ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/ForceManager.cpp
(Generate patch)

Comparing branches/development/src/brains/ForceManager.cpp (file contents):
Revision 1570 by gezelter, Thu May 26 21:56:04 2011 UTC vs.
Revision 1877 by gezelter, Thu Jun 6 15:43:35 2013 UTC

# Line 35 | Line 35
35   *                                                                      
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 < * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 < * [4]  Vardeman & Gezelter, in progress (2009).                        
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
44   * @file ForceManager.cpp
45   * @author tlin
46   * @date 11/09/2004
46 * @time 10:39am
47   * @version 1.0
48   */
49  
50 +
51   #include "brains/ForceManager.hpp"
52   #include "primitives/Molecule.hpp"
53   #define __OPENMD_C
# Line 56 | Line 57
57   #include "primitives/Torsion.hpp"
58   #include "primitives/Inversion.hpp"
59   #include "nonbonded/NonBondedInteraction.hpp"
60 + #include "perturbations/ElectricField.hpp"
61   #include "parallel/ForceMatrixDecomposition.hpp"
62  
63 + #include <cstdio>
64 + #include <iostream>
65 + #include <iomanip>
66 +
67   using namespace std;
68   namespace OpenMD {
69    
70 <  ForceManager::ForceManager(SimInfo * info) : info_(info) {
70 >  ForceManager::ForceManager(SimInfo * info) : info_(info), switcher_(NULL),
71 >                                               initialized_(false) {
72 >    forceField_ = info_->getForceField();
73 >    interactionMan_ = new InteractionManager();
74 >    fDecomp_ = new ForceMatrixDecomposition(info_, interactionMan_);
75 >    thermo = new Thermo(info_);
76 >  }
77  
78 < #ifdef IS_MPI
79 <    fDecomp_ = new ForceMatrixDecomposition(info_);
80 < #else
81 <    // fDecomp_ = new ForceSerialDecomposition(info);
82 < #endif
78 >  ForceManager::~ForceManager() {
79 >    perturbations_.clear();
80 >    
81 >    delete switcher_;
82 >    delete interactionMan_;
83 >    delete fDecomp_;
84 >    delete thermo;
85    }
86    
87 <  void ForceManager::calcForces() {
87 >  /**
88 >   * setupCutoffs
89 >   *
90 >   * Sets the values of cutoffRadius, switchingRadius, cutoffMethod,
91 >   * and cutoffPolicy
92 >   *
93 >   * cutoffRadius : realType
94 >   *  If the cutoffRadius was explicitly set, use that value.
95 >   *  If the cutoffRadius was not explicitly set:
96 >   *      Are there electrostatic atoms?  Use 12.0 Angstroms.
97 >   *      No electrostatic atoms?  Poll the atom types present in the
98 >   *      simulation for suggested cutoff values (e.g. 2.5 * sigma).
99 >   *      Use the maximum suggested value that was found.
100 >   *
101 >   * cutoffMethod : (one of HARD, SWITCHED, SHIFTED_FORCE, TAYLOR_SHIFTED,
102 >   *                        or SHIFTED_POTENTIAL)
103 >   *      If cutoffMethod was explicitly set, use that choice.
104 >   *      If cutoffMethod was not explicitly set, use SHIFTED_FORCE
105 >   *
106 >   * cutoffPolicy : (one of MIX, MAX, TRADITIONAL)
107 >   *      If cutoffPolicy was explicitly set, use that choice.
108 >   *      If cutoffPolicy was not explicitly set, use TRADITIONAL
109 >   *
110 >   * switchingRadius : realType
111 >   *  If the cutoffMethod was set to SWITCHED:
112 >   *      If the switchingRadius was explicitly set, use that value
113 >   *          (but do a sanity check first).
114 >   *      If the switchingRadius was not explicitly set: use 0.85 *
115 >   *      cutoffRadius_
116 >   *  If the cutoffMethod was not set to SWITCHED:
117 >   *      Set switchingRadius equal to cutoffRadius for safety.
118 >   */
119 >  void ForceManager::setupCutoffs() {
120      
121 +    Globals* simParams_ = info_->getSimParams();
122 +    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
123 +    int mdFileVersion;
124 +    rCut_ = 0.0; //Needs a value for a later max() call;  
125 +    
126 +    if (simParams_->haveMDfileVersion())
127 +      mdFileVersion = simParams_->getMDfileVersion();
128 +    else
129 +      mdFileVersion = 0;
130 +  
131 +    // We need the list of simulated atom types to figure out cutoffs
132 +    // as well as long range corrections.
