dataSet));
524          }else {
525            i->second.prev.angle = i->second.curr.angle;
526            i->second.prev.potential = i->second.curr.potential;
# Line 183 | Line 537 | namespace OpenMD {
537          torsion->calcForce(angle);
538          RealType currTorsionPot = torsion->getPotential();
539          torsionPotential += torsion->getPotential();
540 <        std::map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion);
540 >        map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion);
541          if (i == torsionDataSets.end()) {
542            TorsionDataSet dataSet;
543            dataSet.prev.angle = dataSet.curr.angle = angle;
544            dataSet.prev.potential = dataSet.curr.potential = currTorsionPot;
545            dataSet.deltaV = 0.0;
546 <          torsionDataSets.insert(std::map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet));
546 >          torsionDataSets.insert(map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet));
547          }else {
548            i->second.prev.angle = i->second.curr.angle;
549            i->second.prev.potential = i->second.curr.potential;
# Line 199 | Line 553 | namespace OpenMD {
553                                     i->second.prev.potential);
554          }      
555        }      
556 <
556 >      
557        for (inversion = mol->beginInversion(inversionIter);
558             inversion != NULL;
559             inversion = mol->nextInversion(inversionIter)) {
# Line 207 | Line 561 | namespace OpenMD {
561          inversion->calcForce(angle);
562          RealType currInversionPot = inversion->getPotential();
563          inversionPotential += inversion->getPotential();
564 <        std::map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion);
564 >        map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion);
565          if (i == inversionDataSets.end()) {
566            InversionDataSet dataSet;
567            dataSet.prev.angle = dataSet.curr.angle = angle;
568            dataSet.prev.potential = dataSet.curr.potential = currInversionPot;
569            dataSet.deltaV = 0.0;
570 <          inversionDataSets.insert(std::map<Inversion*, InversionDataSet>::value_type(inversion, dataSet));
570 >          inversionDataSets.insert(map<Inversion*, InversionDataSet>::value_type(inversion, dataSet));
571          }else {
572            i->second.prev.angle = i->second.curr.angle;
573            i->second.prev.potential = i->second.curr.potential;
# Line 232 | Line 586 | namespace OpenMD {
586      curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential;
587      curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential;
588      curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential;
589 <    curSnapshot->statData[Stats::INVERSION_POTENTIAL] = inversionPotential;
236 <    
589 >    curSnapshot->statData[Stats::INVERSION_POTENTIAL] = inversionPotential;    
590    }
591    
592 <  void ForceManager::calcLongRangeInteraction() {
240 <    Snapshot* curSnapshot;
241 <    DataStorage* config;
242 <    RealType* frc;
243 <    RealType* pos;
244 <    RealType* trq;
245 <    RealType* A;
246 <    RealType* electroFrame;
247 <    RealType* rc;
248 <    RealType* particlePot;
249 <    
250 <    //get current snapshot from SimInfo
251 <    curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
252 <    
253 <    //get array pointers
254 <    config = &(curSnapshot->atomData);
255 <    frc = config->getArrayPointer(DataStorage::dslForce);
256 <    pos = config->getArrayPointer(DataStorage::dslPosition);
257 <    trq = config->getArrayPointer(DataStorage::dslTorque);
258 <    A   = config->getArrayPointer(DataStorage::dslAmat);
259 <    electroFrame = config->getArrayPointer(DataStorage::dslElectroFrame);
260 <    particlePot = config->getArrayPointer(DataStorage::dslParticlePot);
592 >  void ForceManager::longRangeInteractions() {
593  
594 +    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
595 +    DataStorage* config = &(curSnapshot->atomData);
596 +    DataStorage* cgConfig = &(curSnapshot->cgData);
597 +
598      //calculate the center of mass of cutoff group
599 +
600      SimInfo::MoleculeIterator mi;
601      Molecule* mol;
602      Molecule::CutoffGroupIterator ci;
603      CutoffGroup* cg;
604 <    Vector3d com;
605 <    std::vector<Vector3d> rcGroup;
269 <    
270 <    if(info_->getNCutoffGroups() > 0){
271 <      
604 >
605 >    if(info_->getNCutoffGroups() > 0){      
606        for (mol = info_->beginMolecule(mi); mol != NULL;
607             mol = info_->nextMolecule(mi)) {
608          for(cg = mol->beginCutoffGroup(ci); cg != NULL;
609              cg = mol->nextCutoffGroup(ci)) {
610 <          cg->getCOM(com);
277 <          rcGroup.push_back(com);
610 >          cg->updateCOM();
611          }
612 <      }// end for (mol)
280 <      
281 <      rc = rcGroup[0].getArrayPointer();
612 >      }      
613      } else {
614        // center of mass of the group is the same as position of the atom  
615        // if cutoff group does not exist
616 <      rc = pos;
616 >      cgConfig->position = config->position;
617      }
618 +
619 +    fDecomp_->zeroWorkArrays();
620 +    fDecomp_->distributeData();
621      
622 <    //initialize data before passing to fortran
623 <    RealType longRangePotential[LR_POT_TYPES];
624 <    RealType lrPot = 0.0;
625 <    Vector3d totalDipole;
626 <    int isError = 0;
622 >    int cg1, cg2, atom1, atom2, topoDist;
623 >    Vector3d d_grp, dag, d;
624 >    RealType rgrpsq, rgrp, r2, r;
625 >    RealType electroMult, vdwMult;
626 >    RealType vij;
627 >    Vector3d fij, fg, f1;
628 >    tuple3<RealType, RealType, RealType> cuts;
629 >    RealType rCutSq;
630 >    bool in_switching_region;
631 >    RealType sw, dswdr, swderiv;
632 >    vector<int> atomListColumn, atomListRow, atomListLocal;
633 >    InteractionData idat;
634 >    SelfData sdat;
635 >    RealType mf;
636 >    RealType lrPot;
637 >    RealType vpair;
638 >    potVec longRangePotential(0.0);
639 >    potVec workPot(0.0);
640  
641 <    for (int i=0; i<LR_POT_TYPES;i++){
642 <      longRangePotential[i]=0.0; //Initialize array
643 <    }
641 >    int loopStart, loopEnd;
642 >
643 >    idat.vdwMult = &vdwMult;
644 >    idat.electroMult = &electroMult;
645 >    idat.pot = &workPot;
646 >    sdat.pot = fDecomp_->getEmbeddingPotential();
647 >    idat.vpair = &vpair;
648 >    idat.f1 = &f1;
649 >    idat.sw = &sw;
650 >    idat.shiftedPot = (cutoffMethod_ == SHIFTED_POTENTIAL) ? true : false;
651 >    idat.shiftedForce = (cutoffMethod_ == SHIFTED_FORCE) ? true : false;
652      
653 <    doForceLoop(pos,
654 <                rc,
655 <                A,
656 <                electroFrame,
657 <                frc,
303 <                trq,
304 <                tau.getArrayPointer(),
305 <                longRangePotential,
306 <                particlePot,
307 <                &isError );
308 <    
309 <    if( isError ){
310 <      sprintf( painCave.errMsg,
311 <               "Error returned from the fortran force calculation.\n" );
312 <      painCave.isFatal = 1;
313 <      simError();
653 >    loopEnd = PAIR_LOOP;
654 >    if (info_->requiresPrepair() ) {
655 >      loopStart = PREPAIR_LOOP;
656 >    } else {
657 >      loopStart = PAIR_LOOP;
658      }
659 <    for (int i=0; i<LR_POT_TYPES;i++){
660 <      lrPot += longRangePotential[i]; //Quick hack
659 >  
660 >    for (int iLoop = loopStart; iLoop <= loopEnd; iLoop++) {
661 >    
662 >      if (iLoop == loopStart) {
663 >        bool update_nlist = fDecomp_->checkNeighborList();
664 >        if (update_nlist)
665 >          neighborList = fDecomp_->buildNeighborList();
666 >      }            
667 >
668 >      for (vector<pair<int, int> >::iterator it = neighborList.begin();
669 >             it != neighborList.end(); ++it) {
670 >                
671 >        cg1 = (*it).first;
672 >        cg2 = (*it).second;
673 >        
674 >        cuts = fDecomp_->getGroupCutoffs(cg1, cg2);
675 >
676 >        d_grp  = fDecomp_->getIntergroupVector(cg1, cg2);
677 >
678 >        curSnapshot->wrapVector(d_grp);        
679 >        rgrpsq = d_grp.lengthSquare();
680 >        rCutSq = cuts.second;
681 >
682 >        if (rgrpsq < rCutSq) {
683 >          idat.rcut = &cuts.first;
684 >          if (iLoop == PAIR_LOOP) {
685 >            vij = 0.0;
686 >            fij = V3Zero;
687 >          }
688 >          
689 >          in_switching_region = switcher_->getSwitch(rgrpsq, sw, dswdr,
690 >                                                     rgrp);
691 >          
692 >          atomListRow = fDecomp_->getAtomsInGroupRow(cg1);
693 >          atomListColumn = fDecomp_->getAtomsInGroupColumn(cg2);
694 >
695 >          for (vector<int>::iterator ia = atomListRow.begin();
696 >               ia != atomListRow.end(); ++ia) {            
697 >            atom1 = (*ia);
698 >            
699 >            for (vector<int>::iterator jb = atomListColumn.begin();
700 >                 jb != atomListColumn.end(); ++jb) {              
701 >              atom2 = (*jb);
702 >
703 >              if (!fDecomp_->skipAtomPair(atom1, atom2)) {
704 >                vpair = 0.0;
705 >                workPot = 0.0;
706 >                f1 = V3Zero;
707 >
708 >                fDecomp_->fillInteractionData(idat, atom1, atom2);
709 >                
710 >                topoDist = fDecomp_->getTopologicalDistance(atom1, atom2);
711 >                vdwMult = vdwScale_[topoDist];
712 >                electroMult = electrostaticScale_[topoDist];
713 >
714 >                if (atomListRow.size() == 1 && atomListColumn.size() == 1) {
715 >                  idat.d = &d_grp;
716 >                  idat.r2 = &rgrpsq;
717 >                } else {
718 >                  d = fDecomp_->getInteratomicVector(atom1, atom2);
719 >                  curSnapshot->wrapVector( d );
720 >                  r2 = d.lengthSquare();
721 >                  idat.d = &d;
722 >                  idat.r2 = &r2;
723 >                }
724 >              
725 >                r = sqrt( *(idat.r2) );
726 >                idat.rij = &r;
727 >              
728 >                if (iLoop == PREPAIR_LOOP) {
729 >                  interactionMan_->doPrePair(idat);
730 >                } else {
731 >                  interactionMan_->doPair(idat);
732 >                  fDecomp_->unpackInteractionData(idat, atom1, atom2);
733 >                  vij += vpair;
734 >                  fij += f1;
735 >                  tau -= outProduct( *(idat.d), f1);
736 >                }
737 >              }
738 >            }
739 >          }
740 >
741 >          if (iLoop == PAIR_LOOP) {
742 >            if (in_switching_region) {
743 >              swderiv = vij * dswdr / rgrp;
744 >              fg = swderiv * d_grp;
745 >              fij += fg;
746 >
747 >              if (atomListRow.size() == 1 && atomListColumn.size() == 1) {
748 >                tau -= outProduct( *(idat.d), fg);
749 >              }
750 >          
751 >              for (vector<int>::iterator ia = atomListRow.begin();
752 >                   ia != atomListRow.end(); ++ia) {            
753 >                atom1 = (*ia);                
754 >                mf = fDecomp_->getMassFactorRow(atom1);
755 >                // fg is the force on atom ia due to cutoff group's
756 >                // presence in switching region
757 >                fg = swderiv * d_grp * mf;
758 >                fDecomp_->addForceToAtomRow(atom1, fg);
759 >                if (atomListRow.size() > 1) {
760 >                  if (info_->usesAtomicVirial()) {
761 >                    // find the distance between the atom
762 >                    // and the center of the cutoff group:
763 >                    dag = fDecomp_->getAtomToGroupVectorRow(atom1, cg1);
764 >                    tau -= outProduct(dag, fg);
765 >                  }
766 >                }
767 >              }
768 >              for (vector<int>::iterator jb = atomListColumn.begin();
769 >                   jb != atomListColumn.end(); ++jb) {              
770 >                atom2 = (*jb);
771 >                mf = fDecomp_->getMassFactorColumn(atom2);
772 >                // fg is the force on atom jb due to cutoff group's
773 >                // presence in switching region
774 >                fg = -swderiv * d_grp * mf;
775 >                fDecomp_->addForceToAtomColumn(atom2, fg);
776 >
777 >                if (atomListColumn.size() > 1) {
778 >                  if (info_->usesAtomicVirial()) {
779 >                    // find the distance between the atom
780 >                    // and the center of the cutoff group:
781 >                    dag = fDecomp_->getAtomToGroupVectorColumn(atom2, cg2);
782 >                    tau -= outProduct(dag, fg);
783 >                  }
784 >                }
785 >              }
786 >            }
787 >            //if (!info_->usesAtomicVirial()) {
788 >            //  tau -= outProduct(d_grp, fij);
789 >            //}
790 >          }
791 >        }
792 >      }
793 >
794 >      if (iLoop == PREPAIR_LOOP) {
795 >        if (info_->requiresPrepair()) {
796 >
797 >          fDecomp_->collectIntermediateData();
798 >
799 >          for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) {
800 >            fDecomp_->fillSelfData(sdat, atom1);
801 >            interactionMan_->doPreForce(sdat);
802 >          }
803 >
804 >          fDecomp_->distributeIntermediateData();
805 >
806 >        }
807 >      }
808      }
809      
810 <    // grab the simulation box dipole moment if specified
811 <    if (info_->getCalcBoxDipole()){
812 <      getAccumulatedBoxDipole(totalDipole.getArrayPointer());
813 <      
814 <      curSnapshot->statData[Stats::BOX_DIPOLE_X] = totalDipole(0);
815 <      curSnapshot->statData[Stats::BOX_DIPOLE_Y] = totalDipole(1);
816 <      curSnapshot->statData[Stats::BOX_DIPOLE_Z] = totalDipole(2);
810 >    fDecomp_->collectData();
811 >        
812 >    if (info_->requiresSelfCorrection()) {
813 >
814 >      for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) {          
815 >        fDecomp_->fillSelfData(sdat, atom1);
816 >        interactionMan_->doSelfCorrection(sdat);
817 >      }
818 >
819      }
820 <    
820 >
821 >    longRangePotential = *(fDecomp_->getEmbeddingPotential()) +
822 >      *(fDecomp_->getPairwisePotential());
823 >
824 >    lrPot = longRangePotential.sum();
825 >
826      //store the tau and long range potential    
827      curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot;
828 <    curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VDW_POT];
829 <    curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_POT];
828 >    curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VANDERWAALS_FAMILY];
829 >    curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_FAMILY];
830    }
831  
832    

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines