ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/ForceManager.cpp
(Generate patch)

Comparing branches/development/src/brains/ForceManager.cpp (file contents):
Revision 1576 by gezelter, Wed Jun 8 16:05:07 2011 UTC vs.
Revision 1808 by gezelter, Mon Oct 22 20:42:10 2012 UTC

# Line 36 | Line 36
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38   * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 < * [4]  Vardeman & Gezelter, in progress (2009).                        
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
44   * @file ForceManager.cpp
45   * @author tlin
46   * @date 11/09/2004
46 * @time 10:39am
47   * @version 1.0
48   */
49  
# Line 57 | Line 57
57   #include "primitives/Torsion.hpp"
58   #include "primitives/Inversion.hpp"
59   #include "nonbonded/NonBondedInteraction.hpp"
60 + #include "perturbations/ElectricField.hpp"
61   #include "parallel/ForceMatrixDecomposition.hpp"
62  
63 + #include <cstdio>
64 + #include <iostream>
65 + #include <iomanip>
66 +
67   using namespace std;
68   namespace OpenMD {
69    
70    ForceManager::ForceManager(SimInfo * info) : info_(info) {
71      forceField_ = info_->getForceField();
72 <    fDecomp_ = new ForceMatrixDecomposition(info_);
72 >    interactionMan_ = new InteractionManager();
73 >    fDecomp_ = new ForceMatrixDecomposition(info_, interactionMan_);
74    }
75  
76    /**
77     * setupCutoffs
78     *
79 <   * Sets the values of cutoffRadius, cutoffMethod, and cutoffPolicy
79 >   * Sets the values of cutoffRadius, switchingRadius, cutoffMethod,
80 >   * and cutoffPolicy
81     *
82     * cutoffRadius : realType
83     *  If the cutoffRadius was explicitly set, use that value.
# Line 80 | Line 87 | namespace OpenMD {
87     *      simulation for suggested cutoff values (e.g. 2.5 * sigma).
88     *      Use the maximum suggested value that was found.
89     *
90 <   * cutoffMethod : (one of HARD, SWITCHED, SHIFTED_FORCE, SHIFTED_POTENTIAL)
90 >   * cutoffMethod : (one of HARD, SWITCHED, SHIFTED_FORCE,
91 >   *                        or SHIFTED_POTENTIAL)
92     *      If cutoffMethod was explicitly set, use that choice.
93     *      If cutoffMethod was not explicitly set, use SHIFTED_FORCE
94     *
95     * cutoffPolicy : (one of MIX, MAX, TRADITIONAL)
96     *      If cutoffPolicy was explicitly set, use that choice.
97     *      If cutoffPolicy was not explicitly set, use TRADITIONAL
98 +   *
99 +   * switchingRadius : realType
100 +   *  If the cutoffMethod was set to SWITCHED:
101 +   *      If the switchingRadius was explicitly set, use that value
102 +   *          (but do a sanity check first).
103 +   *      If the switchingRadius was not explicitly set: use 0.85 *
104 +   *      cutoffRadius_
105 +   *  If the cutoffMethod was not set to SWITCHED:
106 +   *      Set switchingRadius equal to cutoffRadius for safety.
107     */
108    void ForceManager::setupCutoffs() {
109      
110      Globals* simParams_ = info_->getSimParams();
111      ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
112 +    int mdFileVersion;
113 +    rCut_ = 0.0; //Needs a value for a later max() call;  
114      
115 +    if (simParams_->haveMDfileVersion())
116 +      mdFileVersion = simParams_->getMDfileVersion();
117 +    else
118 +      mdFileVersion = 0;
119 +  
120      if (simParams_->haveCutoffRadius()) {
121        rCut_ = simParams_->getCutoffRadius();
122      } else {      
# Line 121 | Line 145 | namespace OpenMD {
145          painCave.isFatal = 0;
146          painCave.severity = OPENMD_INFO;
147          simError();
148 <      }            
148 >      }
149      }
150  
151 +    fDecomp_->setUserCutoff(rCut_);
152 +    interactionMan_->setCutoffRadius(rCut_);
153 +
154      map<string, CutoffMethod> stringToCutoffMethod;
155      stringToCutoffMethod["HARD"] = HARD;
156      stringToCutoffMethod["SWITCHED"] = SWITCHED;
# Line 147 | Line 174 | namespace OpenMD {
174          cutoffMethod_ = i->second;
175        }
176      } else {
177 <      sprintf(painCave.errMsg,
178 <              "ForceManager::setupCutoffs: No value was set for the cutoffMethod.\n"
179 <              "\tOpenMD will use SHIFTED_FORCE.\n");
180 <      painCave.isFatal = 0;
181 <      painCave.severity = OPENMD_INFO;
182 <      simError();
183 <      cutoffMethod_ = SHIFTED_FORCE;        
177 >      if (mdFileVersion > 1) {
178 >        sprintf(painCave.errMsg,
179 >                "ForceManager::setupCutoffs: No value was set for the cutoffMethod.\n"
180 >                "\tOpenMD will use SHIFTED_FORCE.\n");
181 >        painCave.isFatal = 0;
182 >        painCave.severity = OPENMD_INFO;
183 >        simError();
184 >        cutoffMethod_ = SHIFTED_FORCE;        
185 >      } else {
186 >        // handle the case where the old file version was in play
187 >        // (there should be no cutoffMethod, so we have to deduce it
188 >        // from other data).        
189 >
190 >        sprintf(painCave.errMsg,
191 >                "ForceManager::setupCutoffs : DEPRECATED FILE FORMAT!\n"
192 >                "\tOpenMD found a file which does not set a cutoffMethod.\n"
193 >                "\tOpenMD will attempt to deduce a cutoffMethod using the\n"
194 >                "\tbehavior of the older (version 1) code.  To remove this\n"
195 >                "\twarning, add an explicit cutoffMethod and change the top\n"
196 >                "\tof the file so that it begins with <OpenMD version=2>\n");
197 >        painCave.isFatal = 0;
198 >        painCave.severity = OPENMD_WARNING;
199 >        simError();            
200 >                
201 >        // The old file version tethered the shifting behavior to the
202 >        // electrostaticSummationMethod keyword.
203 >        
204 >        if (simParams_->haveElectrostaticSummationMethod()) {
205 >          string myMethod = simParams_->getElectrostaticSummationMethod();
206 >          toUpper(myMethod);
207 >        
208 >          if (myMethod == "SHIFTED_POTENTIAL") {
209 >            cutoffMethod_ = SHIFTED_POTENTIAL;
210 >          } else if (myMethod == "SHIFTED_FORCE") {
211 >            cutoffMethod_ = SHIFTED_FORCE;
212 >          }
213 >        
214 >          if (simParams_->haveSwitchingRadius())
215 >            rSwitch_ = simParams_->getSwitchingRadius();
216 >
217 >          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
218 >            if (simParams_->haveSwitchingRadius()){
219 >              sprintf(painCave.errMsg,
220 >                      "ForceManager::setupCutoffs : DEPRECATED ERROR MESSAGE\n"
221 >                      "\tA value was set for the switchingRadius\n"
222 >                      "\teven though the electrostaticSummationMethod was\n"
223 >                      "\tset to %s\n", myMethod.c_str());
224 >              painCave.severity = OPENMD_WARNING;
225 >              painCave.isFatal = 1;
226 >              simError();            
227 >            }
228 >          }
229 >          if (abs(rCut_ - rSwitch_) < 0.0001) {
230 >            if (cutoffMethod_ == SHIFTED_FORCE) {              
231 >              sprintf(painCave.errMsg,
232 >                      "ForceManager::setupCutoffs : DEPRECATED BEHAVIOR\n"
233 >                      "\tcutoffRadius and switchingRadius are set to the\n"
234 >                      "\tsame value.  OpenMD will use shifted force\n"
235 >                      "\tpotentials instead of switching functions.\n");
236 >              painCave.isFatal = 0;
237 >              painCave.severity = OPENMD_WARNING;
238 >              simError();            
239 >            } else {
240 >              cutoffMethod_ = SHIFTED_POTENTIAL;
241 >              sprintf(painCave.errMsg,
242 >                      "ForceManager::setupCutoffs : DEPRECATED BEHAVIOR\n"
243 >                      "\tcutoffRadius and switchingRadius are set to the\n"
244 >                      "\tsame value.  OpenMD will use shifted potentials\n"
245 >                      "\tinstead of switching functions.\n");
246 >              painCave.isFatal = 0;
247 >              painCave.severity = OPENMD_WARNING;
248 >              simError();            
249 >            }
250 >          }
251 >        }
252 >      }
253      }
254  
255      map<string, CutoffPolicy> stringToCutoffPolicy;
# Line 161 | Line 257 | namespace OpenMD {
257      stringToCutoffPolicy["MAX"] = MAX;
258      stringToCutoffPolicy["TRADITIONAL"] = TRADITIONAL;    
259  
260 <    std::string cutPolicy;
260 >    string cutPolicy;
261      if (forceFieldOptions_.haveCutoffPolicy()){
262        cutPolicy = forceFieldOptions_.getCutoffPolicy();
263      }else if (simParams_->haveCutoffPolicy()) {
# Line 194 | Line 290 | namespace OpenMD {
290        simError();
291        cutoffPolicy_ = TRADITIONAL;        
292      }
197  }
293  
294 <  /**
295 <   * setupSwitching
296 <   *
297 <   * Sets the values of switchingRadius and
298 <   *  If the switchingRadius was explicitly set, use that value (but check it)
299 <   *  If the switchingRadius was not explicitly set: use 0.85 * cutoffRadius_
300 <   */
301 <  void ForceManager::setupSwitching() {
302 <    Globals* simParams_ = info_->getSimParams();
303 <    
304 <    if (simParams_->haveSwitchingRadius()) {
305 <      rSwitch_ = simParams_->getSwitchingRadius();
306 <      if (rSwitch_ > rCut_) {        
294 >    fDecomp_->setCutoffPolicy(cutoffPolicy_);
295 >        
296 >    // create the switching function object:
297 >
298 >    switcher_ = new SwitchingFunction();
299 >  
300 >    if (cutoffMethod_ == SWITCHED) {
301 >      if (simParams_->haveSwitchingRadius()) {
302 >        rSwitch_ = simParams_->getSwitchingRadius();
303 >        if (rSwitch_ > rCut_) {        
304 >          sprintf(painCave.errMsg,
305 >                  "ForceManager::setupCutoffs: switchingRadius (%f) is larger "
306 >                  "than the cutoffRadius(%f)\n", rSwitch_, rCut_);
307 >          painCave.isFatal = 1;
308 >          painCave.severity = OPENMD_ERROR;
309 >          simError();
310 >        }
311 >      } else {      
312 >        rSwitch_ = 0.85 * rCut_;
313          sprintf(painCave.errMsg,
314 <                "ForceManager::setupSwitching: switchingRadius (%f) is larger than cutoffRadius(%f)\n",
315 <                rSwitch_, rCut_);
316 <        painCave.isFatal = 1;
317 <        painCave.severity = OPENMD_ERROR;
314 >                "ForceManager::setupCutoffs: No value was set for the switchingRadius.\n"
315 >                "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n"
316 >                "\tswitchingRadius = %f. for this simulation\n", rSwitch_);
317 >        painCave.isFatal = 0;
318 >        painCave.severity = OPENMD_WARNING;
319          simError();
320        }
321 <    } else {      
322 <      rSwitch_ = 0.85 * rCut_;
323 <      sprintf(painCave.errMsg,
324 <              "ForceManager::setupSwitching: No value was set for the switchingRadius.\n"
325 <              "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n"
326 <              "\tswitchingRadius = %f. for this simulation\n", rSwitch_);
327 <      painCave.isFatal = 0;
328 <      painCave.severity = OPENMD_WARNING;
329 <      simError();
330 <    }          
321 >    } else {
322 >      if (mdFileVersion > 1) {
323 >        // throw an error if we define a switching radius and don't need one.
324 >        // older file versions should not do this.
325 >        if (simParams_->haveSwitchingRadius()) {
326 >          map<string, CutoffMethod>::const_iterator it;
327 >          string theMeth;
328 >          for (it = stringToCutoffMethod.begin();
329 >               it != stringToCutoffMethod.end(); ++it) {
330 >            if (it->second == cutoffMethod_) {
331 >              theMeth = it->first;
332 >              break;
333 >            }
334 >          }
335 >          sprintf(painCave.errMsg,
336 >                  "ForceManager::setupCutoffs: the cutoffMethod (%s)\n"
337 >                  "\tis not set to SWITCHED, so switchingRadius value\n"
338 >                  "\twill be ignored for this simulation\n", theMeth.c_str());
339 >          painCave.isFatal = 0;
340 >          painCave.severity = OPENMD_WARNING;
341 >          simError();
342 >        }
343 >      }
344 >      rSwitch_ = rCut_;
345 >    }
346      
347 +    // Default to cubic switching function.
348 +    sft_ = cubic;
349      if (simParams_->haveSwitchingFunctionType()) {
350        string funcType = simParams_->getSwitchingFunctionType();
351        toUpper(funcType);
# Line 251 | Line 370 | namespace OpenMD {
370      switcher_->setSwitchType(sft_);
371      switcher_->setSwitch(rSwitch_, rCut_);
372    }
373 +
374 +
375 +
376    
377    void ForceManager::initialize() {
378  
379      if (!info_->isTopologyDone()) {
380 +
381        info_->update();
382        interactionMan_->setSimInfo(info_);
383        interactionMan_->initialize();
# Line 262 | Line 385 | namespace OpenMD {
385        // We want to delay the cutoffs until after the interaction
386        // manager has set up the atom-atom interactions so that we can
387        // query them for suggested cutoff values
265
388        setupCutoffs();
267      setupSwitching();
389  
390        info_->prepareTopology();      
391 +
392 +      doParticlePot_ = info_->getSimParams()->getOutputParticlePotential();
393 +      doHeatFlux_ = info_->getSimParams()->getPrintHeatFlux();
394 +      if (doHeatFlux_) doParticlePot_ = true;
395 +
396 +      doElectricField_ = info_->getSimParams()->getOutputElectricField();
397 +  
398      }
399  
400      ForceFieldOptions& fopts = forceField_->getForceFieldOptions();
401      
402 <    // Force fields can set options on how to scale van der Waals and electrostatic
403 <    // interactions for atoms connected via bonds, bends and torsions
404 <    // in this case the topological distance between atoms is:
402 >    // Force fields can set options on how to scale van der Waals and
403 >    // electrostatic interactions for atoms connected via bonds, bends
404 >    // and torsions in this case the topological distance between
405 >    // atoms is:
406      // 0 = topologically unconnected
407      // 1 = bonded together
408      // 2 = connected via a bend
# Line 295 | Line 424 | namespace OpenMD {
424      electrostaticScale_[2] = fopts.getelectrostatic13scale();
425      electrostaticScale_[3] = fopts.getelectrostatic14scale();    
426      
427 +    if (info_->getSimParams()->haveElectricField()) {
428 +      ElectricField* eField = new ElectricField(info_);
429 +      perturbations_.push_back(eField);
430 +    }
431 +
432      fDecomp_->distributeInitialData();
433  
434      initialized_ = true;
# Line 321 | Line 455 | namespace OpenMD {
455      Molecule::CutoffGroupIterator ci;
456      CutoffGroup* cg;
457      
458 <    // forces are zeroed here, before any are accumulated.
458 >    // forces and potentials are zeroed here, before any are
459 >    // accumulated.
460      
461 +    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
462 +
463 +    snap->setBondPotential(0.0);
464 +    snap->setBendPotential(0.0);
465 +    snap->setTorsionPotential(0.0);
466 +    snap->setInversionPotential(0.0);
467 +
468 +    potVec zeroPot(0.0);
469 +    snap->setLongRangePotential(zeroPot);
470 +    snap->setExcludedPotentials(zeroPot);
471 +
472 +    snap->setRestraintPotential(0.0);
473 +    snap->setRawPotential(0.0);
474 +
475      for (mol = info_->beginMolecule(mi); mol != NULL;
476           mol = info_->nextMolecule(mi)) {
477 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
477 >      for(atom = mol->beginAtom(ai); atom != NULL;
478 >          atom = mol->nextAtom(ai)) {
479          atom->zeroForcesAndTorques();
480        }
481 <          
481 >      
482        //change the positions of atoms which belong to the rigidbodies
483        for (rb = mol->beginRigidBody(rbIter); rb != NULL;
484             rb = mol->nextRigidBody(rbIter)) {
485          rb->zeroForcesAndTorques();
486        }        
487 <
487 >      
488        if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){
489          for(cg = mol->beginCutoffGroup(ci); cg != NULL;
490              cg = mol->nextCutoffGroup(ci)) {
# Line 343 | Line 493 | namespace OpenMD {
493          }
494        }      
495      }
346  
347    // Zero out the stress tensor
348    tau *= 0.0;
496      
497 +    // Zero out the stress tensor
498 +    stressTensor *= 0.0;
499 +    // Zero out the heatFlux
500 +    fDecomp_->setHeatFlux( Vector3d(0.0) );    
501    }
502    
503    void ForceManager::shortRangeInteractions() {
# Line 379 | Line 530 | namespace OpenMD {
530  
531        for (bond = mol->beginBond(bondIter); bond != NULL;
532             bond = mol->nextBond(bondIter)) {
533 <        bond->calcForce();
533 >        bond->calcForce(doParticlePot_);
534          bondPotential += bond->getPotential();
535        }
536  
# Line 387 | Line 538 | namespace OpenMD {
538             bend = mol->nextBend(bendIter)) {
539          
540          RealType angle;
541 <        bend->calcForce(angle);
541 >        bend->calcForce(angle, doParticlePot_);
542          RealType currBendPot = bend->getPotential();          
543          
544          bendPotential += bend->getPotential();
# Line 397 | Line 548 | namespace OpenMD {
548            dataSet.prev.angle = dataSet.curr.angle = angle;
549            dataSet.prev.potential = dataSet.curr.potential = currBendPot;
550            dataSet.deltaV = 0.0;
551 <          bendDataSets.insert(map<Bend*, BendDataSet>::value_type(bend, dataSet));
551 >          bendDataSets.insert(map<Bend*, BendDataSet>::value_type(bend,
552 >                                                                  dataSet));
553          }else {
554            i->second.prev.angle = i->second.curr.angle;
555            i->second.prev.potential = i->second.curr.potential;
# Line 411 | Line 563 | namespace OpenMD {
563        for (torsion = mol->beginTorsion(torsionIter); torsion != NULL;
564             torsion = mol->nextTorsion(torsionIter)) {
565          RealType angle;
566 <        torsion->calcForce(angle);
566 >        torsion->calcForce(angle, doParticlePot_);
567          RealType currTorsionPot = torsion->getPotential();
568          torsionPotential += torsion->getPotential();
569          map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion);
# Line 435 | Line 587 | namespace OpenMD {
587             inversion != NULL;
588             inversion = mol->nextInversion(inversionIter)) {
589          RealType angle;
590 <        inversion->calcForce(angle);
590 >        inversion->calcForce(angle, doParticlePot_);
591          RealType currInversionPot = inversion->getPotential();
592          inversionPotential += inversion->getPotential();
593          map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion);
# Line 455 | Line 607 | namespace OpenMD {
607          }      
608        }      
609      }
610 <    
611 <    RealType  shortRangePotential = bondPotential + bendPotential +
612 <      torsionPotential +  inversionPotential;    
610 >
611 > #ifdef IS_MPI
612 >    // Collect from all nodes.  This should eventually be moved into a
613 >    // SystemDecomposition, but this is a better place than in
614 >    // Thermo to do the collection.
615 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &bondPotential, 1, MPI::REALTYPE,
616 >                              MPI::SUM);
617 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &bendPotential, 1, MPI::REALTYPE,
618 >                              MPI::SUM);
619 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &torsionPotential, 1,
620 >                              MPI::REALTYPE, MPI::SUM);
621 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &inversionPotential, 1,
622 >                              MPI::REALTYPE, MPI::SUM);
623 > #endif
624 >
625      Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
626 <    curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential;
627 <    curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential;
628 <    curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential;
629 <    curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential;
630 <    curSnapshot->statData[Stats::INVERSION_POTENTIAL] = inversionPotential;    
626 >
627 >    curSnapshot->setBondPotential(bondPotential);
628 >    curSnapshot->setBendPotential(bendPotential);
629 >    curSnapshot->setTorsionPotential(torsionPotential);
630 >    curSnapshot->setInversionPotential(inversionPotential);
631 >    
632 >    // RealType shortRangePotential = bondPotential + bendPotential +
633 >    //   torsionPotential +  inversionPotential;    
634 >
635 >    // curSnapshot->setShortRangePotential(shortRangePotential);
636    }
637    
638    void ForceManager::longRangeInteractions() {
639  
640 <    // some of this initial stuff will go away:
640 >
641      Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
642      DataStorage* config = &(curSnapshot->atomData);
643      DataStorage* cgConfig = &(curSnapshot->cgData);
475    RealType* frc = config->getArrayPointer(DataStorage::dslForce);
476    RealType* pos = config->getArrayPointer(DataStorage::dslPosition);
477    RealType* trq = config->getArrayPointer(DataStorage::dslTorque);
478    RealType* A = config->getArrayPointer(DataStorage::dslAmat);
479    RealType* electroFrame = config->getArrayPointer(DataStorage::dslElectroFrame);
480    RealType* particlePot = config->getArrayPointer(DataStorage::dslParticlePot);
481    RealType* rc;    
644  
645 <    if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){
646 <      rc = cgConfig->getArrayPointer(DataStorage::dslPosition);
645 >    //calculate the center of mass of cutoff group
646 >
647 >    SimInfo::MoleculeIterator mi;
648 >    Molecule* mol;
649 >    Molecule::CutoffGroupIterator ci;
650 >    CutoffGroup* cg;
651 >
652 >    if(info_->getNCutoffGroups() > 0){      
653 >      for (mol = info_->beginMolecule(mi); mol != NULL;
654 >           mol = info_->nextMolecule(mi)) {
655 >        for(cg = mol->beginCutoffGroup(ci); cg != NULL;
656 >            cg = mol->nextCutoffGroup(ci)) {
657 >          cg->updateCOM();
658 >        }
659 >      }      
660      } else {
661        // center of mass of the group is the same as position of the atom  
662        // if cutoff group does not exist
663 <      rc = pos;
663 >      cgConfig->position = config->position;
664 >      cgConfig->velocity = config->velocity;
665      }
666 <    
491 <    // new stuff starts here:
666 >
667      fDecomp_->zeroWorkArrays();
668      fDecomp_->distributeData();
669 <
670 <    int cg1, cg2, atom1, atom2;
671 <    Vector3d d_grp, dag;
672 <    RealType rgrpsq, rgrp;
669 >    
670 >    int cg1, cg2, atom1, atom2, topoDist;
671 >    Vector3d d_grp, dag, d, gvel2, vel2;
672 >    RealType rgrpsq, rgrp, r2, r;
673 >    RealType electroMult, vdwMult;
674      RealType vij;
675 <    Vector3d fij, fg;
675 >    Vector3d fij, fg, f1;
676      tuple3<RealType, RealType, RealType> cuts;
677      RealType rCutSq;
678      bool in_switching_region;
# Line 505 | Line 681 | namespace OpenMD {
681      InteractionData idat;
682      SelfData sdat;
683      RealType mf;
684 <    potVec pot(0.0);
684 >    RealType vpair;
685 >    RealType dVdFQ1(0.0);
686 >    RealType dVdFQ2(0.0);
687      potVec longRangePotential(0.0);
688 <    RealType lrPot;
688 >    potVec workPot(0.0);
689 >    potVec exPot(0.0);
690 >    Vector3d eField1(0.0);
691 >    Vector3d eField2(0.0);
692 >    vector<int>::iterator ia, jb;
693  
694      int loopStart, loopEnd;
695  
696 +    idat.vdwMult = &vdwMult;
697 +    idat.electroMult = &electroMult;
698 +    idat.pot = &workPot;
699 +    idat.excludedPot = &exPot;
700 +    sdat.pot = fDecomp_->getEmbeddingPotential();
701 +    sdat.excludedPot = fDecomp_->getExcludedSelfPotential();
702 +    idat.vpair = &vpair;
703 +    idat.dVdFQ1 = &dVdFQ1;
704 +    idat.dVdFQ2 = &dVdFQ2;
705 +    idat.eField1 = &eField1;
706 +    idat.eField2 = &eField2;  
707 +    idat.f1 = &f1;
708 +    idat.sw = &sw;
709 +    idat.shiftedPot = (cutoffMethod_ == SHIFTED_POTENTIAL) ? true : false;
710 +    idat.shiftedForce = (cutoffMethod_ == SHIFTED_FORCE) ? true : false;
711 +    idat.doParticlePot = doParticlePot_;
712 +    idat.doElectricField = doElectricField_;
713 +    sdat.doParticlePot = doParticlePot_;
714 +    
715      loopEnd = PAIR_LOOP;
716      if (info_->requiresPrepair() ) {
717        loopStart = PREPAIR_LOOP;
718      } else {
719        loopStart = PAIR_LOOP;
720      }
721 <
722 <    for (int iLoop = loopStart; iLoop < loopEnd; iLoop++) {
522 <      
721 >    for (int iLoop = loopStart; iLoop <= loopEnd; iLoop++) {
722 >    
723        if (iLoop == loopStart) {
724          bool update_nlist = fDecomp_->checkNeighborList();
725          if (update_nlist)
726            neighborList = fDecomp_->buildNeighborList();
727 <      }
727 >      }            
728  
729        for (vector<pair<int, int> >::iterator it = neighborList.begin();
730               it != neighborList.end(); ++it) {
731 <        
731 >                
732          cg1 = (*it).first;
733          cg2 = (*it).second;
734          
735          cuts = fDecomp_->getGroupCutoffs(cg1, cg2);
736  
737          d_grp  = fDecomp_->getIntergroupVector(cg1, cg2);
738 +
739          curSnapshot->wrapVector(d_grp);        
740          rgrpsq = d_grp.lengthSquare();
540
741          rCutSq = cuts.second;
742  
743          if (rgrpsq < rCutSq) {
744 <          *(idat.rcut) = cuts.first;
744 >          idat.rcut = &cuts.first;
745            if (iLoop == PAIR_LOOP) {
746 <            vij *= 0.0;
746 >            vij = 0.0;
747              fij = V3Zero;
748            }
749            
750 <          in_switching_region = switcher_->getSwitch(rgrpsq, *(idat.sw), dswdr,
750 >          in_switching_region = switcher_->getSwitch(rgrpsq, sw, dswdr,
751                                                       rgrp);
752 <              
752 >
753            atomListRow = fDecomp_->getAtomsInGroupRow(cg1);
754            atomListColumn = fDecomp_->getAtomsInGroupColumn(cg2);
755  
756 <          for (vector<int>::iterator ia = atomListRow.begin();
756 >          if (doHeatFlux_)
757 >            gvel2 = fDecomp_->getGroupVelocityColumn(cg2);
758 >
759 >          for (ia = atomListRow.begin();
760                 ia != atomListRow.end(); ++ia) {            
761              atom1 = (*ia);
762 <            
763 <            for (vector<int>::iterator jb = atomListColumn.begin();
762 >
763 >            for (jb = atomListColumn.begin();
764                   jb != atomListColumn.end(); ++jb) {              
765                atom2 = (*jb);
563              
564              if (!fDecomp_->skipAtomPair(atom1, atom2)) {
565                
566                pot *= 0.0;
766  
767 <                idat = fDecomp_->fillInteractionData(atom1, atom2);
569 <                *(idat.pot) = pot;
767 >              if (!fDecomp_->skipAtomPair(atom1, atom2, cg1, cg2)) {
768  
769 +                vpair = 0.0;
770 +                workPot = 0.0;
771 +                exPot = 0.0;
772 +                f1 = V3Zero;
773 +                dVdFQ1 = 0.0;
774 +                dVdFQ2 = 0.0;
775 +
776 +                fDecomp_->fillInteractionData(idat, atom1, atom2);
777 +
778 +                topoDist = fDecomp_->getTopologicalDistance(atom1, atom2);
779 +                vdwMult = vdwScale_[topoDist];
780 +                electroMult = electrostaticScale_[topoDist];
781 +
782                  if (atomListRow.size() == 1 && atomListColumn.size() == 1) {
783 <                  *(idat.d) = d_grp;
784 <                  *(idat.r2) = rgrpsq;
783 >                  idat.d = &d_grp;
784 >                  idat.r2 = &rgrpsq;
785 >                  if (doHeatFlux_)
786 >                    vel2 = gvel2;
787                  } else {
788 <                  *(idat.d) = fDecomp_->getInteratomicVector(atom1, atom2);
789 <                  curSnapshot->wrapVector( *(idat.d) );
790 <                  *(idat.r2) = idat.d->lengthSquare();
788 >                  d = fDecomp_->getInteratomicVector(atom1, atom2);
789 >                  curSnapshot->wrapVector( d );
790 >                  r2 = d.lengthSquare();
791 >                  idat.d = &d;
792 >                  idat.r2 = &r2;
793 >                  if (doHeatFlux_)
794 >                    vel2 = fDecomp_->getAtomVelocityColumn(atom2);
795                  }
579                
580                *(idat.rij) = sqrt( *(idat.r2) );
796                
797 +                r = sqrt( *(idat.r2) );
798 +                idat.rij = &r;
799 +              
800                  if (iLoop == PREPAIR_LOOP) {
801                    interactionMan_->doPrePair(idat);
802                  } else {
803                    interactionMan_->doPair(idat);
804                    fDecomp_->unpackInteractionData(idat, atom1, atom2);
805 <                  vij += *(idat.vpair);
806 <                  fij += *(idat.f1);
807 <                  tau -= outProduct( *(idat.d), *(idat.f1));
805 >                  vij += vpair;
806 >                  fij += f1;
807 >                  stressTensor -= outProduct( *(idat.d), f1);
808 >                  if (doHeatFlux_)
809 >                    fDecomp_->addToHeatFlux(*(idat.d) * dot(f1, vel2));
810                  }
811                }
812              }
# Line 596 | Line 816 | namespace OpenMD {
816              if (in_switching_region) {
817                swderiv = vij * dswdr / rgrp;
818                fg = swderiv * d_grp;
599
819                fij += fg;
820  
821                if (atomListRow.size() == 1 && atomListColumn.size() == 1) {
822 <                tau -= outProduct( *(idat.d), fg);
822 >                stressTensor -= outProduct( *(idat.d), fg);
823 >                if (doHeatFlux_)
824 >                  fDecomp_->addToHeatFlux(*(idat.d) * dot(fg, vel2));
825 >                
826                }
827            
828 <              for (vector<int>::iterator ia = atomListRow.begin();
828 >              for (ia = atomListRow.begin();
829                     ia != atomListRow.end(); ++ia) {            
830                  atom1 = (*ia);                
831                  mf = fDecomp_->getMassFactorRow(atom1);
# Line 611 | Line 833 | namespace OpenMD {
833                  // presence in switching region
834                  fg = swderiv * d_grp * mf;
835                  fDecomp_->addForceToAtomRow(atom1, fg);
614
836                  if (atomListRow.size() > 1) {
837                    if (info_->usesAtomicVirial()) {
838                      // find the distance between the atom
839                      // and the center of the cutoff group:
840                      dag = fDecomp_->getAtomToGroupVectorRow(atom1, cg1);
841 <                    tau -= outProduct(dag, fg);
841 >                    stressTensor -= outProduct(dag, fg);
842 >                    if (doHeatFlux_)
843 >                      fDecomp_->addToHeatFlux( dag * dot(fg, vel2));
844                    }
845                  }
846                }
847 <              for (vector<int>::iterator jb = atomListColumn.begin();
847 >              for (jb = atomListColumn.begin();
848                     jb != atomListColumn.end(); ++jb) {              
849                  atom2 = (*jb);
850                  mf = fDecomp_->getMassFactorColumn(atom2);
# Line 635 | Line 858 | namespace OpenMD {
858                      // find the distance between the atom
859                      // and the center of the cutoff group:
860                      dag = fDecomp_->getAtomToGroupVectorColumn(atom2, cg2);
861 <                    tau -= outProduct(dag, fg);
861 >                    stressTensor -= outProduct(dag, fg);
862 >                    if (doHeatFlux_)
863 >                      fDecomp_->addToHeatFlux( dag * dot(fg, vel2));
864                    }
865                  }
866                }
867              }
868 <            //if (!SIM_uses_AtomicVirial) {
869 <            //  tau -= outProduct(d_grp, fij);
868 >            //if (!info_->usesAtomicVirial()) {
869 >            //  stressTensor -= outProduct(d_grp, fij);
870 >            //  if (doHeatFlux_)
871 >            //     fDecomp_->addToHeatFlux( d_grp * dot(fij, vel2));
872              //}
873            }
874          }
875        }
876  
877        if (iLoop == PREPAIR_LOOP) {
878 <        if (info_->requiresPrepair()) {            
878 >        if (info_->requiresPrepair()) {
879 >
880            fDecomp_->collectIntermediateData();
881  
882 <          for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) {
883 <            sdat = fDecomp_->fillSelfData(atom1);
882 >          for (unsigned int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) {
883 >            fDecomp_->fillSelfData(sdat, atom1);
884              interactionMan_->doPreForce(sdat);
885            }
886  
887 <          fDecomp_->distributeIntermediateData();        
887 >          fDecomp_->distributeIntermediateData();
888 >
889          }
890        }
662
891      }
892      
893 +    // collects pairwise information
894      fDecomp_->collectData();
666    
667    if ( info_->requiresSkipCorrection() ) {
668      
669      for (int atom1 = 0; atom1 < fDecomp_->getNAtomsInRow(); atom1++) {
670
671        vector<int> skipList = fDecomp_->getSkipsForRowAtom( atom1 );
895          
673        for (vector<int>::iterator jb = skipList.begin();
674             jb != skipList.end(); ++jb) {        
675    
676          atom2 = (*jb);
677          idat = fDecomp_->fillSkipData(atom1, atom2);
678          interactionMan_->doSkipCorrection(idat);
679
680        }
681      }
682    }
683    
896      if (info_->requiresSelfCorrection()) {
897 <
898 <      for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) {          
687 <        sdat = fDecomp_->fillSelfData(atom1);
897 >      for (unsigned int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) {
898 >        fDecomp_->fillSelfData(sdat, atom1);
899          interactionMan_->doSelfCorrection(sdat);
900        }
690
901      }
902  
903 <    longRangePotential = fDecomp_->getLongRangePotential();
904 <    lrPot = longRangePotential.sum();
903 >    // collects single-atom information
904 >    fDecomp_->collectSelfData();
905  
906 <    //store the tau and long range potential    
907 <    curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot;
908 <    curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VANDERWAALS_FAMILY];
909 <    curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_FAMILY];
906 >    longRangePotential = *(fDecomp_->getEmbeddingPotential()) +
907 >      *(fDecomp_->getPairwisePotential());
908 >
909 >    curSnapshot->setLongRangePotential(longRangePotential);
910 >
911 >    // collects single-atom information
912 >    fDecomp_->collectSelfData();
913 >
914 >    longRangePotential = *(fDecomp_->getEmbeddingPotential()) +
915 >      *(fDecomp_->getPairwisePotential());
916 >
917 >    curSnapshot->setLongRangePotential(longRangePotential);
918 >    
919 >    curSnapshot->setExcludedPotentials(*(fDecomp_->getExcludedSelfPotential()) +
920 >                                         *(fDecomp_->getExcludedPotential()));
921 >
922    }
923  
924    
925    void ForceManager::postCalculation() {
926 +
927 +    vector<Perturbation*>::iterator pi;
928 +    for (pi = perturbations_.begin(); pi != perturbations_.end(); ++pi) {
929 +      (*pi)->applyPerturbation();
930 +    }
931 +
932      SimInfo::MoleculeIterator mi;
933      Molecule* mol;
934      Molecule::RigidBodyIterator rbIter;
935      RigidBody* rb;
936      Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
937 <    
937 >  
938      // collect the atomic forces onto rigid bodies
939      
940      for (mol = info_->beginMolecule(mi); mol != NULL;
# Line 714 | Line 942 | namespace OpenMD {
942        for (rb = mol->beginRigidBody(rbIter); rb != NULL;
943             rb = mol->nextRigidBody(rbIter)) {
944          Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial();
945 <        tau += rbTau;
945 >        stressTensor += rbTau;
946        }
947      }
948      
949   #ifdef IS_MPI
950 <    Mat3x3d tmpTau(tau);
951 <    MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(),
724 <                  9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
950 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, stressTensor.getArrayPointer(), 9,
951 >                              MPI::REALTYPE, MPI::SUM);
952   #endif
953 <    curSnapshot->statData.setTau(tau);
953 >    curSnapshot->setStressTensor(stressTensor);
954 >    
955    }
728
956   } //end namespace OpenMD

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines