49 |
|
|
50 |
|
#include "brains/ForceManager.hpp" |
51 |
|
#include "primitives/Molecule.hpp" |
52 |
– |
#include "UseTheForce/doForces_interface.h" |
52 |
|
#define __OPENMD_C |
54 |
– |
#include "UseTheForce/DarkSide/fInteractionMap.h" |
53 |
|
#include "utils/simError.h" |
54 |
|
#include "primitives/Bond.hpp" |
55 |
|
#include "primitives/Bend.hpp" |
56 |
|
#include "primitives/Torsion.hpp" |
57 |
|
#include "primitives/Inversion.hpp" |
58 |
+ |
#include "nonbonded/NonBondedInteraction.hpp" |
59 |
|
#include "parallel/ForceMatrixDecomposition.hpp" |
61 |
– |
//#include "parallel/ForceSerialDecomposition.hpp" |
60 |
|
|
61 |
|
using namespace std; |
62 |
|
namespace OpenMD { |
72 |
|
|
73 |
|
void ForceManager::calcForces() { |
74 |
|
|
75 |
< |
if (!info_->isFortranInitialized()) { |
75 |
> |
if (!info_->isTopologyDone()) { |
76 |
|
info_->update(); |
77 |
|
interactionMan_->setSimInfo(info_); |
78 |
|
interactionMan_->initialize(); |
79 |
|
swfun_ = interactionMan_->getSwitchingFunction(); |
80 |
|
fDecomp_->distributeInitialData(); |
81 |
< |
info_->setupFortran(); |
81 |
> |
info_->prepareTopology(); |
82 |
|
} |
83 |
|
|
84 |
|
preCalculation(); |
266 |
|
} |
267 |
|
|
268 |
|
//initialize data before passing to fortran |
269 |
< |
RealType longRangePotential[LR_POT_TYPES]; |
269 |
> |
RealType longRangePotential[N_INTERACTION_FAMILIES]; |
270 |
|
RealType lrPot = 0.0; |
271 |
|
int isError = 0; |
272 |
|
|
273 |
< |
for (int i=0; i<LR_POT_TYPES;i++){ |
273 |
> |
// dangerous to iterate over enums, but we'll live on the edge: |
274 |
> |
for (int i = NO_FAMILY; i != N_INTERACTION_FAMILIES; ++i){ |
275 |
|
longRangePotential[i]=0.0; //Initialize array |
276 |
|
} |
277 |
|
|
323 |
|
rCutSq = groupCutoffMap[gtypes].first; |
324 |
|
|
325 |
|
if (rgrpsq < rCutSq) { |
326 |
< |
idat.rcut = groupCutoffMap[gtypes].second; |
326 |
> |
*(idat.rcut) = groupCutoffMap[gtypes].second; |
327 |
|
if (iLoop == PAIR_LOOP) { |
328 |
|
vij *= 0.0; |
329 |
|
fij = V3Zero; |
330 |
|
} |
331 |
|
|
332 |
< |
in_switching_region = swfun_->getSwitch(rgrpsq, idat.sw, dswdr, rgrp); |
332 |
> |
in_switching_region = swfun_->getSwitch(rgrpsq, *(idat.sw), dswdr, |
333 |
> |
rgrp); |
334 |
|
atomListRow = fDecomp_->getAtomsInGroupRow(cg1); |
335 |
|
atomListColumn = fDecomp_->getAtomsInGroupColumn(cg2); |
336 |
|
|
347 |
|
idat = fDecomp_->fillInteractionData(atom1, atom2); |
348 |
|
|
349 |
|
if (atomListRow.size() == 1 && atomListColumn.size() == 1) { |
350 |
< |
idat.d = d_grp; |
351 |
< |
idat.r2 = rgrpsq; |
350 |
> |
*(idat.d) = d_grp; |
351 |
> |
*(idat.r2) = rgrpsq; |
352 |
|
} else { |
353 |
< |
idat.d = fDecomp_->getInteratomicVector(atom1, atom2); |
354 |
< |
curSnapshot->wrapVector(idat.d); |
355 |
< |
idat.r2 = idat.d.lengthSquare(); |
353 |
> |
*(idat.d) = fDecomp_->getInteratomicVector(atom1, atom2); |
354 |
> |
curSnapshot->wrapVector( *(idat.d) ); |
355 |
> |
*(idat.r2) = idat.d->lengthSquare(); |
356 |
|
} |
357 |
|
|
358 |
< |
idat.rij = sqrt(idat.r2); |
358 |
> |
*(idat.rij) = sqrt( *(idat.r2) ); |
359 |
|
|
360 |
|
if (iLoop == PREPAIR_LOOP) { |
361 |
|
interactionMan_->doPrePair(idat); |
362 |
|
} else { |
363 |
|
interactionMan_->doPair(idat); |
364 |
< |
vij += idat.vpair; |
365 |
< |
fij += idat.f1; |
366 |
< |
tau -= outProduct(idat.d, idat.f1); |
364 |
> |
vij += *(idat.vpair); |
365 |
> |
fij += *(idat.f1); |
366 |
> |
tau -= outProduct( *(idat.d), *(idat.f1)); |
367 |
|
} |
368 |
|
} |
369 |
|
} |
377 |
|
fij += fg; |
378 |
|
|
379 |
|
if (atomListRow.size() == 1 && atomListColumn.size() == 1) { |
380 |
< |
tau -= outProduct(idat.d, fg); |
380 |
> |
tau -= outProduct( *(idat.d), fg); |
381 |
|
} |
382 |
|
|
383 |
|
for (vector<int>::iterator ia = atomListRow.begin(); |
384 |
|
ia != atomListRow.end(); ++ia) { |
385 |
|
atom1 = (*ia); |
386 |
< |
mf = fDecomp_->getMfactRow(atom1); |
386 |
> |
mf = fDecomp_->getMassFactorRow(atom1); |
387 |
|
// fg is the force on atom ia due to cutoff group's |
388 |
|
// presence in switching region |
389 |
|
fg = swderiv * d_grp * mf; |
401 |
|
for (vector<int>::iterator jb = atomListColumn.begin(); |
402 |
|
jb != atomListColumn.end(); ++jb) { |
403 |
|
atom2 = (*jb); |
404 |
< |
mf = fDecomp_->getMfactColumn(atom2); |
404 |
> |
mf = fDecomp_->getMassFactorColumn(atom2); |
405 |
|
// fg is the force on atom jb due to cutoff group's |
406 |
|
// presence in switching region |
407 |
|
fg = -swderiv * d_grp * mf; |
465 |
|
} |
466 |
|
} |
467 |
|
|
468 |
< |
for (int i=0; i<LR_POT_TYPES;i++){ |
468 |
> |
// dangerous to iterate over enums, but we'll live on the edge: |
469 |
> |
for (int i = NO_FAMILY; i != N_INTERACTION_FAMILIES; ++i){ |
470 |
|
lrPot += longRangePotential[i]; //Quick hack |
471 |
|
} |
472 |
|
|
473 |
|
//store the tau and long range potential |
474 |
|
curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot; |
475 |
< |
curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VDW_POT]; |
476 |
< |
curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_POT]; |
475 |
> |
curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VANDERWAALS_FAMILY]; |
476 |
> |
curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_FAMILY]; |
477 |
|
} |
478 |
|
|
479 |
|
|