133 +
134 +    set<AtomType*>::iterator i;
135 +    set<AtomType*> atomTypes_;
136 +    atomTypes_ = info_->getSimulatedAtomTypes();
137 +
138 +    if (simParams_->haveCutoffRadius()) {
139 +      rCut_ = simParams_->getCutoffRadius();
140 +    } else {      
141 +      if (info_->usesElectrostaticAtoms()) {
142 +        sprintf(painCave.errMsg,
143 +                "ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n"
144 +                "\tOpenMD will use a default value of 12.0 angstroms"
145 +                "\tfor the cutoffRadius.\n");
146 +        painCave.isFatal = 0;
147 +        painCave.severity = OPENMD_INFO;
148 +        simError();
149 +        rCut_ = 12.0;
150 +      } else {
151 +        RealType thisCut;
152 +        for (i = atomTypes_.begin(); i != atomTypes_.end(); ++i) {
153 +          thisCut = interactionMan_->getSuggestedCutoffRadius((*i));
154 +          rCut_ = max(thisCut, rCut_);
155 +        }
156 +        sprintf(painCave.errMsg,
157 +                "ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n"
158 +                "\tOpenMD will use %lf angstroms.\n",
159 +                rCut_);
160 +        painCave.isFatal = 0;
161 +        painCave.severity = OPENMD_INFO;
162 +        simError();
163 +      }
164 +    }
165 +
166 +    fDecomp_->setUserCutoff(rCut_);
167 +    interactionMan_->setCutoffRadius(rCut_);
168 +
169 +    map<string, CutoffMethod> stringToCutoffMethod;
170 +    stringToCutoffMethod["HARD"] = HARD;
171 +    stringToCutoffMethod["SWITCHED"] = SWITCHED;
172 +    stringToCutoffMethod["SHIFTED_POTENTIAL"] = SHIFTED_POTENTIAL;    
173 +    stringToCutoffMethod["SHIFTED_FORCE"] = SHIFTED_FORCE;
174 +    stringToCutoffMethod["TAYLOR_SHIFTED"] = TAYLOR_SHIFTED;
175 +  
176 +    if (simParams_->haveCutoffMethod()) {
177 +      string cutMeth = toUpperCopy(simParams_->getCutoffMethod());
178 +      map<string, CutoffMethod>::iterator i;
179 +      i = stringToCutoffMethod.find(cutMeth);
180 +      if (i == stringToCutoffMethod.end()) {
181 +        sprintf(painCave.errMsg,
182 +                "ForceManager::setupCutoffs: Could not find chosen cutoffMethod %s\n"
183 +                "\tShould be one of: "
184 +                "HARD, SWITCHED, SHIFTED_POTENTIAL, TAYLOR_SHIFTED,\n"
185 +                "\tor SHIFTED_FORCE\n",
186 +                cutMeth.c_str());
187 +        painCave.isFatal = 1;
188 +        painCave.severity = OPENMD_ERROR;
189 +        simError();
190 +      } else {
191 +        cutoffMethod_ = i->second;
192 +      }
193 +    } else {
194 +      if (mdFileVersion > 1) {
195 +        sprintf(painCave.errMsg,
196 +                "ForceManager::setupCutoffs: No value was set for the cutoffMethod.\n"
197 +                "\tOpenMD will use SHIFTED_FORCE.\n");
198 +        painCave.isFatal = 0;
199 +        painCave.severity = OPENMD_INFO;
200 +        simError();
201 +        cutoffMethod_ = SHIFTED_FORCE;        
202 +      } else {
203 +        // handle the case where the old file version was in play
204 +        // (there should be no cutoffMethod, so we have to deduce it
205 +        // from other data).        
206 +
207 +        sprintf(painCave.errMsg,
208 +                "ForceManager::setupCutoffs : DEPRECATED FILE FORMAT!\n"
209 +                "\tOpenMD found a file which does not set a cutoffMethod.\n"
210 +                "\tOpenMD will attempt to deduce a cutoffMethod using the\n"
211 +                "\tbehavior of the older (version 1) code.  To remove this\n"
212 +                "\twarning, add an explicit cutoffMethod and change the top\n"
213 +                "\tof the file so that it begins with <OpenMD version=2>\n");
214 +        painCave.isFatal = 0;
215 +        painCave.severity = OPENMD_WARNING;
216 +        simError();            
217 +                
218 +        // The old file version tethered the shifting behavior to the
219 +        // electrostaticSummationMethod keyword.
220 +        
221 +        if (simParams_->haveElectrostaticSummationMethod()) {
222 +          string myMethod = simParams_->getElectrostaticSummationMethod();
223 +          toUpper(myMethod);
224 +        
225 +          if (myMethod == "SHIFTED_POTENTIAL") {
226 +            cutoffMethod_ = SHIFTED_POTENTIAL;
227 +          } else if (myMethod == "SHIFTED_FORCE") {
228 +            cutoffMethod_ = SHIFTED_FORCE;
229 +          } else if (myMethod == "TAYLOR_SHIFTED") {
230 +            cutoffMethod_ = TAYLOR_SHIFTED;
231 +          }
232 +        
233 +          if (simParams_->haveSwitchingRadius())
234 +            rSwitch_ = simParams_->getSwitchingRadius();
235 +
236 +          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE" ||
237 +              myMethod == "TAYLOR_SHIFTED") {
238 +            if (simParams_->haveSwitchingRadius()){
239 +              sprintf(painCave.errMsg,
240 +                      "ForceManager::setupCutoffs : DEPRECATED ERROR MESSAGE\n"
241 +                      "\tA value was set for the switchingRadius\n"
242 +                      "\teven though the electrostaticSummationMethod was\n"
243 +                      "\tset to %s\n", myMethod.c_str());
244 +              painCave.severity = OPENMD_WARNING;
245 +              painCave.isFatal = 1;
246 +              simError();            
247 +            }
248 +          }
249 +          if (abs(rCut_ - rSwitch_) < 0.0001) {
250 +            if (cutoffMethod_ == SHIFTED_FORCE) {              
251 +              sprintf(painCave.errMsg,
252 +                      "ForceManager::setupCutoffs : DEPRECATED BEHAVIOR\n"
253 +                      "\tcutoffRadius and switchingRadius are set to the\n"
254 +                      "\tsame value.  OpenMD will use shifted force\n"
255 +                      "\tpotentials instead of switching functions.\n");
256 +              painCave.isFatal = 0;
257 +              painCave.severity = OPENMD_WARNING;
258 +              simError();            
259 +            } else {
260 +              cutoffMethod_ = SHIFTED_POTENTIAL;
261 +              sprintf(painCave.errMsg,
262 +                      "ForceManager::setupCutoffs : DEPRECATED BEHAVIOR\n"
263 +                      "\tcutoffRadius and switchingRadius are set to the\n"
264 +                      "\tsame value.  OpenMD will use shifted potentials\n"
265 +                      "\tinstead of switching functions.\n");
266 +              painCave.isFatal = 0;
267 +              painCave.severity = OPENMD_WARNING;
268 +              simError();            
269 +            }
270 +          }
271 +        }
272 +      }
273 +    }
274 +
275 +    map<string, CutoffPolicy> stringToCutoffPolicy;
276 +    stringToCutoffPolicy["MIX"] = MIX;
277 +    stringToCutoffPolicy["MAX"] = MAX;
278 +    stringToCutoffPolicy["TRADITIONAL"] = TRADITIONAL;    
279 +
280 +    string cutPolicy;
281 +    if (forceFieldOptions_.haveCutoffPolicy()){
282 +      cutPolicy = forceFieldOptions_.getCutoffPolicy();
283 +    }else if (simParams_->haveCutoffPolicy()) {
284 +      cutPolicy = simParams_->getCutoffPolicy();
285 +    }
286 +
287 +    if (!cutPolicy.empty()){
288 +      toUpper(cutPolicy);
289 +      map<string, CutoffPolicy>::iterator i;
290 +      i = stringToCutoffPolicy.find(cutPolicy);
291 +
292 +      if (i == stringToCutoffPolicy.end()) {
293 +        sprintf(painCave.errMsg,
294 +                "ForceManager::setupCutoffs: Could not find chosen cutoffPolicy %s\n"
295 +                "\tShould be one of: "
296 +                "MIX, MAX, or TRADITIONAL\n",
297 +                cutPolicy.c_str());
298 +        painCave.isFatal = 1;
299 +        painCave.severity = OPENMD_ERROR;
300 +        simError();
301 +      } else {
302 +        cutoffPolicy_ = i->second;
303 +      }
304 +    } else {
305 +      sprintf(painCave.errMsg,
306 +              "ForceManager::setupCutoffs: No value was set for the cutoffPolicy.\n"
307 +              "\tOpenMD will use TRADITIONAL.\n");
308 +      painCave.isFatal = 0;
309 +      painCave.severity = OPENMD_INFO;
310 +      simError();
311 +      cutoffPolicy_ = TRADITIONAL;        
312 +    }
313 +
314 +    fDecomp_->setCutoffPolicy(cutoffPolicy_);
315 +        
316 +    // create the switching function object:
317 +
318 +    switcher_ = new SwitchingFunction();
319 +  
320 +    if (cutoffMethod_ == SWITCHED) {
321 +      if (simParams_->haveSwitchingRadius()) {
322 +        rSwitch_ = simParams_->getSwitchingRadius();
323 +        if (rSwitch_ > rCut_) {        
324 +          sprintf(painCave.errMsg,
325 +                  "ForceManager::setupCutoffs: switchingRadius (%f) is larger "
326 +                  "than the cutoffRadius(%f)\n", rSwitch_, rCut_);
327 +          painCave.isFatal = 1;
328 +          painCave.severity = OPENMD_ERROR;
329 +          simError();
330 +        }
331 +      } else {      
332 +        rSwitch_ = 0.85 * rCut_;
333 +        sprintf(painCave.errMsg,
334 +                "ForceManager::setupCutoffs: No value was set for the switchingRadius.\n"
335 +                "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n"
336 +                "\tswitchingRadius = %f. for this simulation\n", rSwitch_);
337 +        painCave.isFatal = 0;
338 +        painCave.severity = OPENMD_WARNING;
339 +        simError();
340 +      }
341 +    } else {
342 +      if (mdFileVersion > 1) {
343 +        // throw an error if we define a switching radius and don't need one.
344 +        // older file versions should not do this.
345 +        if (simParams_->haveSwitchingRadius()) {
346 +          map<string, CutoffMethod>::const_iterator it;
347 +          string theMeth;
348 +          for (it = stringToCutoffMethod.begin();
349 +               it != stringToCutoffMethod.end(); ++it) {
350 +            if (it->second == cutoffMethod_) {
351 +              theMeth = it->first;
352 +              break;
353 +            }
354 +          }
355 +          sprintf(painCave.errMsg,
356 +                  "ForceManager::setupCutoffs: the cutoffMethod (%s)\n"
357 +                  "\tis not set to SWITCHED, so switchingRadius value\n"
358 +                  "\twill be ignored for this simulation\n", theMeth.c_str());
359 +          painCave.isFatal = 0;
360 +          painCave.severity = OPENMD_WARNING;
361 +          simError();
362 +        }
363 +      }
364 +      rSwitch_ = rCut_;
365 +    }
366 +    
367 +    // Default to cubic switching function.
368 +    sft_ = cubic;
369 +    if (simParams_->haveSwitchingFunctionType()) {
370 +      string funcType = simParams_->getSwitchingFunctionType();
371 +      toUpper(funcType);
372 +      if (funcType == "CUBIC") {
373 +        sft_ = cubic;
374 +      } else {
375 +        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
376 +          sft_ = fifth_order_poly;
377 +        } else {
378 +          // throw error        
379 +          sprintf( painCave.errMsg,
380 +                   "ForceManager::setupSwitching : Unknown switchingFunctionType. (Input file specified %s .)\n"
381 +                   "\tswitchingFunctionType must be one of: "
382 +                   "\"cubic\" or \"fifth_order_polynomial\".",
383 +                   funcType.c_str() );
384 +          painCave.isFatal = 1;
385 +          painCave.severity = OPENMD_ERROR;
386 +          simError();
387 +        }          
388 +      }
389 +    }
390 +    switcher_->setSwitchType(sft_);
391 +    switcher_->setSwitch(rSwitch_, rCut_);
392 +  }
393 +
394 +
395 +
396 +  
397 +  void ForceManager::initialize() {
398 +
399      if (!info_->isTopologyDone()) {
400 +
401        info_->update();
402        interactionMan_->setSimInfo(info_);
403        interactionMan_->initialize();
404 <      swfun_ = interactionMan_->getSwitchingFunction();
405 <      fDecomp_->distributeInitialData();
406 <      info_->prepareTopology();
404 >
405 >      // We want to delay the cutoffs until after the interaction
406 >      // manager has set up the atom-atom interactions so that we can
407 >      // query them for suggested cutoff values
408 >      setupCutoffs();
409 >
410 >      info_->prepareTopology();      
411 >
412 >      doParticlePot_ = info_->getSimParams()->getOutputParticlePotential();
413 >      doHeatFlux_ = info_->getSimParams()->getPrintHeatFlux();
414 >      if (doHeatFlux_) doParticlePot_ = true;
415 >
416 >      doElectricField_ = info_->getSimParams()->getOutputElectricField();
417 >  
418      }
419 +
420 +    ForceFieldOptions& fopts = forceField_->getForceFieldOptions();
421      
422 +    // Force fields can set options on how to scale van der Waals and
423 +    // electrostatic interactions for atoms connected via bonds, bends
424 +    // and torsions in this case the topological distance between
425 +    // atoms is:
426 +    // 0 = topologically unconnected
427 +    // 1 = bonded together
428 +    // 2 = connected via a bend
429 +    // 3 = connected via a torsion
430 +    
431 +    vdwScale_.reserve(4);
432 +    fill(vdwScale_.begin(), vdwScale_.end(), 0.0);
433 +
434 +    electrostaticScale_.reserve(4);
435 +    fill(electrostaticScale_.begin(), electrostaticScale_.end(), 0.0);
436 +
437 +    vdwScale_[0] = 1.0;
438 +    vdwScale_[1] = fopts.getvdw12scale();
439 +    vdwScale_[2] = fopts.getvdw13scale();
440 +    vdwScale_[3] = fopts.getvdw14scale();
441 +    
442 +    electrostaticScale_[0] = 1.0;
443 +    electrostaticScale_[1] = fopts.getelectrostatic12scale();
444 +    electrostaticScale_[2] = fopts.getelectrostatic13scale();
445 +    electrostaticScale_[3] = fopts.getelectrostatic14scale();    
446 +    
447 +    if (info_->getSimParams()->haveElectricField()) {
448 +      ElectricField* eField = new ElectricField(info_);
449 +      perturbations_.push_back(eField);
450 +    }
451 +
452 +    usePeriodicBoundaryConditions_ = info_->getSimParams()->getUsePeriodicBoundaryConditions();
453 +    
454 +    fDecomp_->distributeInitialData();
455 +    
456 +    initialized_ = true;
457 +    
458 +  }
459 +  
460 +  void ForceManager::calcForces() {
461 +    
462 +    if (!initialized_) initialize();
463 +    
464      preCalculation();  
465      shortRangeInteractions();
466      longRangeInteractions();
467 <    postCalculation();
88 <    
467 >    postCalculation();    
468    }
469    
470    void ForceManager::preCalculation() {
# Line 98 | Line 477 | namespace OpenMD {
477      Molecule::CutoffGroupIterator ci;
478      CutoffGroup* cg;
479      
480 <    // forces are zeroed here, before any are accumulated.
480 >    // forces and potentials are zeroed here, before any are
481 >    // accumulated.
482      
483 +    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
484 +
485 +    snap->setBondPotential(0.0);
486 +    snap->setBendPotential(0.0);
487 +    snap->setTorsionPotential(0.0);
488 +    snap->setInversionPotential(0.0);
489 +
490 +    potVec zeroPot(0.0);
491 +    snap->setLongRangePotential(zeroPot);
492 +    snap->setExcludedPotentials(zeroPot);
493 +
494 +    snap->setRestraintPotential(0.0);
495 +    snap->setRawPotential(0.0);
496 +
497      for (mol = info_->beginMolecule(mi); mol != NULL;
498           mol = info_->nextMolecule(mi)) {
499 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
499 >      for(atom = mol->beginAtom(ai); atom != NULL;
500 >          atom = mol->nextAtom(ai)) {
501          atom->zeroForcesAndTorques();
502        }
503 <          
503 >      
504        //change the positions of atoms which belong to the rigidbodies
505        for (rb = mol->beginRigidBody(rbIter); rb != NULL;
506             rb = mol->nextRigidBody(rbIter)) {
507          rb->zeroForcesAndTorques();
508        }        
509 <
509 >      
510        if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){
511          for(cg = mol->beginCutoffGroup(ci); cg != NULL;
512              cg = mol->nextCutoffGroup(ci)) {
# Line 120 | Line 515 | namespace OpenMD {
515          }
516        }      
517      }
123  
124    // Zero out the stress tensor
125    tau *= 0.0;
518      
519 +    // Zero out the stress tensor
520 +    stressTensor *= 0.0;
521 +    // Zero out the heatFlux
522 +    fDecomp_->setHeatFlux( Vector3d(0.0) );    
523    }
524    
525    void ForceManager::shortRangeInteractions() {
# Line 156 | Line 552 | namespace OpenMD {
552  
553        for (bond = mol->beginBond(bondIter); bond != NULL;
554             bond = mol->nextBond(bondIter)) {
555 <        bond->calcForce();
555 >        bond->calcForce(doParticlePot_);
556          bondPotential += bond->getPotential();
557        }
558  
# Line 164 | Line 560 | namespace OpenMD {
560             bend = mol->nextBend(bendIter)) {
561          
562          RealType angle;
563 <        bend->calcForce(angle);
563 >        bend->calcForce(angle, doParticlePot_);
564          RealType currBendPot = bend->getPotential();          
565          
566          bendPotential += bend->getPotential();
# Line 174 | Line 570 | namespace OpenMD {
570            dataSet.prev.angle = dataSet.curr.angle = angle;
571            dataSet.prev.potential = dataSet.curr.potential = currBendPot;
572            dataSet.deltaV = 0.0;
573 <          bendDataSets.insert(map<Bend*, BendDataSet>::value_type(bend, dataSet));
573 >          bendDataSets.insert(map<Bend*, BendDataSet>::value_type(bend,
574 >                                                                  dataSet));
575          }else {
576            i->second.prev.angle = i->second.curr.angle;
577            i->second.prev.potential = i->second.curr.potential;
# Line 188 | Line 585 | namespace OpenMD {
585        for (torsion = mol->beginTorsion(torsionIter); torsion != NULL;
586             torsion = mol->nextTorsion(torsionIter)) {
587          RealType angle;
588 <        torsion->calcForce(angle);
588 >        torsion->calcForce(angle, doParticlePot_);
589          RealType currTorsionPot = torsion->getPotential();
590          torsionPotential += torsion->getPotential();
591          map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion);
# Line 212 | Line 609 | namespace OpenMD {
609             inversion != NULL;
610             inversion = mol->nextInversion(inversionIter)) {
611          RealType angle;
612 <        inversion->calcForce(angle);
612 >        inversion->calcForce(angle, doParticlePot_);
613          RealType currInversionPot = inversion->getPotential();
614          inversionPotential += inversion->getPotential();
615          map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion);
# Line 232 | Line 629 | namespace OpenMD {
629          }      
630        }      
631      }
632 <    
633 <    RealType  shortRangePotential = bondPotential + bendPotential +
634 <      torsionPotential +  inversionPotential;    
632 >
633 > #ifdef IS_MPI
634 >    // Collect from all nodes.  This should eventually be moved into a
635 >    // SystemDecomposition, but this is a better place than in
636 >    // Thermo to do the collection.
637 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &bondPotential, 1, MPI::REALTYPE,
638 >                              MPI::SUM);
639 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &bendPotential, 1, MPI::REALTYPE,
640 >                              MPI::SUM);
641 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &torsionPotential, 1,
642 >                              MPI::REALTYPE, MPI::SUM);
643 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &inversionPotential, 1,
644 >                              MPI::REALTYPE, MPI::SUM);
645 > #endif
646 >
647      Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
648 <    curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential;
649 <    curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential;
650 <    curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential;
651 <    curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential;
652 <    curSnapshot->statData[Stats::INVERSION_POTENTIAL] = inversionPotential;    
648 >
649 >    curSnapshot->setBondPotential(bondPotential);
650 >    curSnapshot->setBendPotential(bendPotential);
651 >    curSnapshot->setTorsionPotential(torsionPotential);
652 >    curSnapshot->setInversionPotential(inversionPotential);
653 >    
654 >    // RealType shortRangePotential = bondPotential + bendPotential +
655 >    //   torsionPotential +  inversionPotential;    
656 >
657 >    // curSnapshot->setShortRangePotential(shortRangePotential);
658    }
659    
660    void ForceManager::longRangeInteractions() {
661  
248    // some of this initial stuff will go away:
662      Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
663      DataStorage* config = &(curSnapshot->atomData);
664      DataStorage* cgConfig = &(curSnapshot->cgData);
252    RealType* frc = config->getArrayPointer(DataStorage::dslForce);
253    RealType* pos = config->getArrayPointer(DataStorage::dslPosition);
254    RealType* trq = config->getArrayPointer(DataStorage::dslTorque);
255    RealType* A = config->getArrayPointer(DataStorage::dslAmat);
256    RealType* electroFrame = config->getArrayPointer(DataStorage::dslElectroFrame);
257    RealType* particlePot = config->getArrayPointer(DataStorage::dslParticlePot);
258    RealType* rc;    
665  
666 <    if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){
667 <      rc = cgConfig->getArrayPointer(DataStorage::dslPosition);
666 >    //calculate the center of mass of cutoff group
667 >
668 >    SimInfo::MoleculeIterator mi;
669 >    Molecule* mol;
670 >    Molecule::CutoffGroupIterator ci;
671 >    CutoffGroup* cg;
672 >
673 >    if(info_->getNCutoffGroups() > 0){      
674 >      for (mol = info_->beginMolecule(mi); mol != NULL;
675 >           mol = info_->nextMolecule(mi)) {
676 >        for(cg = mol->beginCutoffGroup(ci); cg != NULL;
677 >            cg = mol->nextCutoffGroup(ci)) {
678 >          cg->updateCOM();
679 >        }
680 >      }      
681      } else {
682        // center of mass of the group is the same as position of the atom  
683        // if cutoff group does not exist
684 <      rc = pos;
685 <    }
267 <    
268 <    //initialize data before passing to fortran
269 <    RealType longRangePotential[N_INTERACTION_FAMILIES];
270 <    RealType lrPot = 0.0;
271 <    int isError = 0;
272 <
273 <    // dangerous to iterate over enums, but we'll live on the edge:
274 <    for (int i = NO_FAMILY; i != N_INTERACTION_FAMILIES; ++i){
275 <      longRangePotential[i]=0.0; //Initialize array
684 >      cgConfig->position = config->position;
685 >      cgConfig->velocity = config->velocity;
686      }
687  
688 <    // new stuff starts here:
279 <
688 >    fDecomp_->zeroWorkArrays();
689      fDecomp_->distributeData();
690 <
691 <    int cg1, cg2, atom1, atom2;
692 <    Vector3d d_grp, dag;
693 <    RealType rgrpsq, rgrp;
690 >    
691 >    int cg1, cg2, atom1, atom2, topoDist;
692 >    Vector3d d_grp, dag, d, gvel2, vel2;
693 >    RealType rgrpsq, rgrp, r2, r;
694 >    RealType electroMult, vdwMult;
695      RealType vij;
696 <    Vector3d fij, fg;
697 <    pair<int, int> gtypes;
696 >    Vector3d fij, fg, f1;
697 >    tuple3<RealType, RealType, RealType> cuts;
698      RealType rCutSq;
699      bool in_switching_region;
700      RealType sw, dswdr, swderiv;
701 <    vector<int> atomListColumn, atomListRow, atomListLocal;
701 >    vector<int> atomListColumn, atomListRow;
702      InteractionData idat;
703      SelfData sdat;
704      RealType mf;
705 +    RealType vpair;
706 +    RealType dVdFQ1(0.0);
707 +    RealType dVdFQ2(0.0);
708 +    potVec longRangePotential(0.0);
709 +    potVec workPot(0.0);
710 +    potVec exPot(0.0);
711 +    Vector3d eField1(0.0);
712 +    Vector3d eField2(0.0);
713 +    vector<int>::iterator ia, jb;
714  
715      int loopStart, loopEnd;
716  
717 +    idat.vdwMult = &vdwMult;
718 +    idat.electroMult = &electroMult;
719 +    idat.pot = &workPot;
720 +    idat.excludedPot = &exPot;
721 +    sdat.pot = fDecomp_->getEmbeddingPotential();
722 +    sdat.excludedPot = fDecomp_->getExcludedSelfPotential();
723 +    idat.vpair = &vpair;
724 +    idat.dVdFQ1 = &dVdFQ1;
725 +    idat.dVdFQ2 = &dVdFQ2;
726 +    idat.eField1 = &eField1;
727 +    idat.eField2 = &eField2;  
728 +    idat.f1 = &f1;
729 +    idat.sw = &sw;
730 +    idat.shiftedPot = (cutoffMethod_ == SHIFTED_POTENTIAL) ? true : false;
731 +    idat.shiftedForce = (cutoffMethod_ == SHIFTED_FORCE || cutoffMethod_ == TAYLOR_SHIFTED) ? true : false;
732 +    idat.doParticlePot = doParticlePot_;
733 +    idat.doElectricField = doElectricField_;
734 +    sdat.doParticlePot = doParticlePot_;
735 +    
736      loopEnd = PAIR_LOOP;
737      if (info_->requiresPrepair() ) {
738        loopStart = PREPAIR_LOOP;
739      } else {
740        loopStart = PAIR_LOOP;
741      }
742 <
743 <    for (int iLoop = loopStart; iLoop < loopEnd; iLoop++) {
306 <      
742 >    for (int iLoop = loopStart; iLoop <= loopEnd; iLoop++) {
743 >    
744        if (iLoop == loopStart) {
745          bool update_nlist = fDecomp_->checkNeighborList();
746 <        if (update_nlist)
746 >        if (update_nlist) {
747 >          if (!usePeriodicBoundaryConditions_)
748 >            Mat3x3d bbox = thermo->getBoundingBox();
749            neighborList = fDecomp_->buildNeighborList();
750 +        }
751        }
752  
753        for (vector<pair<int, int> >::iterator it = neighborList.begin();
754               it != neighborList.end(); ++it) {
755 <        
755 >                
756          cg1 = (*it).first;
757          cg2 = (*it).second;
758 +        
759 +        cuts = fDecomp_->getGroupCutoffs(cg1, cg2);
760  
319        gtypes = fDecomp_->getGroupTypes(cg1, cg2);
761          d_grp  = fDecomp_->getIntergroupVector(cg1, cg2);
762 +
763          curSnapshot->wrapVector(d_grp);        
764          rgrpsq = d_grp.lengthSquare();
765 <        rCutSq = groupCutoffMap[gtypes].first;
765 >        rCutSq = cuts.second;
766  
767          if (rgrpsq < rCutSq) {
768 <          *(idat.rcut) = groupCutoffMap[gtypes].second;
768 >          idat.rcut = &cuts.first;
769            if (iLoop == PAIR_LOOP) {
770 <            vij *= 0.0;
771 <            fij = V3Zero;
770 >            vij = 0.0;
771 >            fij.zero();
772 >            eField1.zero();
773 >            eField2.zero();
774            }
775            
776 <          in_switching_region = swfun_->getSwitch(rgrpsq, *(idat.sw), dswdr,
777 <                                                  rgrp);              
776 >          in_switching_region = switcher_->getSwitch(rgrpsq, sw, dswdr,
777 >                                                     rgrp);
778 >
779            atomListRow = fDecomp_->getAtomsInGroupRow(cg1);
780            atomListColumn = fDecomp_->getAtomsInGroupColumn(cg2);
781  
782 <          for (vector<int>::iterator ia = atomListRow.begin();
782 >          if (doHeatFlux_)
783 >            gvel2 = fDecomp_->getGroupVelocityColumn(cg2);
784 >
785 >          for (ia = atomListRow.begin();
786                 ia != atomListRow.end(); ++ia) {            
787              atom1 = (*ia);
788 <            
789 <            for (vector<int>::iterator jb = atomListColumn.begin();
788 >
789 >            for (jb = atomListColumn.begin();
790                   jb != atomListColumn.end(); ++jb) {              
791                atom2 = (*jb);
344              
345              if (!fDecomp_->skipAtomPair(atom1, atom2)) {
346                
347                idat = fDecomp_->fillInteractionData(atom1, atom2);
792  
793 +              if (!fDecomp_->skipAtomPair(atom1, atom2, cg1, cg2)) {
794 +
795 +                vpair = 0.0;
796 +                workPot = 0.0;
797 +                exPot = 0.0;
798 +                f1.zero();
799 +                dVdFQ1 = 0.0;
800 +                dVdFQ2 = 0.0;
801 +
802 +                fDecomp_->fillInteractionData(idat, atom1, atom2);
803 +
804 +                topoDist = fDecomp_->getTopologicalDistance(atom1, atom2);
805 +                vdwMult = vdwScale_[topoDist];
806 +                electroMult = electrostaticScale_[topoDist];
807 +
808                  if (atomListRow.size() == 1 && atomListColumn.size() == 1) {
809 <                  *(idat.d) = d_grp;
810 <                  *(idat.r2) = rgrpsq;
809 >                  idat.d = &d_grp;
810 >                  idat.r2 = &rgrpsq;
811 >                  if (doHeatFlux_)
812 >                    vel2 = gvel2;
813                  } else {
814 <                  *(idat.d) = fDecomp_->getInteratomicVector(atom1, atom2);
815 <                  curSnapshot->wrapVector( *(idat.d) );
816 <                  *(idat.r2) = idat.d->lengthSquare();
814 >                  d = fDecomp_->getInteratomicVector(atom1, atom2);
815 >                  curSnapshot->wrapVector( d );
816 >                  r2 = d.lengthSquare();
817 >                  idat.d = &d;
818 >                  idat.r2 = &r2;
819 >                  if (doHeatFlux_)
820 >                    vel2 = fDecomp_->getAtomVelocityColumn(atom2);
821                  }
357                
358                *(idat.rij) = sqrt( *(idat.r2) );
822                
823 +                r = sqrt( *(idat.r2) );
824 +                idat.rij = &r;
825 +              
826                  if (iLoop == PREPAIR_LOOP) {
827                    interactionMan_->doPrePair(idat);
828                  } else {
829                    interactionMan_->doPair(idat);
830 <                  vij += *(idat.vpair);
831 <                  fij += *(idat.f1);
832 <                  tau -= outProduct( *(idat.d), *(idat.f1));
830 >                  fDecomp_->unpackInteractionData(idat, atom1, atom2);
831 >                  vij += vpair;
832 >                  fij += f1;
833 >                  stressTensor -= outProduct( *(idat.d), f1);
834 >                  if (doHeatFlux_)
835 >                    fDecomp_->addToHeatFlux(*(idat.d) * dot(f1, vel2));
836                  }
837                }
838              }
# Line 373 | Line 842 | namespace OpenMD {
842              if (in_switching_region) {
843                swderiv = vij * dswdr / rgrp;
844                fg = swderiv * d_grp;
376
845                fij += fg;
846  
847                if (atomListRow.size() == 1 && atomListColumn.size() == 1) {
848 <                tau -= outProduct( *(idat.d), fg);
848 >                if (!fDecomp_->skipAtomPair(atomListRow[0],
849 >                                            atomListColumn[0],
850 >                                            cg1, cg2)) {
851 >                  stressTensor -= outProduct( *(idat.d), fg);
852 >                  if (doHeatFlux_)
853 >                    fDecomp_->addToHeatFlux(*(idat.d) * dot(fg, vel2));
854 >                }                
855                }
856            
857 <              for (vector<int>::iterator ia = atomListRow.begin();
857 >              for (ia = atomListRow.begin();
858                     ia != atomListRow.end(); ++ia) {            
859                  atom1 = (*ia);                
860                  mf = fDecomp_->getMassFactorRow(atom1);
# Line 388 | Line 862 | namespace OpenMD {
862                  // presence in switching region
863                  fg = swderiv * d_grp * mf;
864                  fDecomp_->addForceToAtomRow(atom1, fg);
391
865                  if (atomListRow.size() > 1) {
866                    if (info_->usesAtomicVirial()) {
867                      // find the distance between the atom
868                      // and the center of the cutoff group:
869                      dag = fDecomp_->getAtomToGroupVectorRow(atom1, cg1);
870 <                    tau -= outProduct(dag, fg);
870 >                    stressTensor -= outProduct(dag, fg);
871 >                    if (doHeatFlux_)
872 >                      fDecomp_->addToHeatFlux( dag * dot(fg, vel2));
873                    }
874                  }
875                }
876 <              for (vector<int>::iterator jb = atomListColumn.begin();
876 >              for (jb = atomListColumn.begin();
877                     jb != atomListColumn.end(); ++jb) {              
878                  atom2 = (*jb);
879                  mf = fDecomp_->getMassFactorColumn(atom2);
# Line 412 | Line 887 | namespace OpenMD {
887                      // find the distance between the atom
888                      // and the center of the cutoff group:
889                      dag = fDecomp_->getAtomToGroupVectorColumn(atom2, cg2);
890 <                    tau -= outProduct(dag, fg);
890 >                    stressTensor -= outProduct(dag, fg);
891 >                    if (doHeatFlux_)
892 >                      fDecomp_->addToHeatFlux( dag * dot(fg, vel2));
893                    }
894                  }
895                }
896              }
897 <            //if (!SIM_uses_AtomicVirial) {
898 <            //  tau -= outProduct(d_grp, fij);
897 >            //if (!info_->usesAtomicVirial()) {
898 >            //  stressTensor -= outProduct(d_grp, fij);
899 >            //  if (doHeatFlux_)
900 >            //     fDecomp_->addToHeatFlux( d_grp * dot(fij, vel2));
901              //}
902            }
903          }
904        }
905  
906        if (iLoop == PREPAIR_LOOP) {
907 <        if (info_->requiresPrepair()) {            
907 >        if (info_->requiresPrepair()) {
908 >
909            fDecomp_->collectIntermediateData();
910  
911 <          for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) {
912 <            sdat = fDecomp_->fillSelfData(atom1);
911 >          for (unsigned int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) {
912 >            fDecomp_->fillSelfData(sdat, atom1);
913              interactionMan_->doPreForce(sdat);
914            }
915  
916 <          fDecomp_->distributeIntermediateData();        
916 >          fDecomp_->distributeIntermediateData();
917 >
918          }
919        }
439
920      }
921      
922 +    // collects pairwise information
923      fDecomp_->collectData();
443    
444    if ( info_->requiresSkipCorrection() ) {
445      
446      for (int atom1 = 0; atom1 < fDecomp_->getNAtomsInRow(); atom1++) {
447
448        vector<int> skipList = fDecomp_->getSkipsForRowAtom( atom1 );
924          
450        for (vector<int>::iterator jb = skipList.begin();
451             jb != skipList.end(); ++jb) {        
452    
453          atom2 = (*jb);
454          idat = fDecomp_->fillSkipData(atom1, atom2);
455          interactionMan_->doSkipCorrection(idat);
456
457        }
458      }
459    }
460    
925      if (info_->requiresSelfCorrection()) {
926 <
927 <      for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) {          
464 <        sdat = fDecomp_->fillSelfData(atom1);
926 >      for (unsigned int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) {
927 >        fDecomp_->fillSelfData(sdat, atom1);
928          interactionMan_->doSelfCorrection(sdat);
929        }
467
930      }
931  
932 <    // dangerous to iterate over enums, but we'll live on the edge:
933 <    for (int i = NO_FAMILY; i != N_INTERACTION_FAMILIES; ++i){
934 <      lrPot += longRangePotential[i]; //Quick hack
935 <    }
936 <        
937 <    //store the tau and long range potential    
938 <    curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot;
939 <    curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VANDERWAALS_FAMILY];
940 <    curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_FAMILY];
932 >    // collects single-atom information
933 >    fDecomp_->collectSelfData();
934 >
935 >    longRangePotential = *(fDecomp_->getEmbeddingPotential()) +
936 >      *(fDecomp_->getPairwisePotential());
937 >
938 >    curSnapshot->setLongRangePotential(longRangePotential);
939 >    
940 >    curSnapshot->setExcludedPotentials(*(fDecomp_->getExcludedSelfPotential()) +
941 >                                         *(fDecomp_->getExcludedPotential()));
942 >
943    }
944  
945    
946    void ForceManager::postCalculation() {
947 +
948 +    vector<Perturbation*>::iterator pi;
949 +    for (pi = perturbations_.begin(); pi != perturbations_.end(); ++pi) {
950 +      (*pi)->applyPerturbation();
951 +    }
952 +
953      SimInfo::MoleculeIterator mi;
954      Molecule* mol;
955      Molecule::RigidBodyIterator rbIter;
956      RigidBody* rb;
957      Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
958 <    
958 >  
959      // collect the atomic forces onto rigid bodies
960      
961      for (mol = info_->beginMolecule(mi); mol != NULL;
# Line 493 | Line 963 | namespace OpenMD {
963        for (rb = mol->beginRigidBody(rbIter); rb != NULL;
964             rb = mol->nextRigidBody(rbIter)) {
965          Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial();
966 <        tau += rbTau;
966 >        stressTensor += rbTau;
967        }
968      }
969      
970   #ifdef IS_MPI
971 <    Mat3x3d tmpTau(tau);
972 <    MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(),
503 <                  9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
971 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, stressTensor.getArrayPointer(), 9,
972 >                              MPI::REALTYPE, MPI::SUM);
973   #endif
974 <    curSnapshot->statData.setTau(tau);
975 <  }
974 >    curSnapshot->setStressTensor(stressTensor);
975 >    
976 >    if (info_->getSimParams()->getUseLongRangeCorrections()) {
977 >      /*
978 >      RealType vol = curSnapshot->getVolume();
979 >      RealType Elrc(0.0);
980 >      RealType Wlrc(0.0);
981  
982 < } //end namespace OpenMD
982 >      set<AtomType*>::iterator i;
983 >      set<AtomType*>::iterator j;
984 >    
985 >      RealType n_i, n_j;
986 >      RealType rho_i, rho_j;
987 >      pair<RealType, RealType> LRI;
988 >      
989 >      for (i = atomTypes_.begin(); i != atomTypes_.end(); ++i) {
990 >        n_i = RealType(info_->getGlobalCountOfType(*i));
991 >        rho_i = n_i /  vol;
992 >        for (j = atomTypes_.begin(); j != atomTypes_.end(); ++j) {
993 >          n_j = RealType(info_->getGlobalCountOfType(*j));
994 >          rho_j = n_j / vol;
995 >          
996 >          LRI = interactionMan_->getLongRangeIntegrals( (*i), (*j) );
997 >
998 >          Elrc += n_i   * rho_j * LRI.first;
999 >          Wlrc -= rho_i * rho_j * LRI.second;
1000 >        }
1001 >      }
1002 >      Elrc *= 2.0 * NumericConstant::PI;
1003 >      Wlrc *= 2.0 * NumericConstant::PI;
1004 >
1005 >      RealType lrp = curSnapshot->getLongRangePotential();
1006 >      curSnapshot->setLongRangePotential(lrp + Elrc);
1007 >      stressTensor += Wlrc * SquareMatrix3<RealType>::identity();
1008 >      curSnapshot->setStressTensor(stressTensor);
1009 >      */
1010 >    
1011 >    }
1012 >  }
1013 > }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines