6 |
|
* redistribute this software in source and binary code form, provided |
7 |
|
* that the following conditions are met: |
8 |
|
* |
9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
10 |
< |
* publication of scientific results based in part on use of the |
11 |
< |
* program. An acceptable form of acknowledgement is citation of |
12 |
< |
* the article in which the program was described (Matthew |
13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
< |
* |
18 |
< |
* 2. Redistributions of source code must retain the above copyright |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
* |
12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
* documentation and/or other materials provided with the |
15 |
|
* distribution. |
28 |
|
* arising out of the use of or inability to use software, even if the |
29 |
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
+ |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
|
*/ |
41 |
|
|
42 |
|
/** |
50 |
|
#include "brains/ForceManager.hpp" |
51 |
|
#include "primitives/Molecule.hpp" |
52 |
|
#include "UseTheForce/doForces_interface.h" |
53 |
< |
#define __C |
53 |
> |
#define __OPENMD_C |
54 |
|
#include "UseTheForce/DarkSide/fInteractionMap.h" |
55 |
|
#include "utils/simError.h" |
56 |
+ |
#include "primitives/Bond.hpp" |
57 |
|
#include "primitives/Bend.hpp" |
58 |
< |
#include "primitives/Bend.hpp" |
59 |
< |
namespace oopse { |
58 |
> |
#include "primitives/Torsion.hpp" |
59 |
> |
#include "primitives/Inversion.hpp" |
60 |
> |
#include "parallel/ForceDecomposition.hpp" |
61 |
> |
//#include "parallel/SerialDecomposition.hpp" |
62 |
|
|
63 |
< |
void ForceManager::calcForces(bool needPotential, bool needStress) { |
63 |
> |
namespace OpenMD { |
64 |
> |
|
65 |
> |
ForceManager::ForceManager(SimInfo * info) : info_(info), |
66 |
> |
NBforcesInitialized_(false) { |
67 |
> |
#ifdef IS_MPI |
68 |
> |
decomp_ = new ForceDecomposition(info_); |
69 |
> |
#else |
70 |
> |
// decomp_ = new SerialDecomposition(info); |
71 |
> |
#endif |
72 |
> |
} |
73 |
> |
|
74 |
> |
void ForceManager::calcForces() { |
75 |
|
|
76 |
+ |
|
77 |
|
if (!info_->isFortranInitialized()) { |
78 |
|
info_->update(); |
79 |
+ |
nbiMan_->setSimInfo(info_); |
80 |
+ |
nbiMan_->initialize(); |
81 |
+ |
decomp_->distributeInitialData(); |
82 |
+ |
info_->setupFortran(); |
83 |
|
} |
84 |
|
|
85 |
< |
preCalculation(); |
67 |
< |
|
85 |
> |
preCalculation(); |
86 |
|
calcShortRangeInteraction(); |
87 |
< |
|
88 |
< |
calcLongRangeInteraction(needPotential, needStress); |
71 |
< |
|
72 |
< |
postCalculation(needStress); |
87 |
> |
calcLongRangeInteraction(); |
88 |
> |
postCalculation(); |
89 |
|
|
90 |
|
} |
91 |
|
|
96 |
|
Atom* atom; |
97 |
|
Molecule::RigidBodyIterator rbIter; |
98 |
|
RigidBody* rb; |
99 |
+ |
Molecule::CutoffGroupIterator ci; |
100 |
+ |
CutoffGroup* cg; |
101 |
|
|
102 |
|
// forces are zeroed here, before any are accumulated. |
103 |
|
// NOTE: do not rezero the forces in Fortran. |
104 |
< |
|
104 |
> |
|
105 |
|
for (mol = info_->beginMolecule(mi); mol != NULL; |
106 |
|
mol = info_->nextMolecule(mi)) { |
107 |
|
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
108 |
|
atom->zeroForcesAndTorques(); |
109 |
|
} |
110 |
< |
|
110 |
> |
|
111 |
|
//change the positions of atoms which belong to the rigidbodies |
112 |
|
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
113 |
|
rb = mol->nextRigidBody(rbIter)) { |
114 |
|
rb->zeroForcesAndTorques(); |
115 |
|
} |
116 |
+ |
|
117 |
+ |
if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){ |
118 |
+ |
std::cerr << "should not see me \n"; |
119 |
+ |
for(cg = mol->beginCutoffGroup(ci); cg != NULL; |
120 |
+ |
cg = mol->nextCutoffGroup(ci)) { |
121 |
+ |
//calculate the center of mass of cutoff group |
122 |
+ |
cg->updateCOM(); |
123 |
+ |
} |
124 |
+ |
} |
125 |
|
} |
126 |
< |
|
126 |
> |
|
127 |
|
// Zero out the stress tensor |
128 |
|
tau *= 0.0; |
129 |
|
|
135 |
|
Bond* bond; |
136 |
|
Bend* bend; |
137 |
|
Torsion* torsion; |
138 |
+ |
Inversion* inversion; |
139 |
|
SimInfo::MoleculeIterator mi; |
140 |
|
Molecule::RigidBodyIterator rbIter; |
141 |
|
Molecule::BondIterator bondIter;; |
142 |
|
Molecule::BendIterator bendIter; |
143 |
|
Molecule::TorsionIterator torsionIter; |
144 |
+ |
Molecule::InversionIterator inversionIter; |
145 |
|
RealType bondPotential = 0.0; |
146 |
|
RealType bendPotential = 0.0; |
147 |
|
RealType torsionPotential = 0.0; |
148 |
+ |
RealType inversionPotential = 0.0; |
149 |
|
|
150 |
|
//calculate short range interactions |
151 |
|
for (mol = info_->beginMolecule(mi); mol != NULL; |
169 |
|
RealType angle; |
170 |
|
bend->calcForce(angle); |
171 |
|
RealType currBendPot = bend->getPotential(); |
172 |
+ |
|
173 |
|
bendPotential += bend->getPotential(); |
174 |
|
std::map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend); |
175 |
|
if (i == bendDataSets.end()) { |
210 |
|
i->second.prev.potential); |
211 |
|
} |
212 |
|
} |
213 |
+ |
|
214 |
+ |
for (inversion = mol->beginInversion(inversionIter); |
215 |
+ |
inversion != NULL; |
216 |
+ |
inversion = mol->nextInversion(inversionIter)) { |
217 |
+ |
RealType angle; |
218 |
+ |
inversion->calcForce(angle); |
219 |
+ |
RealType currInversionPot = inversion->getPotential(); |
220 |
+ |
inversionPotential += inversion->getPotential(); |
221 |
+ |
std::map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion); |
222 |
+ |
if (i == inversionDataSets.end()) { |
223 |
+ |
InversionDataSet dataSet; |
224 |
+ |
dataSet.prev.angle = dataSet.curr.angle = angle; |
225 |
+ |
dataSet.prev.potential = dataSet.curr.potential = currInversionPot; |
226 |
+ |
dataSet.deltaV = 0.0; |
227 |
+ |
inversionDataSets.insert(std::map<Inversion*, InversionDataSet>::value_type(inversion, dataSet)); |
228 |
+ |
}else { |
229 |
+ |
i->second.prev.angle = i->second.curr.angle; |
230 |
+ |
i->second.prev.potential = i->second.curr.potential; |
231 |
+ |
i->second.curr.angle = angle; |
232 |
+ |
i->second.curr.potential = currInversionPot; |
233 |
+ |
i->second.deltaV = fabs(i->second.curr.potential - |
234 |
+ |
i->second.prev.potential); |
235 |
+ |
} |
236 |
+ |
} |
237 |
|
} |
238 |
|
|
239 |
|
RealType shortRangePotential = bondPotential + bendPotential + |
240 |
< |
torsionPotential; |
240 |
> |
torsionPotential + inversionPotential; |
241 |
|
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
242 |
|
curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential; |
243 |
|
curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential; |
244 |
|
curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential; |
245 |
|
curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential; |
246 |
+ |
curSnapshot->statData[Stats::INVERSION_POTENTIAL] = inversionPotential; |
247 |
|
|
248 |
|
} |
249 |
|
|
250 |
< |
void ForceManager::calcLongRangeInteraction(bool needPotential, |
195 |
< |
bool needStress) { |
250 |
> |
void ForceManager::calcLongRangeInteraction() { |
251 |
|
Snapshot* curSnapshot; |
252 |
|
DataStorage* config; |
253 |
+ |
DataStorage* cgConfig; |
254 |
|
RealType* frc; |
255 |
|
RealType* pos; |
256 |
|
RealType* trq; |
257 |
|
RealType* A; |
258 |
|
RealType* electroFrame; |
259 |
|
RealType* rc; |
260 |
+ |
RealType* particlePot; |
261 |
|
|
262 |
|
//get current snapshot from SimInfo |
263 |
|
curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
264 |
|
|
265 |
|
//get array pointers |
266 |
|
config = &(curSnapshot->atomData); |
267 |
+ |
cgConfig = &(curSnapshot->cgData); |
268 |
|
frc = config->getArrayPointer(DataStorage::dslForce); |
269 |
|
pos = config->getArrayPointer(DataStorage::dslPosition); |
270 |
|
trq = config->getArrayPointer(DataStorage::dslTorque); |
271 |
|
A = config->getArrayPointer(DataStorage::dslAmat); |
272 |
|
electroFrame = config->getArrayPointer(DataStorage::dslElectroFrame); |
273 |
+ |
particlePot = config->getArrayPointer(DataStorage::dslParticlePot); |
274 |
|
|
275 |
< |
//calculate the center of mass of cutoff group |
276 |
< |
SimInfo::MoleculeIterator mi; |
277 |
< |
Molecule* mol; |
219 |
< |
Molecule::CutoffGroupIterator ci; |
220 |
< |
CutoffGroup* cg; |
221 |
< |
Vector3d com; |
222 |
< |
std::vector<Vector3d> rcGroup; |
223 |
< |
|
224 |
< |
if(info_->getNCutoffGroups() > 0){ |
225 |
< |
|
226 |
< |
for (mol = info_->beginMolecule(mi); mol != NULL; |
227 |
< |
mol = info_->nextMolecule(mi)) { |
228 |
< |
for(cg = mol->beginCutoffGroup(ci); cg != NULL; |
229 |
< |
cg = mol->nextCutoffGroup(ci)) { |
230 |
< |
cg->getCOM(com); |
231 |
< |
rcGroup.push_back(com); |
232 |
< |
} |
233 |
< |
}// end for (mol) |
234 |
< |
|
235 |
< |
rc = rcGroup[0].getArrayPointer(); |
275 |
> |
if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){ |
276 |
> |
std::cerr << "should not see me \n"; |
277 |
> |
rc = cgConfig->getArrayPointer(DataStorage::dslPosition); |
278 |
|
} else { |
279 |
|
// center of mass of the group is the same as position of the atom |
280 |
|
// if cutoff group does not exist |
284 |
|
//initialize data before passing to fortran |
285 |
|
RealType longRangePotential[LR_POT_TYPES]; |
286 |
|
RealType lrPot = 0.0; |
245 |
– |
Vector3d totalDipole; |
246 |
– |
short int passedCalcPot = needPotential; |
247 |
– |
short int passedCalcStress = needStress; |
287 |
|
int isError = 0; |
288 |
|
|
289 |
|
for (int i=0; i<LR_POT_TYPES;i++){ |
290 |
|
longRangePotential[i]=0.0; //Initialize array |
291 |
|
} |
292 |
|
|
293 |
< |
doForceLoop( pos, |
255 |
< |
rc, |
256 |
< |
A, |
257 |
< |
electroFrame, |
258 |
< |
frc, |
259 |
< |
trq, |
260 |
< |
tau.getArrayPointer(), |
261 |
< |
longRangePotential, |
262 |
< |
&passedCalcPot, |
263 |
< |
&passedCalcStress, |
264 |
< |
&isError ); |
293 |
> |
decomp_->distributeData(); |
294 |
|
|
295 |
+ |
int nLoops = 1; |
296 |
+ |
for (int iLoop = 0; iLoop < nLoops; iLoop++) { |
297 |
+ |
doForceLoop(pos, |
298 |
+ |
rc, |
299 |
+ |
A, |
300 |
+ |
electroFrame, |
301 |
+ |
frc, |
302 |
+ |
trq, |
303 |
+ |
tau.getArrayPointer(), |
304 |
+ |
longRangePotential, |
305 |
+ |
particlePot, |
306 |
+ |
&isError ); |
307 |
+ |
|
308 |
+ |
if (nLoops > 1) { |
309 |
+ |
decomp_->collectIntermediateData(); |
310 |
+ |
decomp_->distributeIntermediateData(); |
311 |
+ |
} |
312 |
+ |
} |
313 |
+ |
|
314 |
+ |
decomp_->collectData(); |
315 |
+ |
|
316 |
|
if( isError ){ |
317 |
|
sprintf( painCave.errMsg, |
318 |
|
"Error returned from the fortran force calculation.\n" ); |
322 |
|
for (int i=0; i<LR_POT_TYPES;i++){ |
323 |
|
lrPot += longRangePotential[i]; //Quick hack |
324 |
|
} |
325 |
< |
|
276 |
< |
// grab the simulation box dipole moment if specified |
277 |
< |
if (info_->getCalcBoxDipole()){ |
278 |
< |
getAccumulatedBoxDipole(totalDipole.getArrayPointer()); |
279 |
< |
|
280 |
< |
curSnapshot->statData[Stats::BOX_DIPOLE_X] = totalDipole(0); |
281 |
< |
curSnapshot->statData[Stats::BOX_DIPOLE_Y] = totalDipole(1); |
282 |
< |
curSnapshot->statData[Stats::BOX_DIPOLE_Z] = totalDipole(2); |
283 |
< |
} |
284 |
< |
|
325 |
> |
|
326 |
|
//store the tau and long range potential |
327 |
|
curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot; |
328 |
|
curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VDW_POT]; |
330 |
|
} |
331 |
|
|
332 |
|
|
333 |
< |
void ForceManager::postCalculation(bool needStress) { |
333 |
> |
void ForceManager::postCalculation() { |
334 |
|
SimInfo::MoleculeIterator mi; |
335 |
|
Molecule* mol; |
336 |
|
Molecule::RigidBodyIterator rbIter; |
343 |
|
mol = info_->nextMolecule(mi)) { |
344 |
|
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
345 |
|
rb = mol->nextRigidBody(rbIter)) { |
346 |
< |
if (needStress) { |
347 |
< |
Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial(); |
307 |
< |
tau += rbTau; |
308 |
< |
} else{ |
309 |
< |
rb->calcForcesAndTorques(); |
310 |
< |
} |
346 |
> |
Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial(); |
347 |
> |
tau += rbTau; |
348 |
|
} |
349 |
|
} |
350 |
< |
|
314 |
< |
if (needStress) { |
350 |
> |
|
351 |
|
#ifdef IS_MPI |
352 |
< |
Mat3x3d tmpTau(tau); |
353 |
< |
MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(), |
354 |
< |
9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
352 |
> |
Mat3x3d tmpTau(tau); |
353 |
> |
MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(), |
354 |
> |
9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
355 |
|
#endif |
356 |
< |
curSnapshot->statData.setTau(tau); |
321 |
< |
} |
356 |
> |
curSnapshot->statData.setTau(tau); |
357 |
|
} |
358 |
|
|
359 |
< |
} //end namespace oopse |
359 |
> |
} //end namespace OpenMD |