ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/ForceManager.cpp
(Generate patch)

Comparing branches/development/src/brains/ForceManager.cpp (file contents):
Revision 1503 by gezelter, Sat Oct 2 19:54:41 2010 UTC vs.
Revision 1868 by gezelter, Tue Apr 30 15:56:54 2013 UTC

# Line 35 | Line 35
35   *                                                                      
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 < * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 < * [4]  Vardeman & Gezelter, in progress (2009).                        
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
44   * @file ForceManager.cpp
45   * @author tlin
46   * @date 11/09/2004
46 * @time 10:39am
47   * @version 1.0
48   */
49  
50 +
51   #include "brains/ForceManager.hpp"
52   #include "primitives/Molecule.hpp"
52 #include "UseTheForce/doForces_interface.h"
53   #define __OPENMD_C
54 #include "UseTheForce/DarkSide/fInteractionMap.h"
54   #include "utils/simError.h"
55   #include "primitives/Bond.hpp"
56   #include "primitives/Bend.hpp"
57   #include "primitives/Torsion.hpp"
58   #include "primitives/Inversion.hpp"
59 + #include "nonbonded/NonBondedInteraction.hpp"
60 + #include "perturbations/ElectricField.hpp"
61 + #include "parallel/ForceMatrixDecomposition.hpp"
62  
63 + #include <cstdio>
64 + #include <iostream>
65 + #include <iomanip>
66 +
67 + using namespace std;
68   namespace OpenMD {
69    
70 <  ForceManager::ForceManager(SimInfo * info) : info_(info),
71 <                                               NBforcesInitialized_(false) {
70 >  ForceManager::ForceManager(SimInfo * info) : info_(info), switcher_(NULL) {
71 >    forceField_ = info_->getForceField();
72 >    interactionMan_ = new InteractionManager();
73 >    fDecomp_ = new ForceMatrixDecomposition(info_, interactionMan_);
74 >    thermo = new Thermo(info_);
75    }
76 <
77 <  void ForceManager::calcForces() {
76 >
77 >  ForceManager::~ForceManager() {
78 >    perturbations_.clear();
79      
80 <    if (!info_->isFortranInitialized()) {
81 <      info_->update();
82 <    }
80 >    delete switcher_;
81 >    delete interactionMan_;
82 >    delete fDecomp_;
83 >    delete thermo;
84 >  }
85 >  
86 >  /**
87 >   * setupCutoffs
88 >   *
89 >   * Sets the values of cutoffRadius, switchingRadius, cutoffMethod,
90 >   * and cutoffPolicy
91 >   *
92 >   * cutoffRadius : realType
93 >   *  If the cutoffRadius was explicitly set, use that value.
94 >   *  If the cutoffRadius was not explicitly set:
95 >   *      Are there electrostatic atoms?  Use 12.0 Angstroms.
96 >   *      No electrostatic atoms?  Poll the atom types present in the
97 >   *      simulation for suggested cutoff values (e.g. 2.5 * sigma).
98 >   *      Use the maximum suggested value that was found.
99 >   *
100 >   * cutoffMethod : (one of HARD, SWITCHED, SHIFTED_FORCE,
101 >   *                        or SHIFTED_POTENTIAL)
102 >   *      If cutoffMethod was explicitly set, use that choice.
103 >   *      If cutoffMethod was not explicitly set, use SHIFTED_FORCE
104 >   *
105 >   * cutoffPolicy : (one of MIX, MAX, TRADITIONAL)
106 >   *      If cutoffPolicy was explicitly set, use that choice.
107 >   *      If cutoffPolicy was not explicitly set, use TRADITIONAL
108 >   *
109 >   * switchingRadius : realType
110 >   *  If the cutoffMethod was set to SWITCHED:
111 >   *      If the switchingRadius was explicitly set, use that value
112 >   *          (but do a sanity check first).
113 >   *      If the switchingRadius was not explicitly set: use 0.85 *
114 >   *      cutoffRadius_
115 >   *  If the cutoffMethod was not set to SWITCHED:
116 >   *      Set switchingRadius equal to cutoffRadius for safety.
117 >   */
118 >  void ForceManager::setupCutoffs() {
119      
120 <    preCalculation();
120 >    Globals* simParams_ = info_->getSimParams();
121 >    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
122 >    int mdFileVersion;
123 >    rCut_ = 0.0; //Needs a value for a later max() call;  
124      
125 <    calcShortRangeInteraction();
125 >    if (simParams_->haveMDfileVersion())
126 >      mdFileVersion = simParams_->getMDfileVersion();
127 >    else
128 >      mdFileVersion = 0;
129 >  
130 >    // We need the list of simulated atom types to figure out cutoffs
131 >    // as well as long range corrections.
132  
133 <    calcLongRangeInteraction();
133 >    set<AtomType*>::iterator i;
134 >    set<AtomType*> atomTypes_;
135 >    atomTypes_ = info_->getSimulatedAtomTypes();
136  
137 <    postCalculation();
137 >    if (simParams_->haveCutoffRadius()) {
138 >      rCut_ = simParams_->getCutoffRadius();
139 >    } else {      
140 >      if (info_->usesElectrostaticAtoms()) {
141 >        sprintf(painCave.errMsg,
142 >                "ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n"
143 >                "\tOpenMD will use a default value of 12.0 angstroms"
144 >                "\tfor the cutoffRadius.\n");
145 >        painCave.isFatal = 0;
146 >        painCave.severity = OPENMD_INFO;
147 >        simError();
148 >        rCut_ = 12.0;
149 >      } else {
150 >        RealType thisCut;
151 >        for (i = atomTypes_.begin(); i != atomTypes_.end(); ++i) {
152 >          thisCut = interactionMan_->getSuggestedCutoffRadius((*i));
153 >          rCut_ = max(thisCut, rCut_);
154 >        }
155 >        sprintf(painCave.errMsg,
156 >                "ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n"
157 >                "\tOpenMD will use %lf angstroms.\n",
158 >                rCut_);
159 >        painCave.isFatal = 0;
160 >        painCave.severity = OPENMD_INFO;
161 >        simError();
162 >      }
163 >    }
164 >
165 >    fDecomp_->setUserCutoff(rCut_);
166 >    interactionMan_->setCutoffRadius(rCut_);
167 >
168 >    map<string, CutoffMethod> stringToCutoffMethod;
169 >    stringToCutoffMethod["HARD"] = HARD;
170 >    stringToCutoffMethod["SWITCHED"] = SWITCHED;
171 >    stringToCutoffMethod["SHIFTED_POTENTIAL"] = SHIFTED_POTENTIAL;    
172 >    stringToCutoffMethod["SHIFTED_FORCE"] = SHIFTED_FORCE;
173 >  
174 >    if (simParams_->haveCutoffMethod()) {
175 >      string cutMeth = toUpperCopy(simParams_->getCutoffMethod());
176 >      map<string, CutoffMethod>::iterator i;
177 >      i = stringToCutoffMethod.find(cutMeth);
178 >      if (i == stringToCutoffMethod.end()) {
179 >        sprintf(painCave.errMsg,
180 >                "ForceManager::setupCutoffs: Could not find chosen cutoffMethod %s\n"
181 >                "\tShould be one of: "
182 >                "HARD, SWITCHED, SHIFTED_POTENTIAL, or SHIFTED_FORCE\n",
183 >                cutMeth.c_str());
184 >        painCave.isFatal = 1;
185 >        painCave.severity = OPENMD_ERROR;
186 >        simError();
187 >      } else {
188 >        cutoffMethod_ = i->second;
189 >      }
190 >    } else {
191 >      if (mdFileVersion > 1) {
192 >        sprintf(painCave.errMsg,
193 >                "ForceManager::setupCutoffs: No value was set for the cutoffMethod.\n"
194 >                "\tOpenMD will use SHIFTED_FORCE.\n");
195 >        painCave.isFatal = 0;
196 >        painCave.severity = OPENMD_INFO;
197 >        simError();
198 >        cutoffMethod_ = SHIFTED_FORCE;        
199 >      } else {
200 >        // handle the case where the old file version was in play
201 >        // (there should be no cutoffMethod, so we have to deduce it
202 >        // from other data).        
203 >
204 >        sprintf(painCave.errMsg,
205 >                "ForceManager::setupCutoffs : DEPRECATED FILE FORMAT!\n"
206 >                "\tOpenMD found a file which does not set a cutoffMethod.\n"
207 >                "\tOpenMD will attempt to deduce a cutoffMethod using the\n"
208 >                "\tbehavior of the older (version 1) code.  To remove this\n"
209 >                "\twarning, add an explicit cutoffMethod and change the top\n"
210 >                "\tof the file so that it begins with <OpenMD version=2>\n");
211 >        painCave.isFatal = 0;
212 >        painCave.severity = OPENMD_WARNING;
213 >        simError();            
214 >                
215 >        // The old file version tethered the shifting behavior to the
216 >        // electrostaticSummationMethod keyword.
217 >        
218 >        if (simParams_->haveElectrostaticSummationMethod()) {
219 >          string myMethod = simParams_->getElectrostaticSummationMethod();
220 >          toUpper(myMethod);
221 >        
222 >          if (myMethod == "SHIFTED_POTENTIAL") {
223 >            cutoffMethod_ = SHIFTED_POTENTIAL;
224 >          } else if (myMethod == "SHIFTED_FORCE") {
225 >            cutoffMethod_ = SHIFTED_FORCE;
226 >          }
227 >        
228 >          if (simParams_->haveSwitchingRadius())
229 >            rSwitch_ = simParams_->getSwitchingRadius();
230 >
231 >          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
232 >            if (simParams_->haveSwitchingRadius()){
233 >              sprintf(painCave.errMsg,
234 >                      "ForceManager::setupCutoffs : DEPRECATED ERROR MESSAGE\n"
235 >                      "\tA value was set for the switchingRadius\n"
236 >                      "\teven though the electrostaticSummationMethod was\n"
237 >                      "\tset to %s\n", myMethod.c_str());
238 >              painCave.severity = OPENMD_WARNING;
239 >              painCave.isFatal = 1;
240 >              simError();            
241 >            }
242 >          }
243 >          if (abs(rCut_ - rSwitch_) < 0.0001) {
244 >            if (cutoffMethod_ == SHIFTED_FORCE) {              
245 >              sprintf(painCave.errMsg,
246 >                      "ForceManager::setupCutoffs : DEPRECATED BEHAVIOR\n"
247 >                      "\tcutoffRadius and switchingRadius are set to the\n"
248 >                      "\tsame value.  OpenMD will use shifted force\n"
249 >                      "\tpotentials instead of switching functions.\n");
250 >              painCave.isFatal = 0;
251 >              painCave.severity = OPENMD_WARNING;
252 >              simError();            
253 >            } else {
254 >              cutoffMethod_ = SHIFTED_POTENTIAL;
255 >              sprintf(painCave.errMsg,
256 >                      "ForceManager::setupCutoffs : DEPRECATED BEHAVIOR\n"
257 >                      "\tcutoffRadius and switchingRadius are set to the\n"
258 >                      "\tsame value.  OpenMD will use shifted potentials\n"
259 >                      "\tinstead of switching functions.\n");
260 >              painCave.isFatal = 0;
261 >              painCave.severity = OPENMD_WARNING;
262 >              simError();            
263 >            }
264 >          }
265 >        }
266 >      }
267 >    }
268 >
269 >    map<string, CutoffPolicy> stringToCutoffPolicy;
270 >    stringToCutoffPolicy["MIX"] = MIX;
271 >    stringToCutoffPolicy["MAX"] = MAX;
272 >    stringToCutoffPolicy["TRADITIONAL"] = TRADITIONAL;    
273 >
274 >    string cutPolicy;
275 >    if (forceFieldOptions_.haveCutoffPolicy()){
276 >      cutPolicy = forceFieldOptions_.getCutoffPolicy();
277 >    }else if (simParams_->haveCutoffPolicy()) {
278 >      cutPolicy = simParams_->getCutoffPolicy();
279 >    }
280 >
281 >    if (!cutPolicy.empty()){
282 >      toUpper(cutPolicy);
283 >      map<string, CutoffPolicy>::iterator i;
284 >      i = stringToCutoffPolicy.find(cutPolicy);
285 >
286 >      if (i == stringToCutoffPolicy.end()) {
287 >        sprintf(painCave.errMsg,
288 >                "ForceManager::setupCutoffs: Could not find chosen cutoffPolicy %s\n"
289 >                "\tShould be one of: "
290 >                "MIX, MAX, or TRADITIONAL\n",
291 >                cutPolicy.c_str());
292 >        painCave.isFatal = 1;
293 >        painCave.severity = OPENMD_ERROR;
294 >        simError();
295 >      } else {
296 >        cutoffPolicy_ = i->second;
297 >      }
298 >    } else {
299 >      sprintf(painCave.errMsg,
300 >              "ForceManager::setupCutoffs: No value was set for the cutoffPolicy.\n"
301 >              "\tOpenMD will use TRADITIONAL.\n");
302 >      painCave.isFatal = 0;
303 >      painCave.severity = OPENMD_INFO;
304 >      simError();
305 >      cutoffPolicy_ = TRADITIONAL;        
306 >    }
307 >
308 >    fDecomp_->setCutoffPolicy(cutoffPolicy_);
309 >        
310 >    // create the switching function object:
311 >
312 >    switcher_ = new SwitchingFunction();
313 >  
314 >    if (cutoffMethod_ == SWITCHED) {
315 >      if (simParams_->haveSwitchingRadius()) {
316 >        rSwitch_ = simParams_->getSwitchingRadius();
317 >        if (rSwitch_ > rCut_) {        
318 >          sprintf(painCave.errMsg,
319 >                  "ForceManager::setupCutoffs: switchingRadius (%f) is larger "
320 >                  "than the cutoffRadius(%f)\n", rSwitch_, rCut_);
321 >          painCave.isFatal = 1;
322 >          painCave.severity = OPENMD_ERROR;
323 >          simError();
324 >        }
325 >      } else {      
326 >        rSwitch_ = 0.85 * rCut_;
327 >        sprintf(painCave.errMsg,
328 >                "ForceManager::setupCutoffs: No value was set for the switchingRadius.\n"
329 >                "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n"
330 >                "\tswitchingRadius = %f. for this simulation\n", rSwitch_);
331 >        painCave.isFatal = 0;
332 >        painCave.severity = OPENMD_WARNING;
333 >        simError();
334 >      }
335 >    } else {
336 >      if (mdFileVersion > 1) {
337 >        // throw an error if we define a switching radius and don't need one.
338 >        // older file versions should not do this.
339 >        if (simParams_->haveSwitchingRadius()) {
340 >          map<string, CutoffMethod>::const_iterator it;
341 >          string theMeth;
342 >          for (it = stringToCutoffMethod.begin();
343 >               it != stringToCutoffMethod.end(); ++it) {
344 >            if (it->second == cutoffMethod_) {
345 >              theMeth = it->first;
346 >              break;
347 >            }
348 >          }
349 >          sprintf(painCave.errMsg,
350 >                  "ForceManager::setupCutoffs: the cutoffMethod (%s)\n"
351 >                  "\tis not set to SWITCHED, so switchingRadius value\n"
352 >                  "\twill be ignored for this simulation\n", theMeth.c_str());
353 >          painCave.isFatal = 0;
354 >          painCave.severity = OPENMD_WARNING;
355 >          simError();
356 >        }
357 >      }
358 >      rSwitch_ = rCut_;
359 >    }
360      
361 +    // Default to cubic switching function.
362 +    sft_ = cubic;
363 +    if (simParams_->haveSwitchingFunctionType()) {
364 +      string funcType = simParams_->getSwitchingFunctionType();
365 +      toUpper(funcType);
366 +      if (funcType == "CUBIC") {
367 +        sft_ = cubic;
368 +      } else {
369 +        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
370 +          sft_ = fifth_order_poly;
371 +        } else {
372 +          // throw error        
373 +          sprintf( painCave.errMsg,
374 +                   "ForceManager::setupSwitching : Unknown switchingFunctionType. (Input file specified %s .)\n"
375 +                   "\tswitchingFunctionType must be one of: "
376 +                   "\"cubic\" or \"fifth_order_polynomial\".",
377 +                   funcType.c_str() );
378 +          painCave.isFatal = 1;
379 +          painCave.severity = OPENMD_ERROR;
380 +          simError();
381 +        }          
382 +      }
383 +    }
384 +    switcher_->setSwitchType(sft_);
385 +    switcher_->setSwitch(rSwitch_, rCut_);
386    }
387 +
388 +
389 +
390    
391 +  void ForceManager::initialize() {
392 +
393 +    if (!info_->isTopologyDone()) {
394 +
395 +      info_->update();
396 +      interactionMan_->setSimInfo(info_);
397 +      interactionMan_->initialize();
398 +
399 +      // We want to delay the cutoffs until after the interaction
400 +      // manager has set up the atom-atom interactions so that we can
401 +      // query them for suggested cutoff values
402 +      setupCutoffs();
403 +
404 +      info_->prepareTopology();      
405 +
406 +      doParticlePot_ = info_->getSimParams()->getOutputParticlePotential();
407 +      doHeatFlux_ = info_->getSimParams()->getPrintHeatFlux();
408 +      if (doHeatFlux_) doParticlePot_ = true;
409 +
410 +      doElectricField_ = info_->getSimParams()->getOutputElectricField();
411 +  
412 +    }
413 +
414 +    ForceFieldOptions& fopts = forceField_->getForceFieldOptions();
415 +    
416 +    // Force fields can set options on how to scale van der Waals and
417 +    // electrostatic interactions for atoms connected via bonds, bends
418 +    // and torsions in this case the topological distance between
419 +    // atoms is:
420 +    // 0 = topologically unconnected
421 +    // 1 = bonded together
422 +    // 2 = connected via a bend
423 +    // 3 = connected via a torsion
424 +    
425 +    vdwScale_.reserve(4);
426 +    fill(vdwScale_.begin(), vdwScale_.end(), 0.0);
427 +
428 +    electrostaticScale_.reserve(4);
429 +    fill(electrostaticScale_.begin(), electrostaticScale_.end(), 0.0);
430 +
431 +    vdwScale_[0] = 1.0;
432 +    vdwScale_[1] = fopts.getvdw12scale();
433 +    vdwScale_[2] = fopts.getvdw13scale();
434 +    vdwScale_[3] = fopts.getvdw14scale();
435 +    
436 +    electrostaticScale_[0] = 1.0;
437 +    electrostaticScale_[1] = fopts.getelectrostatic12scale();
438 +    electrostaticScale_[2] = fopts.getelectrostatic13scale();
439 +    electrostaticScale_[3] = fopts.getelectrostatic14scale();    
440 +    
441 +    if (info_->getSimParams()->haveElectricField()) {
442 +      ElectricField* eField = new ElectricField(info_);
443 +      perturbations_.push_back(eField);
444 +    }
445 +
446 +    usePeriodicBoundaryConditions_ = info_->getSimParams()->getUsePeriodicBoundaryConditions();
447 +    
448 +    fDecomp_->distributeInitialData();
449 +    
450 +    initialized_ = true;
451 +    
452 +  }
453 +  
454 +  void ForceManager::calcForces() {
455 +    
456 +    if (!initialized_) initialize();
457 +    
458 +    preCalculation();  
459 +    shortRangeInteractions();
460 +    longRangeInteractions();
461 +    postCalculation();    
462 +  }
463 +  
464    void ForceManager::preCalculation() {
465      SimInfo::MoleculeIterator mi;
466      Molecule* mol;
# Line 87 | Line 468 | namespace OpenMD {
468      Atom* atom;
469      Molecule::RigidBodyIterator rbIter;
470      RigidBody* rb;
471 +    Molecule::CutoffGroupIterator ci;
472 +    CutoffGroup* cg;
473      
474 <    // forces are zeroed here, before any are accumulated.
475 <    // NOTE: do not rezero the forces in Fortran.
474 >    // forces and potentials are zeroed here, before any are
475 >    // accumulated.
476      
477 +    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
478 +
479 +    snap->setBondPotential(0.0);
480 +    snap->setBendPotential(0.0);
481 +    snap->setTorsionPotential(0.0);
482 +    snap->setInversionPotential(0.0);
483 +
484 +    potVec zeroPot(0.0);
485 +    snap->setLongRangePotential(zeroPot);
486 +    snap->setExcludedPotentials(zeroPot);
487 +
488 +    snap->setRestraintPotential(0.0);
489 +    snap->setRawPotential(0.0);
490 +
491      for (mol = info_->beginMolecule(mi); mol != NULL;
492           mol = info_->nextMolecule(mi)) {
493 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
493 >      for(atom = mol->beginAtom(ai); atom != NULL;
494 >          atom = mol->nextAtom(ai)) {
495          atom->zeroForcesAndTorques();
496        }
497 <          
497 >      
498        //change the positions of atoms which belong to the rigidbodies
499        for (rb = mol->beginRigidBody(rbIter); rb != NULL;
500             rb = mol->nextRigidBody(rbIter)) {
501          rb->zeroForcesAndTorques();
502        }        
503 <          
503 >      
504 >      if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){
505 >        for(cg = mol->beginCutoffGroup(ci); cg != NULL;
506 >            cg = mol->nextCutoffGroup(ci)) {
507 >          //calculate the center of mass of cutoff group
508 >          cg->updateCOM();
509 >        }
510 >      }      
511      }
512      
513      // Zero out the stress tensor
514 <    tau *= 0.0;
515 <    
514 >    stressTensor *= 0.0;
515 >    // Zero out the heatFlux
516 >    fDecomp_->setHeatFlux( Vector3d(0.0) );    
517    }
518    
519 <  void ForceManager::calcShortRangeInteraction() {
519 >  void ForceManager::shortRangeInteractions() {
520      Molecule* mol;
521      RigidBody* rb;
522      Bond* bond;
# Line 140 | Line 546 | namespace OpenMD {
546  
547        for (bond = mol->beginBond(bondIter); bond != NULL;
548             bond = mol->nextBond(bondIter)) {
549 <        bond->calcForce();
549 >        bond->calcForce(doParticlePot_);
550          bondPotential += bond->getPotential();
551        }
552  
# Line 148 | Line 554 | namespace OpenMD {
554             bend = mol->nextBend(bendIter)) {
555          
556          RealType angle;
557 <        bend->calcForce(angle);
557 >        bend->calcForce(angle, doParticlePot_);
558          RealType currBendPot = bend->getPotential();          
559          
560          bendPotential += bend->getPotential();
561 <        std::map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend);
561 >        map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend);
562          if (i == bendDataSets.end()) {
563            BendDataSet dataSet;
564            dataSet.prev.angle = dataSet.curr.angle = angle;
565            dataSet.prev.potential = dataSet.curr.potential = currBendPot;
566            dataSet.deltaV = 0.0;
567 <          bendDataSets.insert(std::map<Bend*, BendDataSet>::value_type(bend, dataSet));
567 >          bendDataSets.insert(map<Bend*, BendDataSet>::value_type(bend,
568 >                                                                  dataSet));
569          }else {
570            i->second.prev.angle = i->second.curr.angle;
571            i->second.prev.potential = i->second.curr.potential;
# Line 172 | Line 579 | namespace OpenMD {
579        for (torsion = mol->beginTorsion(torsionIter); torsion != NULL;
580             torsion = mol->nextTorsion(torsionIter)) {
581          RealType angle;
582 <        torsion->calcForce(angle);
582 >        torsion->calcForce(angle, doParticlePot_);
583          RealType currTorsionPot = torsion->getPotential();
584          torsionPotential += torsion->getPotential();
585 <        std::map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion);
585 >        map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion);
586          if (i == torsionDataSets.end()) {
587            TorsionDataSet dataSet;
588            dataSet.prev.angle = dataSet.curr.angle = angle;
589            dataSet.prev.potential = dataSet.curr.potential = currTorsionPot;
590            dataSet.deltaV = 0.0;
591 <          torsionDataSets.insert(std::map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet));
591 >          torsionDataSets.insert(map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet));
592          }else {
593            i->second.prev.angle = i->second.curr.angle;
594            i->second.prev.potential = i->second.curr.potential;
# Line 191 | Line 598 | namespace OpenMD {
598                                     i->second.prev.potential);
599          }      
600        }      
601 <
601 >      
602        for (inversion = mol->beginInversion(inversionIter);
603             inversion != NULL;
604             inversion = mol->nextInversion(inversionIter)) {
605          RealType angle;
606 <        inversion->calcForce(angle);
606 >        inversion->calcForce(angle, doParticlePot_);
607          RealType currInversionPot = inversion->getPotential();
608          inversionPotential += inversion->getPotential();
609 <        std::map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion);
609 >        map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion);
610          if (i == inversionDataSets.end()) {
611            InversionDataSet dataSet;
612            dataSet.prev.angle = dataSet.curr.angle = angle;
613            dataSet.prev.potential = dataSet.curr.potential = currInversionPot;
614            dataSet.deltaV = 0.0;
615 <          inversionDataSets.insert(std::map<Inversion*, InversionDataSet>::value_type(inversion, dataSet));
615 >          inversionDataSets.insert(map<Inversion*, InversionDataSet>::value_type(inversion, dataSet));
616          }else {
617            i->second.prev.angle = i->second.curr.angle;
618            i->second.prev.potential = i->second.curr.potential;
# Line 216 | Line 623 | namespace OpenMD {
623          }      
624        }      
625      }
626 <    
627 <    RealType  shortRangePotential = bondPotential + bendPotential +
628 <      torsionPotential +  inversionPotential;    
626 >
627 > #ifdef IS_MPI
628 >    // Collect from all nodes.  This should eventually be moved into a
629 >    // SystemDecomposition, but this is a better place than in
630 >    // Thermo to do the collection.
631 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &bondPotential, 1, MPI::REALTYPE,
632 >                              MPI::SUM);
633 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &bendPotential, 1, MPI::REALTYPE,
634 >                              MPI::SUM);
635 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &torsionPotential, 1,
636 >                              MPI::REALTYPE, MPI::SUM);
637 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &inversionPotential, 1,
638 >                              MPI::REALTYPE, MPI::SUM);
639 > #endif
640 >
641      Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
642 <    curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential;
643 <    curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential;
644 <    curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential;
645 <    curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential;
646 <    curSnapshot->statData[Stats::INVERSION_POTENTIAL] = inversionPotential;
642 >
643 >    curSnapshot->setBondPotential(bondPotential);
644 >    curSnapshot->setBendPotential(bendPotential);
645 >    curSnapshot->setTorsionPotential(torsionPotential);
646 >    curSnapshot->setInversionPotential(inversionPotential);
647      
648 +    // RealType shortRangePotential = bondPotential + bendPotential +
649 +    //   torsionPotential +  inversionPotential;    
650 +
651 +    // curSnapshot->setShortRangePotential(shortRangePotential);
652    }
653    
654 <  void ForceManager::calcLongRangeInteraction() {
232 <    Snapshot* curSnapshot;
233 <    DataStorage* config;
234 <    RealType* frc;
235 <    RealType* pos;
236 <    RealType* trq;
237 <    RealType* A;
238 <    RealType* electroFrame;
239 <    RealType* rc;
240 <    RealType* particlePot;
241 <    
242 <    //get current snapshot from SimInfo
243 <    curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
244 <    
245 <    //get array pointers
246 <    config = &(curSnapshot->atomData);
247 <    frc = config->getArrayPointer(DataStorage::dslForce);
248 <    pos = config->getArrayPointer(DataStorage::dslPosition);
249 <    trq = config->getArrayPointer(DataStorage::dslTorque);
250 <    A   = config->getArrayPointer(DataStorage::dslAmat);
251 <    electroFrame = config->getArrayPointer(DataStorage::dslElectroFrame);
252 <    particlePot = config->getArrayPointer(DataStorage::dslParticlePot);
654 >  void ForceManager::longRangeInteractions() {
655  
656 +
657 +    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
658 +    DataStorage* config = &(curSnapshot->atomData);
659 +    DataStorage* cgConfig = &(curSnapshot->cgData);
660 +
661      //calculate the center of mass of cutoff group
662 +
663      SimInfo::MoleculeIterator mi;
664      Molecule* mol;
665      Molecule::CutoffGroupIterator ci;
666      CutoffGroup* cg;
667 <    Vector3d com;
668 <    std::vector<Vector3d> rcGroup;
261 <    
262 <    if(info_->getNCutoffGroups() > 0){
263 <      
667 >
668 >    if(info_->getNCutoffGroups() > 0){      
669        for (mol = info_->beginMolecule(mi); mol != NULL;
670             mol = info_->nextMolecule(mi)) {
671          for(cg = mol->beginCutoffGroup(ci); cg != NULL;
672              cg = mol->nextCutoffGroup(ci)) {
673 <          cg->getCOM(com);
269 <          rcGroup.push_back(com);
673 >          cg->updateCOM();
674          }
675 <      }// end for (mol)
272 <      
273 <      rc = rcGroup[0].getArrayPointer();
675 >      }      
676      } else {
677        // center of mass of the group is the same as position of the atom  
678        // if cutoff group does not exist
679 <      rc = pos;
679 >      cgConfig->position = config->position;
680 >      cgConfig->velocity = config->velocity;
681      }
682 +
683 +    fDecomp_->zeroWorkArrays();
684 +    fDecomp_->distributeData();
685      
686 <    //initialize data before passing to fortran
687 <    RealType longRangePotential[LR_POT_TYPES];
688 <    RealType lrPot = 0.0;
689 <    int isError = 0;
686 >    int cg1, cg2, atom1, atom2, topoDist;
687 >    Vector3d d_grp, dag, d, gvel2, vel2;
688 >    RealType rgrpsq, rgrp, r2, r;
689 >    RealType electroMult, vdwMult;
690 >    RealType vij;
691 >    Vector3d fij, fg, f1;
692 >    tuple3<RealType, RealType, RealType> cuts;
693 >    RealType rCutSq;
694 >    bool in_switching_region;
695 >    RealType sw, dswdr, swderiv;
696 >    vector<int> atomListColumn, atomListRow, atomListLocal;
697 >    InteractionData idat;
698 >    SelfData sdat;
699 >    RealType mf;
700 >    RealType vpair;
701 >    RealType dVdFQ1(0.0);
702 >    RealType dVdFQ2(0.0);
703 >    potVec longRangePotential(0.0);
704 >    potVec workPot(0.0);
705 >    potVec exPot(0.0);
706 >    Vector3d eField1(0.0);
707 >    Vector3d eField2(0.0);
708 >    vector<int>::iterator ia, jb;
709  
710 <    for (int i=0; i<LR_POT_TYPES;i++){
711 <      longRangePotential[i]=0.0; //Initialize array
712 <    }
710 >    int loopStart, loopEnd;
711 >
712 >    idat.vdwMult = &vdwMult;
713 >    idat.electroMult = &electroMult;
714 >    idat.pot = &workPot;
715 >    idat.excludedPot = &exPot;
716 >    sdat.pot = fDecomp_->getEmbeddingPotential();
717 >    sdat.excludedPot = fDecomp_->getExcludedSelfPotential();
718 >    idat.vpair = &vpair;
719 >    idat.dVdFQ1 = &dVdFQ1;
720 >    idat.dVdFQ2 = &dVdFQ2;
721 >    idat.eField1 = &eField1;
722 >    idat.eField2 = &eField2;  
723 >    idat.f1 = &f1;
724 >    idat.sw = &sw;
725 >    idat.shiftedPot = (cutoffMethod_ == SHIFTED_POTENTIAL) ? true : false;
726 >    idat.shiftedForce = (cutoffMethod_ == SHIFTED_FORCE) ? true : false;
727 >    idat.doParticlePot = doParticlePot_;
728 >    idat.doElectricField = doElectricField_;
729 >    sdat.doParticlePot = doParticlePot_;
730      
731 <    doForceLoop(pos,
732 <                rc,
733 <                A,
734 <                electroFrame,
735 <                frc,
294 <                trq,
295 <                tau.getArrayPointer(),
296 <                longRangePotential,
297 <                particlePot,
298 <                &isError );
299 <    
300 <    if( isError ){
301 <      sprintf( painCave.errMsg,
302 <               "Error returned from the fortran force calculation.\n" );
303 <      painCave.isFatal = 1;
304 <      simError();
731 >    loopEnd = PAIR_LOOP;
732 >    if (info_->requiresPrepair() ) {
733 >      loopStart = PREPAIR_LOOP;
734 >    } else {
735 >      loopStart = PAIR_LOOP;
736      }
737 <    for (int i=0; i<LR_POT_TYPES;i++){
738 <      lrPot += longRangePotential[i]; //Quick hack
737 >    for (int iLoop = loopStart; iLoop <= loopEnd; iLoop++) {
738 >    
739 >      if (iLoop == loopStart) {
740 >        bool update_nlist = fDecomp_->checkNeighborList();
741 >        if (update_nlist) {
742 >          if (!usePeriodicBoundaryConditions_)
743 >            Mat3x3d bbox = thermo->getBoundingBox();
744 >          neighborList = fDecomp_->buildNeighborList();
745 >        }
746 >      }
747 >
748 >      for (vector<pair<int, int> >::iterator it = neighborList.begin();
749 >             it != neighborList.end(); ++it) {
750 >                
751 >        cg1 = (*it).first;
752 >        cg2 = (*it).second;
753 >        
754 >        cuts = fDecomp_->getGroupCutoffs(cg1, cg2);
755 >
756 >        d_grp  = fDecomp_->getIntergroupVector(cg1, cg2);
757 >
758 >        curSnapshot->wrapVector(d_grp);        
759 >        rgrpsq = d_grp.lengthSquare();
760 >        rCutSq = cuts.second;
761 >
762 >        if (rgrpsq < rCutSq) {
763 >          idat.rcut = &cuts.first;
764 >          if (iLoop == PAIR_LOOP) {
765 >            vij = 0.0;
766 >            fij = V3Zero;
767 >            eField1 = V3Zero;
768 >            eField2 = V3Zero;
769 >          }
770 >          
771 >          in_switching_region = switcher_->getSwitch(rgrpsq, sw, dswdr,
772 >                                                     rgrp);
773 >
774 >          atomListRow = fDecomp_->getAtomsInGroupRow(cg1);
775 >          atomListColumn = fDecomp_->getAtomsInGroupColumn(cg2);
776 >
777 >          if (doHeatFlux_)
778 >            gvel2 = fDecomp_->getGroupVelocityColumn(cg2);
779 >
780 >          for (ia = atomListRow.begin();
781 >               ia != atomListRow.end(); ++ia) {            
782 >            atom1 = (*ia);
783 >
784 >            for (jb = atomListColumn.begin();
785 >                 jb != atomListColumn.end(); ++jb) {              
786 >              atom2 = (*jb);
787 >
788 >              if (!fDecomp_->skipAtomPair(atom1, atom2, cg1, cg2)) {
789 >
790 >                vpair = 0.0;
791 >                workPot = 0.0;
792 >                exPot = 0.0;
793 >                f1 = V3Zero;
794 >                dVdFQ1 = 0.0;
795 >                dVdFQ2 = 0.0;
796 >
797 >                fDecomp_->fillInteractionData(idat, atom1, atom2);
798 >
799 >                topoDist = fDecomp_->getTopologicalDistance(atom1, atom2);
800 >                vdwMult = vdwScale_[topoDist];
801 >                electroMult = electrostaticScale_[topoDist];
802 >
803 >                if (atomListRow.size() == 1 && atomListColumn.size() == 1) {
804 >                  idat.d = &d_grp;
805 >                  idat.r2 = &rgrpsq;
806 >                  if (doHeatFlux_)
807 >                    vel2 = gvel2;
808 >                } else {
809 >                  d = fDecomp_->getInteratomicVector(atom1, atom2);
810 >                  curSnapshot->wrapVector( d );
811 >                  r2 = d.lengthSquare();
812 >                  idat.d = &d;
813 >                  idat.r2 = &r2;
814 >                  if (doHeatFlux_)
815 >                    vel2 = fDecomp_->getAtomVelocityColumn(atom2);
816 >                }
817 >              
818 >                r = sqrt( *(idat.r2) );
819 >                idat.rij = &r;
820 >              
821 >                if (iLoop == PREPAIR_LOOP) {
822 >                  interactionMan_->doPrePair(idat);
823 >                } else {
824 >                  interactionMan_->doPair(idat);
825 >                  fDecomp_->unpackInteractionData(idat, atom1, atom2);
826 >                  vij += vpair;
827 >                  fij += f1;
828 >                  stressTensor -= outProduct( *(idat.d), f1);
829 >                  if (doHeatFlux_)
830 >                    fDecomp_->addToHeatFlux(*(idat.d) * dot(f1, vel2));
831 >                }
832 >              }
833 >            }
834 >          }
835 >
836 >          if (iLoop == PAIR_LOOP) {
837 >            if (in_switching_region) {
838 >              swderiv = vij * dswdr / rgrp;
839 >              fg = swderiv * d_grp;
840 >              fij += fg;
841 >
842 >              if (atomListRow.size() == 1 && atomListColumn.size() == 1) {
843 >                if (!fDecomp_->skipAtomPair(atomListRow[0],
844 >                                            atomListColumn[0],
845 >                                            cg1, cg2)) {
846 >                  stressTensor -= outProduct( *(idat.d), fg);
847 >                  if (doHeatFlux_)
848 >                    fDecomp_->addToHeatFlux(*(idat.d) * dot(fg, vel2));
849 >                }                
850 >              }
851 >          
852 >              for (ia = atomListRow.begin();
853 >                   ia != atomListRow.end(); ++ia) {            
854 >                atom1 = (*ia);                
855 >                mf = fDecomp_->getMassFactorRow(atom1);
856 >                // fg is the force on atom ia due to cutoff group's
857 >                // presence in switching region
858 >                fg = swderiv * d_grp * mf;
859 >                fDecomp_->addForceToAtomRow(atom1, fg);
860 >                if (atomListRow.size() > 1) {
861 >                  if (info_->usesAtomicVirial()) {
862 >                    // find the distance between the atom
863 >                    // and the center of the cutoff group:
864 >                    dag = fDecomp_->getAtomToGroupVectorRow(atom1, cg1);
865 >                    stressTensor -= outProduct(dag, fg);
866 >                    if (doHeatFlux_)
867 >                      fDecomp_->addToHeatFlux( dag * dot(fg, vel2));
868 >                  }
869 >                }
870 >              }
871 >              for (jb = atomListColumn.begin();
872 >                   jb != atomListColumn.end(); ++jb) {              
873 >                atom2 = (*jb);
874 >                mf = fDecomp_->getMassFactorColumn(atom2);
875 >                // fg is the force on atom jb due to cutoff group's
876 >                // presence in switching region
877 >                fg = -swderiv * d_grp * mf;
878 >                fDecomp_->addForceToAtomColumn(atom2, fg);
879 >
880 >                if (atomListColumn.size() > 1) {
881 >                  if (info_->usesAtomicVirial()) {
882 >                    // find the distance between the atom
883 >                    // and the center of the cutoff group:
884 >                    dag = fDecomp_->getAtomToGroupVectorColumn(atom2, cg2);
885 >                    stressTensor -= outProduct(dag, fg);
886 >                    if (doHeatFlux_)
887 >                      fDecomp_->addToHeatFlux( dag * dot(fg, vel2));
888 >                  }
889 >                }
890 >              }
891 >            }
892 >            //if (!info_->usesAtomicVirial()) {
893 >            //  stressTensor -= outProduct(d_grp, fij);
894 >            //  if (doHeatFlux_)
895 >            //     fDecomp_->addToHeatFlux( d_grp * dot(fij, vel2));
896 >            //}
897 >          }
898 >        }
899 >      }
900 >
901 >      if (iLoop == PREPAIR_LOOP) {
902 >        if (info_->requiresPrepair()) {
903 >
904 >          fDecomp_->collectIntermediateData();
905 >
906 >          for (unsigned int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) {
907 >            fDecomp_->fillSelfData(sdat, atom1);
908 >            interactionMan_->doPreForce(sdat);
909 >          }
910 >
911 >          fDecomp_->distributeIntermediateData();
912 >
913 >        }
914 >      }
915      }
916 +    
917 +    // collects pairwise information
918 +    fDecomp_->collectData();
919          
920 <    //store the tau and long range potential    
921 <    curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot;
922 <    curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VDW_POT];
923 <    curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_POT];
920 >    if (info_->requiresSelfCorrection()) {
921 >      for (unsigned int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) {
922 >        fDecomp_->fillSelfData(sdat, atom1);
923 >        interactionMan_->doSelfCorrection(sdat);
924 >      }
925 >    }
926 >
927 >    // collects single-atom information
928 >    fDecomp_->collectSelfData();
929 >
930 >    longRangePotential = *(fDecomp_->getEmbeddingPotential()) +
931 >      *(fDecomp_->getPairwisePotential());
932 >
933 >    curSnapshot->setLongRangePotential(longRangePotential);
934 >    
935 >    curSnapshot->setExcludedPotentials(*(fDecomp_->getExcludedSelfPotential()) +
936 >                                         *(fDecomp_->getExcludedPotential()));
937 >
938    }
939  
940    
941    void ForceManager::postCalculation() {
942 +
943 +    vector<Perturbation*>::iterator pi;
944 +    for (pi = perturbations_.begin(); pi != perturbations_.end(); ++pi) {
945 +      (*pi)->applyPerturbation();
946 +    }
947 +
948      SimInfo::MoleculeIterator mi;
949      Molecule* mol;
950      Molecule::RigidBodyIterator rbIter;
951      RigidBody* rb;
952      Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
953 <    
953 >  
954      // collect the atomic forces onto rigid bodies
955      
956      for (mol = info_->beginMolecule(mi); mol != NULL;
# Line 328 | Line 958 | namespace OpenMD {
958        for (rb = mol->beginRigidBody(rbIter); rb != NULL;
959             rb = mol->nextRigidBody(rbIter)) {
960          Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial();
961 <        tau += rbTau;
961 >        stressTensor += rbTau;
962        }
963      }
964      
965   #ifdef IS_MPI
966 <    Mat3x3d tmpTau(tau);
967 <    MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(),
338 <                  9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
966 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, stressTensor.getArrayPointer(), 9,
967 >                              MPI::REALTYPE, MPI::SUM);
968   #endif
969 <    curSnapshot->statData.setTau(tau);
970 <  }
969 >    curSnapshot->setStressTensor(stressTensor);
970 >    
971 >    if (info_->getSimParams()->getUseLongRangeCorrections()) {
972 >      /*
973 >      RealType vol = curSnapshot->getVolume();
974 >      RealType Elrc(0.0);
975 >      RealType Wlrc(0.0);
976  
977 < } //end namespace OpenMD
977 >      set<AtomType*>::iterator i;
978 >      set<AtomType*>::iterator j;
979 >    
980 >      RealType n_i, n_j;
981 >      RealType rho_i, rho_j;
982 >      pair<RealType, RealType> LRI;
983 >      
984 >      for (i = atomTypes_.begin(); i != atomTypes_.end(); ++i) {
985 >        n_i = RealType(info_->getGlobalCountOfType(*i));
986 >        rho_i = n_i /  vol;
987 >        for (j = atomTypes_.begin(); j != atomTypes_.end(); ++j) {
988 >          n_j = RealType(info_->getGlobalCountOfType(*j));
989 >          rho_j = n_j / vol;
990 >          
991 >          LRI = interactionMan_->getLongRangeIntegrals( (*i), (*j) );
992 >
993 >          Elrc += n_i   * rho_j * LRI.first;
994 >          Wlrc -= rho_i * rho_j * LRI.second;
995 >        }
996 >      }
997 >      Elrc *= 2.0 * NumericConstant::PI;
998 >      Wlrc *= 2.0 * NumericConstant::PI;
999 >
1000 >      RealType lrp = curSnapshot->getLongRangePotential();
1001 >      curSnapshot->setLongRangePotential(lrp + Elrc);
1002 >      stressTensor += Wlrc * SquareMatrix3<RealType>::identity();
1003 >      curSnapshot->setStressTensor(stressTensor);
1004 >      */
1005 >    
1006 >    }
1007 >  }
1008 > }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines