ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/ForceManager.cpp
(Generate patch)

Comparing:
trunk/src/brains/ForceManager.cpp (file contents), Revision 507 by gezelter, Fri Apr 15 22:04:00 2005 UTC vs.
branches/development/src/brains/ForceManager.cpp (file contents), Revision 1544 by gezelter, Fri Mar 18 19:31:52 2011 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42   /**
# Line 50 | Line 50
50   #include "brains/ForceManager.hpp"
51   #include "primitives/Molecule.hpp"
52   #include "UseTheForce/doForces_interface.h"
53 + #define __OPENMD_C
54 + #include "UseTheForce/DarkSide/fInteractionMap.h"
55   #include "utils/simError.h"
56 < namespace oopse {
56 > #include "primitives/Bond.hpp"
57 > #include "primitives/Bend.hpp"
58 > #include "primitives/Torsion.hpp"
59 > #include "primitives/Inversion.hpp"
60 > #include "parallel/ForceDecomposition.hpp"
61 > //#include "parallel/SerialDecomposition.hpp"
62  
63 <  void ForceManager::calcForces(bool needPotential, bool needStress) {
63 > namespace OpenMD {
64 >  
65 >  ForceManager::ForceManager(SimInfo * info) : info_(info),
66 >                                               NBforcesInitialized_(false) {
67 > #ifdef IS_MPI
68 >    decomp_ = new ForceDecomposition(info_);
69 > #else
70 >    //  decomp_ = new SerialDecomposition(info);
71 > #endif
72 >  }
73 >
74 >  void ForceManager::calcForces() {
75 >    
76  
77      if (!info_->isFortranInitialized()) {
78        info_->update();
79 +      nbiMan_->setSimInfo(info_);
80 +      nbiMan_->initialize();
81 +      decomp_->distributeInitialData();
82 +      info_->setupFortran();
83      }
61
62    preCalculation();
84      
85 +    preCalculation();  
86      calcShortRangeInteraction();
87 <
66 <    calcLongRangeInteraction(needPotential, needStress);
67 <
87 >    calcLongRangeInteraction();
88      postCalculation();
89 <        
89 >    
90    }
91 <
91 >  
92    void ForceManager::preCalculation() {
93      SimInfo::MoleculeIterator mi;
94      Molecule* mol;
# Line 76 | Line 96 | namespace oopse {
96      Atom* atom;
97      Molecule::RigidBodyIterator rbIter;
98      RigidBody* rb;
99 +    Molecule::CutoffGroupIterator ci;
100 +    CutoffGroup* cg;
101      
102      // forces are zeroed here, before any are accumulated.
103      // NOTE: do not rezero the forces in Fortran.
104 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
104 >    
105 >    for (mol = info_->beginMolecule(mi); mol != NULL;
106 >         mol = info_->nextMolecule(mi)) {
107        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
108          atom->zeroForcesAndTorques();
109        }
110 <        
110 >          
111        //change the positions of atoms which belong to the rigidbodies
112 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
112 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
113 >           rb = mol->nextRigidBody(rbIter)) {
114          rb->zeroForcesAndTorques();
115        }        
116 +
117 +      if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){
118 +        std::cerr << "should not see me \n";
119 +        for(cg = mol->beginCutoffGroup(ci); cg != NULL;
120 +            cg = mol->nextCutoffGroup(ci)) {
121 +          //calculate the center of mass of cutoff group
122 +          cg->updateCOM();
123 +        }
124 +      }      
125      }
126 +  
127 +    // Zero out the stress tensor
128 +    tau *= 0.0;
129      
130    }
131 <
131 >  
132    void ForceManager::calcShortRangeInteraction() {
133      Molecule* mol;
134      RigidBody* rb;
135      Bond* bond;
136      Bend* bend;
137      Torsion* torsion;
138 +    Inversion* inversion;
139      SimInfo::MoleculeIterator mi;
140      Molecule::RigidBodyIterator rbIter;
141      Molecule::BondIterator bondIter;;
142      Molecule::BendIterator  bendIter;
143      Molecule::TorsionIterator  torsionIter;
144 +    Molecule::InversionIterator  inversionIter;
145 +    RealType bondPotential = 0.0;
146 +    RealType bendPotential = 0.0;
147 +    RealType torsionPotential = 0.0;
148 +    RealType inversionPotential = 0.0;
149  
150      //calculate short range interactions    
151 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
151 >    for (mol = info_->beginMolecule(mi); mol != NULL;
152 >         mol = info_->nextMolecule(mi)) {
153  
154        //change the positions of atoms which belong to the rigidbodies
155 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
156 <        rb->updateAtoms();
155 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
156 >           rb = mol->nextRigidBody(rbIter)) {
157 >        rb->updateAtoms();
158        }
159  
160 <      for (bond = mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
161 <        bond->calcForce();
160 >      for (bond = mol->beginBond(bondIter); bond != NULL;
161 >           bond = mol->nextBond(bondIter)) {
162 >        bond->calcForce();
163 >        bondPotential += bond->getPotential();
164        }
165  
166 <      for (bend = mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
167 <        bend->calcForce();
166 >      for (bend = mol->beginBend(bendIter); bend != NULL;
167 >           bend = mol->nextBend(bendIter)) {
168 >        
169 >        RealType angle;
170 >        bend->calcForce(angle);
171 >        RealType currBendPot = bend->getPotential();          
172 >        
173 >        bendPotential += bend->getPotential();
174 >        std::map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend);
175 >        if (i == bendDataSets.end()) {
176 >          BendDataSet dataSet;
177 >          dataSet.prev.angle = dataSet.curr.angle = angle;
178 >          dataSet.prev.potential = dataSet.curr.potential = currBendPot;
179 >          dataSet.deltaV = 0.0;
180 >          bendDataSets.insert(std::map<Bend*, BendDataSet>::value_type(bend, dataSet));
181 >        }else {
182 >          i->second.prev.angle = i->second.curr.angle;
183 >          i->second.prev.potential = i->second.curr.potential;
184 >          i->second.curr.angle = angle;
185 >          i->second.curr.potential = currBendPot;
186 >          i->second.deltaV =  fabs(i->second.curr.potential -  
187 >                                   i->second.prev.potential);
188 >        }
189        }
190 +      
191 +      for (torsion = mol->beginTorsion(torsionIter); torsion != NULL;
192 +           torsion = mol->nextTorsion(torsionIter)) {
193 +        RealType angle;
194 +        torsion->calcForce(angle);
195 +        RealType currTorsionPot = torsion->getPotential();
196 +        torsionPotential += torsion->getPotential();
197 +        std::map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion);
198 +        if (i == torsionDataSets.end()) {
199 +          TorsionDataSet dataSet;
200 +          dataSet.prev.angle = dataSet.curr.angle = angle;
201 +          dataSet.prev.potential = dataSet.curr.potential = currTorsionPot;
202 +          dataSet.deltaV = 0.0;
203 +          torsionDataSets.insert(std::map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet));
204 +        }else {
205 +          i->second.prev.angle = i->second.curr.angle;
206 +          i->second.prev.potential = i->second.curr.potential;
207 +          i->second.curr.angle = angle;
208 +          i->second.curr.potential = currTorsionPot;
209 +          i->second.deltaV =  fabs(i->second.curr.potential -  
210 +                                   i->second.prev.potential);
211 +        }      
212 +      }      
213  
214 <      for (torsion = mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
215 <        torsion->calcForce();
216 <      }
217 <
214 >      for (inversion = mol->beginInversion(inversionIter);
215 >           inversion != NULL;
216 >           inversion = mol->nextInversion(inversionIter)) {
217 >        RealType angle;
218 >        inversion->calcForce(angle);
219 >        RealType currInversionPot = inversion->getPotential();
220 >        inversionPotential += inversion->getPotential();
221 >        std::map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion);
222 >        if (i == inversionDataSets.end()) {
223 >          InversionDataSet dataSet;
224 >          dataSet.prev.angle = dataSet.curr.angle = angle;
225 >          dataSet.prev.potential = dataSet.curr.potential = currInversionPot;
226 >          dataSet.deltaV = 0.0;
227 >          inversionDataSets.insert(std::map<Inversion*, InversionDataSet>::value_type(inversion, dataSet));
228 >        }else {
229 >          i->second.prev.angle = i->second.curr.angle;
230 >          i->second.prev.potential = i->second.curr.potential;
231 >          i->second.curr.angle = angle;
232 >          i->second.curr.potential = currInversionPot;
233 >          i->second.deltaV =  fabs(i->second.curr.potential -  
234 >                                   i->second.prev.potential);
235 >        }      
236 >      }      
237      }
238      
239 <    double  shortRangePotential = 0.0;
240 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
131 <      shortRangePotential += mol->getPotential();
132 <    }
133 <
239 >    RealType  shortRangePotential = bondPotential + bendPotential +
240 >      torsionPotential +  inversionPotential;    
241      Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
242      curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential;
243 +    curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential;
244 +    curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential;
245 +    curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential;
246 +    curSnapshot->statData[Stats::INVERSION_POTENTIAL] = inversionPotential;
247 +    
248    }
249 <
250 <  void ForceManager::calcLongRangeInteraction(bool needPotential, bool needStress) {
249 >  
250 >  void ForceManager::calcLongRangeInteraction() {
251      Snapshot* curSnapshot;
252      DataStorage* config;
253 <    double* frc;
254 <    double* pos;
255 <    double* trq;
256 <    double* A;
257 <    double* electroFrame;
258 <    double* rc;
253 >    DataStorage* cgConfig;
254 >    RealType* frc;
255 >    RealType* pos;
256 >    RealType* trq;
257 >    RealType* A;
258 >    RealType* electroFrame;
259 >    RealType* rc;
260 >    RealType* particlePot;
261      
262      //get current snapshot from SimInfo
263      curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
264 <
264 >    
265      //get array pointers
266      config = &(curSnapshot->atomData);
267 +    cgConfig = &(curSnapshot->cgData);
268      frc = config->getArrayPointer(DataStorage::dslForce);
269      pos = config->getArrayPointer(DataStorage::dslPosition);
270      trq = config->getArrayPointer(DataStorage::dslTorque);
271      A   = config->getArrayPointer(DataStorage::dslAmat);
272      electroFrame = config->getArrayPointer(DataStorage::dslElectroFrame);
273 +    particlePot = config->getArrayPointer(DataStorage::dslParticlePot);
274  
275 <    //calculate the center of mass of cutoff group
276 <    SimInfo::MoleculeIterator mi;
277 <    Molecule* mol;
162 <    Molecule::CutoffGroupIterator ci;
163 <    CutoffGroup* cg;
164 <    Vector3d com;
165 <    std::vector<Vector3d> rcGroup;
166 <    
167 <    if(info_->getNCutoffGroups() > 0){
168 <
169 <      for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
170 <        for(cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
171 <          cg->getCOM(com);
172 <          rcGroup.push_back(com);
173 <        }
174 <      }// end for (mol)
175 <      
176 <      rc = rcGroup[0].getArrayPointer();
275 >    if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){
276 >      std::cerr << "should not see me \n";
277 >      rc = cgConfig->getArrayPointer(DataStorage::dslPosition);
278      } else {
279 <      // center of mass of the group is the same as position of the atom  if cutoff group does not exist
279 >      // center of mass of the group is the same as position of the atom  
280 >      // if cutoff group does not exist
281        rc = pos;
282      }
283 <  
283 >    
284      //initialize data before passing to fortran
285 <    double longRangePotential = 0.0;
286 <    Mat3x3d tau;
185 <    short int passedCalcPot = needPotential;
186 <    short int passedCalcStress = needStress;
285 >    RealType longRangePotential[LR_POT_TYPES];
286 >    RealType lrPot = 0.0;
287      int isError = 0;
288  
289 <    doForceLoop( pos,
290 <                 rc,
291 <                 A,
292 <                 electroFrame,
293 <                 frc,
194 <                 trq,
195 <                 tau.getArrayPointer(),
196 <                 &longRangePotential,
197 <                 &passedCalcPot,
198 <                 &passedCalcStress,
199 <                 &isError );
289 >    for (int i=0; i<LR_POT_TYPES;i++){
290 >      longRangePotential[i]=0.0; //Initialize array
291 >    }
292 >    
293 >    decomp_->distributeData();
294  
295 +    int nLoops = 1;
296 +    for (int iLoop = 0; iLoop < nLoops; iLoop++) {
297 +      doForceLoop(pos,
298 +                  rc,
299 +                  A,
300 +                  electroFrame,
301 +                  frc,
302 +                  trq,
303 +                  tau.getArrayPointer(),
304 +                  longRangePotential,
305 +                  particlePot,
306 +                  &isError );  
307 +
308 +      if (nLoops > 1) {
309 +        decomp_->collectIntermediateData();
310 +        decomp_->distributeIntermediateData();
311 +      }
312 +    }
313 +  
314 +    decomp_->collectData();
315 +
316      if( isError ){
317        sprintf( painCave.errMsg,
318                 "Error returned from the fortran force calculation.\n" );
319        painCave.isFatal = 1;
320        simError();
321      }
322 <
322 >    for (int i=0; i<LR_POT_TYPES;i++){
323 >      lrPot += longRangePotential[i]; //Quick hack
324 >    }
325 >        
326      //store the tau and long range potential    
327 <    curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = longRangePotential;
328 <    curSnapshot->statData.setTau(tau);
327 >    curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot;
328 >    curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VDW_POT];
329 >    curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_POT];
330    }
331  
332 <
332 >  
333    void ForceManager::postCalculation() {
334      SimInfo::MoleculeIterator mi;
335      Molecule* mol;
336      Molecule::RigidBodyIterator rbIter;
337      RigidBody* rb;
338 +    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
339      
340      // collect the atomic forces onto rigid bodies
341 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
342 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
343 <        rb->calcForcesAndTorques();
341 >    
342 >    for (mol = info_->beginMolecule(mi); mol != NULL;
343 >         mol = info_->nextMolecule(mi)) {
344 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
345 >           rb = mol->nextRigidBody(rbIter)) {
346 >        Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial();
347 >        tau += rbTau;
348        }
349      }
350 <
350 >    
351 > #ifdef IS_MPI
352 >    Mat3x3d tmpTau(tau);
353 >    MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(),
354 >                  9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
355 > #endif
356 >    curSnapshot->statData.setTau(tau);
357    }
358  
359 < } //end namespace oopse
359 > } //end namespace OpenMD

Comparing:
trunk/src/brains/ForceManager.cpp (property svn:keywords), Revision 507 by gezelter, Fri Apr 15 22:04:00 2005 UTC vs.
branches/development/src/brains/ForceManager.cpp (property svn:keywords), Revision 1544 by gezelter, Fri Mar 18 19:31:52 2011 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines