ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/ForceManager.cpp
(Generate patch)

Comparing branches/development/src/brains/ForceManager.cpp (file contents):
Revision 1569 by gezelter, Thu May 26 13:55:04 2011 UTC vs.
Revision 1874 by gezelter, Wed May 15 15:09:35 2013 UTC

# Line 35 | Line 35
35   *                                                                      
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 < * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 < * [4]  Vardeman & Gezelter, in progress (2009).                        
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
44   * @file ForceManager.cpp
45   * @author tlin
46   * @date 11/09/2004
46 * @time 10:39am
47   * @version 1.0
48   */
49  
50 +
51   #include "brains/ForceManager.hpp"
52   #include "primitives/Molecule.hpp"
53   #define __OPENMD_C
# Line 56 | Line 57
57   #include "primitives/Torsion.hpp"
58   #include "primitives/Inversion.hpp"
59   #include "nonbonded/NonBondedInteraction.hpp"
60 + #include "perturbations/ElectricField.hpp"
61   #include "parallel/ForceMatrixDecomposition.hpp"
62  
63 + #include <cstdio>
64 + #include <iostream>
65 + #include <iomanip>
66 +
67   using namespace std;
68   namespace OpenMD {
69    
70 <  ForceManager::ForceManager(SimInfo * info) : info_(info) {
70 >  ForceManager::ForceManager(SimInfo * info) : info_(info), switcher_(NULL),
71 >                                               initialized_(false) {
72 >    forceField_ = info_->getForceField();
73 >    interactionMan_ = new InteractionManager();
74 >    fDecomp_ = new ForceMatrixDecomposition(info_, interactionMan_);
75 >    thermo = new Thermo(info_);
76 >  }
77  
78 < #ifdef IS_MPI
79 <    fDecomp_ = new ForceMatrixDecomposition(info_);
80 < #else
81 <    // fDecomp_ = new ForceSerialDecomposition(info);
82 < #endif
78 >  ForceManager::~ForceManager() {
79 >    perturbations_.clear();
80 >    
81 >    delete switcher_;
82 >    delete interactionMan_;
83 >    delete fDecomp_;
84 >    delete thermo;
85    }
86    
87 <  void ForceManager::calcForces() {
87 >  /**
88 >   * setupCutoffs
89 >   *
90 >   * Sets the values of cutoffRadius, switchingRadius, cutoffMethod,
91 >   * and cutoffPolicy
92 >   *
93 >   * cutoffRadius : realType
94 >   *  If the cutoffRadius was explicitly set, use that value.
95 >   *  If the cutoffRadius was not explicitly set:
96 >   *      Are there electrostatic atoms?  Use 12.0 Angstroms.
97 >   *      No electrostatic atoms?  Poll the atom types present in the
98 >   *      simulation for suggested cutoff values (e.g. 2.5 * sigma).
99 >   *      Use the maximum suggested value that was found.
100 >   *
101 >   * cutoffMethod : (one of HARD, SWITCHED, SHIFTED_FORCE,
102 >   *                        or SHIFTED_POTENTIAL)
103 >   *      If cutoffMethod was explicitly set, use that choice.
104 >   *      If cutoffMethod was not explicitly set, use SHIFTED_FORCE
105 >   *
106 >   * cutoffPolicy : (one of MIX, MAX, TRADITIONAL)
107 >   *      If cutoffPolicy was explicitly set, use that choice.
108 >   *      If cutoffPolicy was not explicitly set, use TRADITIONAL
109 >   *
110 >   * switchingRadius : realType
111 >   *  If the cutoffMethod was set to SWITCHED:
112 >   *      If the switchingRadius was explicitly set, use that value
113 >   *          (but do a sanity check first).
114 >   *      If the switchingRadius was not explicitly set: use 0.85 *
115 >   *      cutoffRadius_
116 >   *  If the cutoffMethod was not set to SWITCHED:
117 >   *      Set switchingRadius equal to cutoffRadius for safety.
118 >   */
119 >  void ForceManager::setupCutoffs() {
120 >    
121 >    Globals* simParams_ = info_->getSimParams();
122 >    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
123 >    int mdFileVersion;
124 >    rCut_ = 0.0; //Needs a value for a later max() call;  
125 >    
126 >    if (simParams_->haveMDfileVersion())
127 >      mdFileVersion = simParams_->getMDfileVersion();
128 >    else
129 >      mdFileVersion = 0;
130 >  
131 >    // We need the list of simulated atom types to figure out cutoffs
132 >    // as well as long range corrections.
133 >
134 >    set<AtomType*>::iterator i;
135 >    set<AtomType*> atomTypes_;
136 >    atomTypes_ = info_->getSimulatedAtomTypes();
137 >
138 >    if (simParams_->haveCutoffRadius()) {
139 >      rCut_ = simParams_->getCutoffRadius();
140 >    } else {      
141 >      if (info_->usesElectrostaticAtoms()) {
142 >        sprintf(painCave.errMsg,
143 >                "ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n"
144 >                "\tOpenMD will use a default value of 12.0 angstroms"
145 >                "\tfor the cutoffRadius.\n");
146 >        painCave.isFatal = 0;
147 >        painCave.severity = OPENMD_INFO;
148 >        simError();
149 >        rCut_ = 12.0;
150 >      } else {
151 >        RealType thisCut;
152 >        for (i = atomTypes_.begin(); i != atomTypes_.end(); ++i) {
153 >          thisCut = interactionMan_->getSuggestedCutoffRadius((*i));
154 >          rCut_ = max(thisCut, rCut_);
155 >        }
156 >        sprintf(painCave.errMsg,
157 >                "ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n"
158 >                "\tOpenMD will use %lf angstroms.\n",
159 >                rCut_);
160 >        painCave.isFatal = 0;
161 >        painCave.severity = OPENMD_INFO;
162 >        simError();
163 >      }
164 >    }
165 >
166 >    fDecomp_->setUserCutoff(rCut_);
167 >    interactionMan_->setCutoffRadius(rCut_);
168 >
169 >    map<string, CutoffMethod> stringToCutoffMethod;
170 >    stringToCutoffMethod["HARD"] = HARD;
171 >    stringToCutoffMethod["SWITCHED"] = SWITCHED;
172 >    stringToCutoffMethod["SHIFTED_POTENTIAL"] = SHIFTED_POTENTIAL;    
173 >    stringToCutoffMethod["SHIFTED_FORCE"] = SHIFTED_FORCE;
174 >  
175 >    if (simParams_->haveCutoffMethod()) {
176 >      string cutMeth = toUpperCopy(simParams_->getCutoffMethod());
177 >      map<string, CutoffMethod>::iterator i;
178 >      i = stringToCutoffMethod.find(cutMeth);
179 >      if (i == stringToCutoffMethod.end()) {
180 >        sprintf(painCave.errMsg,
181 >                "ForceManager::setupCutoffs: Could not find chosen cutoffMethod %s\n"
182 >                "\tShould be one of: "
183 >                "HARD, SWITCHED, SHIFTED_POTENTIAL, or SHIFTED_FORCE\n",
184 >                cutMeth.c_str());
185 >        painCave.isFatal = 1;
186 >        painCave.severity = OPENMD_ERROR;
187 >        simError();
188 >      } else {
189 >        cutoffMethod_ = i->second;
190 >      }
191 >    } else {
192 >      if (mdFileVersion > 1) {
193 >        sprintf(painCave.errMsg,
194 >                "ForceManager::setupCutoffs: No value was set for the cutoffMethod.\n"
195 >                "\tOpenMD will use SHIFTED_FORCE.\n");
196 >        painCave.isFatal = 0;
197 >        painCave.severity = OPENMD_INFO;
198 >        simError();
199 >        cutoffMethod_ = SHIFTED_FORCE;        
200 >      } else {
201 >        // handle the case where the old file version was in play
202 >        // (there should be no cutoffMethod, so we have to deduce it
203 >        // from other data).        
204 >
205 >        sprintf(painCave.errMsg,
206 >                "ForceManager::setupCutoffs : DEPRECATED FILE FORMAT!\n"
207 >                "\tOpenMD found a file which does not set a cutoffMethod.\n"
208 >                "\tOpenMD will attempt to deduce a cutoffMethod using the\n"
209 >                "\tbehavior of the older (version 1) code.  To remove this\n"
210 >                "\twarning, add an explicit cutoffMethod and change the top\n"
211 >                "\tof the file so that it begins with <OpenMD version=2>\n");
212 >        painCave.isFatal = 0;
213 >        painCave.severity = OPENMD_WARNING;
214 >        simError();            
215 >                
216 >        // The old file version tethered the shifting behavior to the
217 >        // electrostaticSummationMethod keyword.
218 >        
219 >        if (simParams_->haveElectrostaticSummationMethod()) {
220 >          string myMethod = simParams_->getElectrostaticSummationMethod();
221 >          toUpper(myMethod);
222 >        
223 >          if (myMethod == "SHIFTED_POTENTIAL") {
224 >            cutoffMethod_ = SHIFTED_POTENTIAL;
225 >          } else if (myMethod == "SHIFTED_FORCE") {
226 >            cutoffMethod_ = SHIFTED_FORCE;
227 >          }
228 >        
229 >          if (simParams_->haveSwitchingRadius())
230 >            rSwitch_ = simParams_->getSwitchingRadius();
231 >
232 >          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
233 >            if (simParams_->haveSwitchingRadius()){
234 >              sprintf(painCave.errMsg,
235 >                      "ForceManager::setupCutoffs : DEPRECATED ERROR MESSAGE\n"
236 >                      "\tA value was set for the switchingRadius\n"
237 >                      "\teven though the electrostaticSummationMethod was\n"
238 >                      "\tset to %s\n", myMethod.c_str());
239 >              painCave.severity = OPENMD_WARNING;
240 >              painCave.isFatal = 1;
241 >              simError();            
242 >            }
243 >          }
244 >          if (abs(rCut_ - rSwitch_) < 0.0001) {
245 >            if (cutoffMethod_ == SHIFTED_FORCE) {              
246 >              sprintf(painCave.errMsg,
247 >                      "ForceManager::setupCutoffs : DEPRECATED BEHAVIOR\n"
248 >                      "\tcutoffRadius and switchingRadius are set to the\n"
249 >                      "\tsame value.  OpenMD will use shifted force\n"
250 >                      "\tpotentials instead of switching functions.\n");
251 >              painCave.isFatal = 0;
252 >              painCave.severity = OPENMD_WARNING;
253 >              simError();            
254 >            } else {
255 >              cutoffMethod_ = SHIFTED_POTENTIAL;
256 >              sprintf(painCave.errMsg,
257 >                      "ForceManager::setupCutoffs : DEPRECATED BEHAVIOR\n"
258 >                      "\tcutoffRadius and switchingRadius are set to the\n"
259 >                      "\tsame value.  OpenMD will use shifted potentials\n"
260 >                      "\tinstead of switching functions.\n");
261 >              painCave.isFatal = 0;
262 >              painCave.severity = OPENMD_WARNING;
263 >              simError();            
264 >            }
265 >          }
266 >        }
267 >      }
268 >    }
269 >
270 >    map<string, CutoffPolicy> stringToCutoffPolicy;
271 >    stringToCutoffPolicy["MIX"] = MIX;
272 >    stringToCutoffPolicy["MAX"] = MAX;
273 >    stringToCutoffPolicy["TRADITIONAL"] = TRADITIONAL;    
274 >
275 >    string cutPolicy;
276 >    if (forceFieldOptions_.haveCutoffPolicy()){
277 >      cutPolicy = forceFieldOptions_.getCutoffPolicy();
278 >    }else if (simParams_->haveCutoffPolicy()) {
279 >      cutPolicy = simParams_->getCutoffPolicy();
280 >    }
281 >
282 >    if (!cutPolicy.empty()){
283 >      toUpper(cutPolicy);
284 >      map<string, CutoffPolicy>::iterator i;
285 >      i = stringToCutoffPolicy.find(cutPolicy);
286 >
287 >      if (i == stringToCutoffPolicy.end()) {
288 >        sprintf(painCave.errMsg,
289 >                "ForceManager::setupCutoffs: Could not find chosen cutoffPolicy %s\n"
290 >                "\tShould be one of: "
291 >                "MIX, MAX, or TRADITIONAL\n",
292 >                cutPolicy.c_str());
293 >        painCave.isFatal = 1;
294 >        painCave.severity = OPENMD_ERROR;
295 >        simError();
296 >      } else {
297 >        cutoffPolicy_ = i->second;
298 >      }
299 >    } else {
300 >      sprintf(painCave.errMsg,
301 >              "ForceManager::setupCutoffs: No value was set for the cutoffPolicy.\n"
302 >              "\tOpenMD will use TRADITIONAL.\n");
303 >      painCave.isFatal = 0;
304 >      painCave.severity = OPENMD_INFO;
305 >      simError();
306 >      cutoffPolicy_ = TRADITIONAL;        
307 >    }
308 >
309 >    fDecomp_->setCutoffPolicy(cutoffPolicy_);
310 >        
311 >    // create the switching function object:
312 >
313 >    switcher_ = new SwitchingFunction();
314 >  
315 >    if (cutoffMethod_ == SWITCHED) {
316 >      if (simParams_->haveSwitchingRadius()) {
317 >        rSwitch_ = simParams_->getSwitchingRadius();
318 >        if (rSwitch_ > rCut_) {        
319 >          sprintf(painCave.errMsg,
320 >                  "ForceManager::setupCutoffs: switchingRadius (%f) is larger "
321 >                  "than the cutoffRadius(%f)\n", rSwitch_, rCut_);
322 >          painCave.isFatal = 1;
323 >          painCave.severity = OPENMD_ERROR;
324 >          simError();
325 >        }
326 >      } else {      
327 >        rSwitch_ = 0.85 * rCut_;
328 >        sprintf(painCave.errMsg,
329 >                "ForceManager::setupCutoffs: No value was set for the switchingRadius.\n"
330 >                "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n"
331 >                "\tswitchingRadius = %f. for this simulation\n", rSwitch_);
332 >        painCave.isFatal = 0;
333 >        painCave.severity = OPENMD_WARNING;
334 >        simError();
335 >      }
336 >    } else {
337 >      if (mdFileVersion > 1) {
338 >        // throw an error if we define a switching radius and don't need one.
339 >        // older file versions should not do this.
340 >        if (simParams_->haveSwitchingRadius()) {
341 >          map<string, CutoffMethod>::const_iterator it;
342 >          string theMeth;
343 >          for (it = stringToCutoffMethod.begin();
344 >               it != stringToCutoffMethod.end(); ++it) {
345 >            if (it->second == cutoffMethod_) {
346 >              theMeth = it->first;
347 >              break;
348 >            }
349 >          }
350 >          sprintf(painCave.errMsg,
351 >                  "ForceManager::setupCutoffs: the cutoffMethod (%s)\n"
352 >                  "\tis not set to SWITCHED, so switchingRadius value\n"
353 >                  "\twill be ignored for this simulation\n", theMeth.c_str());
354 >          painCave.isFatal = 0;
355 >          painCave.severity = OPENMD_WARNING;
356 >          simError();
357 >        }
358 >      }
359 >      rSwitch_ = rCut_;
360 >    }
361      
362 +    // Default to cubic switching function.
363 +    sft_ = cubic;
364 +    if (simParams_->haveSwitchingFunctionType()) {
365 +      string funcType = simParams_->getSwitchingFunctionType();
366 +      toUpper(funcType);
367 +      if (funcType == "CUBIC") {
368 +        sft_ = cubic;
369 +      } else {
370 +        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
371 +          sft_ = fifth_order_poly;
372 +        } else {
373 +          // throw error        
374 +          sprintf( painCave.errMsg,
375 +                   "ForceManager::setupSwitching : Unknown switchingFunctionType. (Input file specified %s .)\n"
376 +                   "\tswitchingFunctionType must be one of: "
377 +                   "\"cubic\" or \"fifth_order_polynomial\".",
378 +                   funcType.c_str() );
379 +          painCave.isFatal = 1;
380 +          painCave.severity = OPENMD_ERROR;
381 +          simError();
382 +        }          
383 +      }
384 +    }
385 +    switcher_->setSwitchType(sft_);
386 +    switcher_->setSwitch(rSwitch_, rCut_);
387 +  }
388 +
389 +
390 +
391 +  
392 +  void ForceManager::initialize() {
393 +
394      if (!info_->isTopologyDone()) {
395 +
396        info_->update();
397        interactionMan_->setSimInfo(info_);
398        interactionMan_->initialize();
399 <      swfun_ = interactionMan_->getSwitchingFunction();
400 <      fDecomp_->distributeInitialData();
401 <      info_->prepareTopology();
399 >
400 >      // We want to delay the cutoffs until after the interaction
401 >      // manager has set up the atom-atom interactions so that we can
402 >      // query them for suggested cutoff values
403 >      setupCutoffs();
404 >
405 >      info_->prepareTopology();      
406 >
407 >      doParticlePot_ = info_->getSimParams()->getOutputParticlePotential();
408 >      doHeatFlux_ = info_->getSimParams()->getPrintHeatFlux();
409 >      if (doHeatFlux_) doParticlePot_ = true;
410 >
411 >      doElectricField_ = info_->getSimParams()->getOutputElectricField();
412 >  
413      }
414 +
415 +    ForceFieldOptions& fopts = forceField_->getForceFieldOptions();
416      
417 +    // Force fields can set options on how to scale van der Waals and
418 +    // electrostatic interactions for atoms connected via bonds, bends
419 +    // and torsions in this case the topological distance between
420 +    // atoms is:
421 +    // 0 = topologically unconnected
422 +    // 1 = bonded together
423 +    // 2 = connected via a bend
424 +    // 3 = connected via a torsion
425 +    
426 +    vdwScale_.reserve(4);
427 +    fill(vdwScale_.begin(), vdwScale_.end(), 0.0);
428 +
429 +    electrostaticScale_.reserve(4);
430 +    fill(electrostaticScale_.begin(), electrostaticScale_.end(), 0.0);
431 +
432 +    vdwScale_[0] = 1.0;
433 +    vdwScale_[1] = fopts.getvdw12scale();
434 +    vdwScale_[2] = fopts.getvdw13scale();
435 +    vdwScale_[3] = fopts.getvdw14scale();
436 +    
437 +    electrostaticScale_[0] = 1.0;
438 +    electrostaticScale_[1] = fopts.getelectrostatic12scale();
439 +    electrostaticScale_[2] = fopts.getelectrostatic13scale();
440 +    electrostaticScale_[3] = fopts.getelectrostatic14scale();    
441 +    
442 +    if (info_->getSimParams()->haveElectricField()) {
443 +      ElectricField* eField = new ElectricField(info_);
444 +      perturbations_.push_back(eField);
445 +    }
446 +
447 +    usePeriodicBoundaryConditions_ = info_->getSimParams()->getUsePeriodicBoundaryConditions();
448 +    
449 +    fDecomp_->distributeInitialData();
450 +    
451 +    initialized_ = true;
452 +    
453 +  }
454 +  
455 +  void ForceManager::calcForces() {
456 +    
457 +    if (!initialized_) initialize();
458 +    
459      preCalculation();  
460      shortRangeInteractions();
461      longRangeInteractions();
462 <    postCalculation();
88 <    
462 >    postCalculation();    
463    }
464    
465    void ForceManager::preCalculation() {
# Line 98 | Line 472 | namespace OpenMD {
472      Molecule::CutoffGroupIterator ci;
473      CutoffGroup* cg;
474      
475 <    // forces are zeroed here, before any are accumulated.
475 >    // forces and potentials are zeroed here, before any are
476 >    // accumulated.
477      
478 +    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
479 +
480 +    snap->setBondPotential(0.0);
481 +    snap->setBendPotential(0.0);
482 +    snap->setTorsionPotential(0.0);
483 +    snap->setInversionPotential(0.0);
484 +
485 +    potVec zeroPot(0.0);
486 +    snap->setLongRangePotential(zeroPot);
487 +    snap->setExcludedPotentials(zeroPot);
488 +
489 +    snap->setRestraintPotential(0.0);
490 +    snap->setRawPotential(0.0);
491 +
492      for (mol = info_->beginMolecule(mi); mol != NULL;
493           mol = info_->nextMolecule(mi)) {
494 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
494 >      for(atom = mol->beginAtom(ai); atom != NULL;
495 >          atom = mol->nextAtom(ai)) {
496          atom->zeroForcesAndTorques();
497        }
498 <          
498 >      
499        //change the positions of atoms which belong to the rigidbodies
500        for (rb = mol->beginRigidBody(rbIter); rb != NULL;
501             rb = mol->nextRigidBody(rbIter)) {
502          rb->zeroForcesAndTorques();
503        }        
504 <
504 >      
505        if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){
506          for(cg = mol->beginCutoffGroup(ci); cg != NULL;
507              cg = mol->nextCutoffGroup(ci)) {
# Line 120 | Line 510 | namespace OpenMD {
510          }
511        }      
512      }
123  
124    // Zero out the stress tensor
125    tau *= 0.0;
513      
514 +    // Zero out the stress tensor
515 +    stressTensor *= 0.0;
516 +    // Zero out the heatFlux
517 +    fDecomp_->setHeatFlux( Vector3d(0.0) );    
518    }
519    
520    void ForceManager::shortRangeInteractions() {
# Line 156 | Line 547 | namespace OpenMD {
547  
548        for (bond = mol->beginBond(bondIter); bond != NULL;
549             bond = mol->nextBond(bondIter)) {
550 <        bond->calcForce();
550 >        bond->calcForce(doParticlePot_);
551          bondPotential += bond->getPotential();
552        }
553  
# Line 164 | Line 555 | namespace OpenMD {
555             bend = mol->nextBend(bendIter)) {
556          
557          RealType angle;
558 <        bend->calcForce(angle);
558 >        bend->calcForce(angle, doParticlePot_);
559          RealType currBendPot = bend->getPotential();          
560          
561          bendPotential += bend->getPotential();
# Line 174 | Line 565 | namespace OpenMD {
565            dataSet.prev.angle = dataSet.curr.angle = angle;
566            dataSet.prev.potential = dataSet.curr.potential = currBendPot;
567            dataSet.deltaV = 0.0;
568 <          bendDataSets.insert(map<Bend*, BendDataSet>::value_type(bend, dataSet));
568 >          bendDataSets.insert(map<Bend*, BendDataSet>::value_type(bend,
569 >                                                                  dataSet));
570          }else {
571            i->second.prev.angle = i->second.curr.angle;
572            i->second.prev.potential = i->second.curr.potential;
# Line 188 | Line 580 | namespace OpenMD {
580        for (torsion = mol->beginTorsion(torsionIter); torsion != NULL;
581             torsion = mol->nextTorsion(torsionIter)) {
582          RealType angle;
583 <        torsion->calcForce(angle);
583 >        torsion->calcForce(angle, doParticlePot_);
584          RealType currTorsionPot = torsion->getPotential();
585          torsionPotential += torsion->getPotential();
586          map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion);
# Line 212 | Line 604 | namespace OpenMD {
604             inversion != NULL;
605             inversion = mol->nextInversion(inversionIter)) {
606          RealType angle;
607 <        inversion->calcForce(angle);
607 >        inversion->calcForce(angle, doParticlePot_);
608          RealType currInversionPot = inversion->getPotential();
609          inversionPotential += inversion->getPotential();
610          map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion);
# Line 232 | Line 624 | namespace OpenMD {
624          }      
625        }      
626      }
627 <    
628 <    RealType  shortRangePotential = bondPotential + bendPotential +
629 <      torsionPotential +  inversionPotential;    
627 >
628 > #ifdef IS_MPI
629 >    // Collect from all nodes.  This should eventually be moved into a
630 >    // SystemDecomposition, but this is a better place than in
631 >    // Thermo to do the collection.
632 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &bondPotential, 1, MPI::REALTYPE,
633 >                              MPI::SUM);
634 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &bendPotential, 1, MPI::REALTYPE,
635 >                              MPI::SUM);
636 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &torsionPotential, 1,
637 >                              MPI::REALTYPE, MPI::SUM);
638 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &inversionPotential, 1,
639 >                              MPI::REALTYPE, MPI::SUM);
640 > #endif
641 >
642      Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
643 <    curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential;
644 <    curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential;
645 <    curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential;
646 <    curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential;
647 <    curSnapshot->statData[Stats::INVERSION_POTENTIAL] = inversionPotential;    
643 >
644 >    curSnapshot->setBondPotential(bondPotential);
645 >    curSnapshot->setBendPotential(bendPotential);
646 >    curSnapshot->setTorsionPotential(torsionPotential);
647 >    curSnapshot->setInversionPotential(inversionPotential);
648 >    
649 >    // RealType shortRangePotential = bondPotential + bendPotential +
650 >    //   torsionPotential +  inversionPotential;    
651 >
652 >    // curSnapshot->setShortRangePotential(shortRangePotential);
653    }
654    
655    void ForceManager::longRangeInteractions() {
656  
657 <    // some of this initial stuff will go away:
657 >
658      Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
659      DataStorage* config = &(curSnapshot->atomData);
660      DataStorage* cgConfig = &(curSnapshot->cgData);
252    RealType* frc = config->getArrayPointer(DataStorage::dslForce);
253    RealType* pos = config->getArrayPointer(DataStorage::dslPosition);
254    RealType* trq = config->getArrayPointer(DataStorage::dslTorque);
255    RealType* A = config->getArrayPointer(DataStorage::dslAmat);
256    RealType* electroFrame = config->getArrayPointer(DataStorage::dslElectroFrame);
257    RealType* particlePot = config->getArrayPointer(DataStorage::dslParticlePot);
258    RealType* rc;    
661  
662 <    if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){
663 <      rc = cgConfig->getArrayPointer(DataStorage::dslPosition);
662 >    //calculate the center of mass of cutoff group
663 >
664 >    SimInfo::MoleculeIterator mi;
665 >    Molecule* mol;
666 >    Molecule::CutoffGroupIterator ci;
667 >    CutoffGroup* cg;
668 >
669 >    if(info_->getNCutoffGroups() > 0){      
670 >      for (mol = info_->beginMolecule(mi); mol != NULL;
671 >           mol = info_->nextMolecule(mi)) {
672 >        for(cg = mol->beginCutoffGroup(ci); cg != NULL;
673 >            cg = mol->nextCutoffGroup(ci)) {
674 >          cg->updateCOM();
675 >        }
676 >      }      
677      } else {
678        // center of mass of the group is the same as position of the atom  
679        // if cutoff group does not exist
680 <      rc = pos;
680 >      cgConfig->position = config->position;
681 >      cgConfig->velocity = config->velocity;
682      }
267    
268    //initialize data before passing to fortran
269    RealType longRangePotential[N_INTERACTION_FAMILIES];
270    RealType lrPot = 0.0;
271    int isError = 0;
683  
684 <    // dangerous to iterate over enums, but we'll live on the edge:
274 <    for (int i = NO_FAMILY; i != N_INTERACTION_FAMILIES; ++i){
275 <      longRangePotential[i]=0.0; //Initialize array
276 <    }
277 <
278 <    // new stuff starts here:
279 <
684 >    fDecomp_->zeroWorkArrays();
685      fDecomp_->distributeData();
686 <
687 <    int cg1, cg2, atom1, atom2;
688 <    Vector3d d_grp, dag;
689 <    RealType rgrpsq, rgrp;
686 >    
687 >    int cg1, cg2, atom1, atom2, topoDist;
688 >    Vector3d d_grp, dag, d, gvel2, vel2;
689 >    RealType rgrpsq, rgrp, r2, r;
690 >    RealType electroMult, vdwMult;
691      RealType vij;
692 <    Vector3d fij, fg;
693 <    pair<int, int> gtypes;
692 >    Vector3d fij, fg, f1;
693 >    tuple3<RealType, RealType, RealType> cuts;
694      RealType rCutSq;
695      bool in_switching_region;
696      RealType sw, dswdr, swderiv;
697 <    vector<int> atomListColumn, atomListRow, atomListLocal;
697 >    vector<int> atomListColumn, atomListRow;
698      InteractionData idat;
699      SelfData sdat;
700      RealType mf;
701 +    RealType vpair;
702 +    RealType dVdFQ1(0.0);
703 +    RealType dVdFQ2(0.0);
704 +    potVec longRangePotential(0.0);
705 +    potVec workPot(0.0);
706 +    potVec exPot(0.0);
707 +    Vector3d eField1(0.0);
708 +    Vector3d eField2(0.0);
709 +    vector<int>::iterator ia, jb;
710  
711      int loopStart, loopEnd;
712  
713 +    idat.vdwMult = &vdwMult;
714 +    idat.electroMult = &electroMult;
715 +    idat.pot = &workPot;
716 +    idat.excludedPot = &exPot;
717 +    sdat.pot = fDecomp_->getEmbeddingPotential();
718 +    sdat.excludedPot = fDecomp_->getExcludedSelfPotential();
719 +    idat.vpair = &vpair;
720 +    idat.dVdFQ1 = &dVdFQ1;
721 +    idat.dVdFQ2 = &dVdFQ2;
722 +    idat.eField1 = &eField1;
723 +    idat.eField2 = &eField2;  
724 +    idat.f1 = &f1;
725 +    idat.sw = &sw;
726 +    idat.shiftedPot = (cutoffMethod_ == SHIFTED_POTENTIAL) ? true : false;
727 +    idat.shiftedForce = (cutoffMethod_ == SHIFTED_FORCE) ? true : false;
728 +    idat.doParticlePot = doParticlePot_;
729 +    idat.doElectricField = doElectricField_;
730 +    sdat.doParticlePot = doParticlePot_;
731 +    
732      loopEnd = PAIR_LOOP;
733      if (info_->requiresPrepair() ) {
734        loopStart = PREPAIR_LOOP;
735      } else {
736        loopStart = PAIR_LOOP;
737      }
738 <
739 <    for (int iLoop = loopStart; iLoop < loopEnd; iLoop++) {
306 <      
738 >    for (int iLoop = loopStart; iLoop <= loopEnd; iLoop++) {
739 >    
740        if (iLoop == loopStart) {
741          bool update_nlist = fDecomp_->checkNeighborList();
742 <        if (update_nlist)
742 >        if (update_nlist) {
743 >          if (!usePeriodicBoundaryConditions_)
744 >            Mat3x3d bbox = thermo->getBoundingBox();
745            neighborList = fDecomp_->buildNeighborList();
746 +        }
747        }
748  
749        for (vector<pair<int, int> >::iterator it = neighborList.begin();
750               it != neighborList.end(); ++it) {
751 <        
751 >                
752          cg1 = (*it).first;
753          cg2 = (*it).second;
754 +        
755 +        cuts = fDecomp_->getGroupCutoffs(cg1, cg2);
756  
319        gtypes = fDecomp_->getGroupTypes(cg1, cg2);
757          d_grp  = fDecomp_->getIntergroupVector(cg1, cg2);
758 +
759          curSnapshot->wrapVector(d_grp);        
760          rgrpsq = d_grp.lengthSquare();
761 <        rCutSq = groupCutoffMap[gtypes].first;
761 >        rCutSq = cuts.second;
762  
763          if (rgrpsq < rCutSq) {
764 <          *(idat.rcut) = groupCutoffMap[gtypes].second;
764 >          idat.rcut = &cuts.first;
765            if (iLoop == PAIR_LOOP) {
766 <            vij *= 0.0;
766 >            vij = 0.0;
767              fij = V3Zero;
768 +            eField1 = V3Zero;
769 +            eField2 = V3Zero;
770            }
771            
772 <          in_switching_region = swfun_->getSwitch(rgrpsq, *(idat.sw), dswdr,
773 <                                                  rgrp);              
772 >          in_switching_region = switcher_->getSwitch(rgrpsq, sw, dswdr,
773 >                                                     rgrp);
774 >
775            atomListRow = fDecomp_->getAtomsInGroupRow(cg1);
776            atomListColumn = fDecomp_->getAtomsInGroupColumn(cg2);
777  
778 <          for (vector<int>::iterator ia = atomListRow.begin();
778 >          if (doHeatFlux_)
779 >            gvel2 = fDecomp_->getGroupVelocityColumn(cg2);
780 >
781 >          for (ia = atomListRow.begin();
782                 ia != atomListRow.end(); ++ia) {            
783              atom1 = (*ia);
784 <            
785 <            for (vector<int>::iterator jb = atomListColumn.begin();
784 >
785 >            for (jb = atomListColumn.begin();
786                   jb != atomListColumn.end(); ++jb) {              
787                atom2 = (*jb);
344              
345              if (!fDecomp_->skipAtomPair(atom1, atom2)) {
346                
347                idat = fDecomp_->fillInteractionData(atom1, atom2);
788  
789 <                if (atomListRow.size() == 1 && atomListColumn.size() == 1) {
790 <                  *(idat.d) = d_grp;
791 <                  *(idat.r2) = rgrpsq;
789 >              if (!fDecomp_->skipAtomPair(atom1, atom2, cg1, cg2)) {
790 >
791 >                vpair = 0.0;
792 >                workPot = 0.0;
793 >                exPot = 0.0;
794 >                f1 = V3Zero;
795 >                dVdFQ1 = 0.0;
796 >                dVdFQ2 = 0.0;
797 >
798 >                fDecomp_->fillInteractionData(idat, atom1, atom2);
799 >
800 >                topoDist = fDecomp_->getTopologicalDistance(atom1, atom2);
801 >                vdwMult = vdwScale_[topoDist];
802 >                electroMult = electrostaticScale_[topoDist];
803 >
804 >                if (atomListRow.size() == 1 && atomListColumn.size() == 1) {
805 >                  idat.d = &d_grp;
806 >                  idat.r2 = &rgrpsq;
807 >                  if (doHeatFlux_)
808 >                    vel2 = gvel2;
809                  } else {
810 <                  *(idat.d) = fDecomp_->getInteratomicVector(atom1, atom2);
811 <                  curSnapshot->wrapVector( *(idat.d) );
812 <                  *(idat.r2) = idat.d->lengthSquare();
810 >                  d = fDecomp_->getInteratomicVector(atom1, atom2);
811 >                  curSnapshot->wrapVector( d );
812 >                  r2 = d.lengthSquare();
813 >                  idat.d = &d;
814 >                  idat.r2 = &r2;
815 >                  if (doHeatFlux_)
816 >                    vel2 = fDecomp_->getAtomVelocityColumn(atom2);
817                  }
357                
358                *(idat.rij) = sqrt( *(idat.r2) );
818                
819 +                r = sqrt( *(idat.r2) );
820 +                idat.rij = &r;
821 +              
822                  if (iLoop == PREPAIR_LOOP) {
823                    interactionMan_->doPrePair(idat);
824                  } else {
825                    interactionMan_->doPair(idat);
826 <                  vij += *(idat.vpair);
827 <                  fij += *(idat.f1);
828 <                  tau -= outProduct( *(idat.d), *(idat.f1));
826 >                  fDecomp_->unpackInteractionData(idat, atom1, atom2);
827 >                  vij += vpair;
828 >                  fij += f1;
829 >                  stressTensor -= outProduct( *(idat.d), f1);
830 >                  if (doHeatFlux_)
831 >                    fDecomp_->addToHeatFlux(*(idat.d) * dot(f1, vel2));
832                  }
833                }
834              }
# Line 373 | Line 838 | namespace OpenMD {
838              if (in_switching_region) {
839                swderiv = vij * dswdr / rgrp;
840                fg = swderiv * d_grp;
376
841                fij += fg;
842  
843                if (atomListRow.size() == 1 && atomListColumn.size() == 1) {
844 <                tau -= outProduct( *(idat.d), fg);
844 >                if (!fDecomp_->skipAtomPair(atomListRow[0],
845 >                                            atomListColumn[0],
846 >                                            cg1, cg2)) {
847 >                  stressTensor -= outProduct( *(idat.d), fg);
848 >                  if (doHeatFlux_)
849 >                    fDecomp_->addToHeatFlux(*(idat.d) * dot(fg, vel2));
850 >                }                
851                }
852            
853 <              for (vector<int>::iterator ia = atomListRow.begin();
853 >              for (ia = atomListRow.begin();
854                     ia != atomListRow.end(); ++ia) {            
855                  atom1 = (*ia);                
856                  mf = fDecomp_->getMassFactorRow(atom1);
# Line 388 | Line 858 | namespace OpenMD {
858                  // presence in switching region
859                  fg = swderiv * d_grp * mf;
860                  fDecomp_->addForceToAtomRow(atom1, fg);
391
861                  if (atomListRow.size() > 1) {
862                    if (info_->usesAtomicVirial()) {
863                      // find the distance between the atom
864                      // and the center of the cutoff group:
865                      dag = fDecomp_->getAtomToGroupVectorRow(atom1, cg1);
866 <                    tau -= outProduct(dag, fg);
866 >                    stressTensor -= outProduct(dag, fg);
867 >                    if (doHeatFlux_)
868 >                      fDecomp_->addToHeatFlux( dag * dot(fg, vel2));
869                    }
870                  }
871                }
872 <              for (vector<int>::iterator jb = atomListColumn.begin();
872 >              for (jb = atomListColumn.begin();
873                     jb != atomListColumn.end(); ++jb) {              
874                  atom2 = (*jb);
875                  mf = fDecomp_->getMassFactorColumn(atom2);
# Line 412 | Line 883 | namespace OpenMD {
883                      // find the distance between the atom
884                      // and the center of the cutoff group:
885                      dag = fDecomp_->getAtomToGroupVectorColumn(atom2, cg2);
886 <                    tau -= outProduct(dag, fg);
886 >                    stressTensor -= outProduct(dag, fg);
887 >                    if (doHeatFlux_)
888 >                      fDecomp_->addToHeatFlux( dag * dot(fg, vel2));
889                    }
890                  }
891                }
892              }
893 <            //if (!SIM_uses_AtomicVirial) {
894 <            //  tau -= outProduct(d_grp, fij);
893 >            //if (!info_->usesAtomicVirial()) {
894 >            //  stressTensor -= outProduct(d_grp, fij);
895 >            //  if (doHeatFlux_)
896 >            //     fDecomp_->addToHeatFlux( d_grp * dot(fij, vel2));
897              //}
898            }
899          }
900        }
901  
902        if (iLoop == PREPAIR_LOOP) {
903 <        if (info_->requiresPrepair()) {            
903 >        if (info_->requiresPrepair()) {
904 >
905            fDecomp_->collectIntermediateData();
906 <          atomListLocal = fDecomp_->getAtomList();
907 <          for (vector<int>::iterator ia = atomListLocal.begin();
908 <               ia != atomListLocal.end(); ++ia) {              
433 <            atom1 = (*ia);            
434 <            sdat = fDecomp_->fillSelfData(atom1);
906 >
907 >          for (unsigned int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) {
908 >            fDecomp_->fillSelfData(sdat, atom1);
909              interactionMan_->doPreForce(sdat);
910            }
911 <          fDecomp_->distributeIntermediateData();        
911 >
912 >          fDecomp_->distributeIntermediateData();
913 >
914          }
915        }
440
916      }
917      
918 +    // collects pairwise information
919      fDecomp_->collectData();
920 <    
921 <    if (info_->requiresSkipCorrection() || info_->requiresSelfCorrection()) {
922 <      atomListLocal = fDecomp_->getAtomList();
923 <      for (vector<int>::iterator ia = atomListLocal.begin();
924 <           ia != atomListLocal.end(); ++ia) {              
449 <        atom1 = (*ia);    
450 <
451 <        if (info_->requiresSkipCorrection()) {
452 <          vector<int> skipList = fDecomp_->getSkipsForAtom(atom1);
453 <          for (vector<int>::iterator jb = skipList.begin();
454 <               jb != skipList.end(); ++jb) {              
455 <            atom2 = (*jb);
456 <            idat = fDecomp_->fillSkipData(atom1, atom2);
457 <            interactionMan_->doSkipCorrection(idat);
458 <          }
459 <        }
460 <          
461 <        if (info_->requiresSelfCorrection()) {
462 <          sdat = fDecomp_->fillSelfData(atom1);
463 <          interactionMan_->doSelfCorrection(sdat);
464 <        }
920 >        
921 >    if (info_->requiresSelfCorrection()) {
922 >      for (unsigned int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) {
923 >        fDecomp_->fillSelfData(sdat, atom1);
924 >        interactionMan_->doSelfCorrection(sdat);
925        }
926      }
927  
928 <    // dangerous to iterate over enums, but we'll live on the edge:
929 <    for (int i = NO_FAMILY; i != N_INTERACTION_FAMILIES; ++i){
930 <      lrPot += longRangePotential[i]; //Quick hack
931 <    }
932 <        
933 <    //store the tau and long range potential    
934 <    curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot;
935 <    curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VANDERWAALS_FAMILY];
936 <    curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_FAMILY];
928 >    // collects single-atom information
929 >    fDecomp_->collectSelfData();
930 >
931 >    longRangePotential = *(fDecomp_->getEmbeddingPotential()) +
932 >      *(fDecomp_->getPairwisePotential());
933 >
934 >    curSnapshot->setLongRangePotential(longRangePotential);
935 >    
936 >    curSnapshot->setExcludedPotentials(*(fDecomp_->getExcludedSelfPotential()) +
937 >                                         *(fDecomp_->getExcludedPotential()));
938 >
939    }
940  
941    
942    void ForceManager::postCalculation() {
943 +
944 +    vector<Perturbation*>::iterator pi;
945 +    for (pi = perturbations_.begin(); pi != perturbations_.end(); ++pi) {
946 +      (*pi)->applyPerturbation();
947 +    }
948 +
949      SimInfo::MoleculeIterator mi;
950      Molecule* mol;
951      Molecule::RigidBodyIterator rbIter;
952      RigidBody* rb;
953      Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
954 <    
954 >  
955      // collect the atomic forces onto rigid bodies
956      
957      for (mol = info_->beginMolecule(mi); mol != NULL;
# Line 491 | Line 959 | namespace OpenMD {
959        for (rb = mol->beginRigidBody(rbIter); rb != NULL;
960             rb = mol->nextRigidBody(rbIter)) {
961          Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial();
962 <        tau += rbTau;
962 >        stressTensor += rbTau;
963        }
964      }
965      
966   #ifdef IS_MPI
967 <    Mat3x3d tmpTau(tau);
968 <    MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(),
501 <                  9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
967 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, stressTensor.getArrayPointer(), 9,
968 >                              MPI::REALTYPE, MPI::SUM);
969   #endif
970 <    curSnapshot->statData.setTau(tau);
971 <  }
970 >    curSnapshot->setStressTensor(stressTensor);
971 >    
972 >    if (info_->getSimParams()->getUseLongRangeCorrections()) {
973 >      /*
974 >      RealType vol = curSnapshot->getVolume();
975 >      RealType Elrc(0.0);
976 >      RealType Wlrc(0.0);
977  
978 < } //end namespace OpenMD
978 >      set<AtomType*>::iterator i;
979 >      set<AtomType*>::iterator j;
980 >    
981 >      RealType n_i, n_j;
982 >      RealType rho_i, rho_j;
983 >      pair<RealType, RealType> LRI;
984 >      
985 >      for (i = atomTypes_.begin(); i != atomTypes_.end(); ++i) {
986 >        n_i = RealType(info_->getGlobalCountOfType(*i));
987 >        rho_i = n_i /  vol;
988 >        for (j = atomTypes_.begin(); j != atomTypes_.end(); ++j) {
989 >          n_j = RealType(info_->getGlobalCountOfType(*j));
990 >          rho_j = n_j / vol;
991 >          
992 >          LRI = interactionMan_->getLongRangeIntegrals( (*i), (*j) );
993 >
994 >          Elrc += n_i   * rho_j * LRI.first;
995 >          Wlrc -= rho_i * rho_j * LRI.second;
996 >        }
997 >      }
998 >      Elrc *= 2.0 * NumericConstant::PI;
999 >      Wlrc *= 2.0 * NumericConstant::PI;
1000 >
1001 >      RealType lrp = curSnapshot->getLongRangePotential();
1002 >      curSnapshot->setLongRangePotential(lrp + Elrc);
1003 >      stressTensor += Wlrc * SquareMatrix3<RealType>::identity();
1004 >      curSnapshot->setStressTensor(stressTensor);
1005 >      */
1006 >    
1007 >    }
1008 >  }
1009 > }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines