| 6 |
|
* redistribute this software in source and binary code form, provided |
| 7 |
|
* that the following conditions are met: |
| 8 |
|
* |
| 9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
| 10 |
< |
* publication of scientific results based in part on use of the |
| 11 |
< |
* program. An acceptable form of acknowledgement is citation of |
| 12 |
< |
* the article in which the program was described (Matthew |
| 13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
| 14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
| 15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
| 16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
| 17 |
< |
* |
| 18 |
< |
* 2. Redistributions of source code must retain the above copyright |
| 9 |
> |
* 1. Redistributions of source code must retain the above copyright |
| 10 |
|
* notice, this list of conditions and the following disclaimer. |
| 11 |
|
* |
| 12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
| 12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
| 13 |
|
* notice, this list of conditions and the following disclaimer in the |
| 14 |
|
* documentation and/or other materials provided with the |
| 15 |
|
* distribution. |
| 28 |
|
* arising out of the use of or inability to use software, even if the |
| 29 |
|
* University of Notre Dame has been advised of the possibility of |
| 30 |
|
* such damages. |
| 31 |
+ |
* |
| 32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
| 33 |
+ |
* research, please cite the appropriate papers when you publish your |
| 34 |
+ |
* work. Good starting points are: |
| 35 |
+ |
* |
| 36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
| 37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
| 38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
| 39 |
+ |
* [4] Vardeman & Gezelter, in progress (2009). |
| 40 |
|
*/ |
| 41 |
|
|
| 42 |
|
/** |
| 47 |
|
* @version 1.0 |
| 48 |
|
*/ |
| 49 |
|
|
| 50 |
+ |
|
| 51 |
|
#include "brains/ForceManager.hpp" |
| 52 |
|
#include "primitives/Molecule.hpp" |
| 53 |
< |
#include "UseTheForce/doForces_interface.h" |
| 53 |
< |
#define __C |
| 54 |
< |
#include "UseTheForce/DarkSide/fInteractionMap.h" |
| 53 |
> |
#define __OPENMD_C |
| 54 |
|
#include "utils/simError.h" |
| 55 |
+ |
#include "primitives/Bond.hpp" |
| 56 |
|
#include "primitives/Bend.hpp" |
| 57 |
< |
#include "primitives/Bend.hpp" |
| 58 |
< |
namespace oopse { |
| 57 |
> |
#include "primitives/Torsion.hpp" |
| 58 |
> |
#include "primitives/Inversion.hpp" |
| 59 |
> |
#include "nonbonded/NonBondedInteraction.hpp" |
| 60 |
> |
#include "parallel/ForceMatrixDecomposition.hpp" |
| 61 |
|
|
| 62 |
< |
/* |
| 63 |
< |
struct BendOrderStruct { |
| 64 |
< |
Bend* bend; |
| 65 |
< |
BendDataSet dataSet; |
| 66 |
< |
}; |
| 67 |
< |
struct TorsionOrderStruct { |
| 68 |
< |
Torsion* torsion; |
| 67 |
< |
TorsionDataSet dataSet; |
| 68 |
< |
}; |
| 69 |
< |
|
| 70 |
< |
bool BendSortFunctor(const BendOrderStruct& b1, const BendOrderStruct& b2) { |
| 71 |
< |
return b1.dataSet.deltaV < b2.dataSet.deltaV; |
| 62 |
> |
using namespace std; |
| 63 |
> |
namespace OpenMD { |
| 64 |
> |
|
| 65 |
> |
ForceManager::ForceManager(SimInfo * info) : info_(info) { |
| 66 |
> |
forceField_ = info_->getForceField(); |
| 67 |
> |
interactionMan_ = new InteractionManager(); |
| 68 |
> |
fDecomp_ = new ForceMatrixDecomposition(info_, interactionMan_); |
| 69 |
|
} |
| 70 |
|
|
| 71 |
< |
bool TorsionSortFunctor(const TorsionOrderStruct& t1, const TorsionOrderStruct& t2) { |
| 72 |
< |
return t1.dataSet.deltaV < t2.dataSet.deltaV; |
| 73 |
< |
} |
| 74 |
< |
*/ |
| 75 |
< |
void ForceManager::calcForces(bool needPotential, bool needStress) { |
| 71 |
> |
/** |
| 72 |
> |
* setupCutoffs |
| 73 |
> |
* |
| 74 |
> |
* Sets the values of cutoffRadius, cutoffMethod, and cutoffPolicy |
| 75 |
> |
* |
| 76 |
> |
* cutoffRadius : realType |
| 77 |
> |
* If the cutoffRadius was explicitly set, use that value. |
| 78 |
> |
* If the cutoffRadius was not explicitly set: |
| 79 |
> |
* Are there electrostatic atoms? Use 12.0 Angstroms. |
| 80 |
> |
* No electrostatic atoms? Poll the atom types present in the |
| 81 |
> |
* simulation for suggested cutoff values (e.g. 2.5 * sigma). |
| 82 |
> |
* Use the maximum suggested value that was found. |
| 83 |
> |
* |
| 84 |
> |
* cutoffMethod : (one of HARD, SWITCHED, SHIFTED_FORCE, SHIFTED_POTENTIAL) |
| 85 |
> |
* If cutoffMethod was explicitly set, use that choice. |
| 86 |
> |
* If cutoffMethod was not explicitly set, use SHIFTED_FORCE |
| 87 |
> |
* |
| 88 |
> |
* cutoffPolicy : (one of MIX, MAX, TRADITIONAL) |
| 89 |
> |
* If cutoffPolicy was explicitly set, use that choice. |
| 90 |
> |
* If cutoffPolicy was not explicitly set, use TRADITIONAL |
| 91 |
> |
*/ |
| 92 |
> |
void ForceManager::setupCutoffs() { |
| 93 |
> |
|
| 94 |
> |
Globals* simParams_ = info_->getSimParams(); |
| 95 |
> |
ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions(); |
| 96 |
> |
|
| 97 |
> |
if (simParams_->haveCutoffRadius()) { |
| 98 |
> |
rCut_ = simParams_->getCutoffRadius(); |
| 99 |
> |
} else { |
| 100 |
> |
if (info_->usesElectrostaticAtoms()) { |
| 101 |
> |
sprintf(painCave.errMsg, |
| 102 |
> |
"ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n" |
| 103 |
> |
"\tOpenMD will use a default value of 12.0 angstroms" |
| 104 |
> |
"\tfor the cutoffRadius.\n"); |
| 105 |
> |
painCave.isFatal = 0; |
| 106 |
> |
painCave.severity = OPENMD_INFO; |
| 107 |
> |
simError(); |
| 108 |
> |
rCut_ = 12.0; |
| 109 |
> |
} else { |
| 110 |
> |
RealType thisCut; |
| 111 |
> |
set<AtomType*>::iterator i; |
| 112 |
> |
set<AtomType*> atomTypes; |
| 113 |
> |
atomTypes = info_->getSimulatedAtomTypes(); |
| 114 |
> |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
| 115 |
> |
thisCut = interactionMan_->getSuggestedCutoffRadius((*i)); |
| 116 |
> |
rCut_ = max(thisCut, rCut_); |
| 117 |
> |
} |
| 118 |
> |
sprintf(painCave.errMsg, |
| 119 |
> |
"ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n" |
| 120 |
> |
"\tOpenMD will use %lf angstroms.\n", |
| 121 |
> |
rCut_); |
| 122 |
> |
painCave.isFatal = 0; |
| 123 |
> |
painCave.severity = OPENMD_INFO; |
| 124 |
> |
simError(); |
| 125 |
> |
} |
| 126 |
> |
fDecomp_->setUserCutoff(rCut_); |
| 127 |
> |
} |
| 128 |
|
|
| 129 |
< |
if (!info_->isFortranInitialized()) { |
| 130 |
< |
info_->update(); |
| 129 |
> |
map<string, CutoffMethod> stringToCutoffMethod; |
| 130 |
> |
stringToCutoffMethod["HARD"] = HARD; |
| 131 |
> |
stringToCutoffMethod["SWITCHED"] = SWITCHED; |
| 132 |
> |
stringToCutoffMethod["SHIFTED_POTENTIAL"] = SHIFTED_POTENTIAL; |
| 133 |
> |
stringToCutoffMethod["SHIFTED_FORCE"] = SHIFTED_FORCE; |
| 134 |
> |
|
| 135 |
> |
if (simParams_->haveCutoffMethod()) { |
| 136 |
> |
string cutMeth = toUpperCopy(simParams_->getCutoffMethod()); |
| 137 |
> |
map<string, CutoffMethod>::iterator i; |
| 138 |
> |
i = stringToCutoffMethod.find(cutMeth); |
| 139 |
> |
if (i == stringToCutoffMethod.end()) { |
| 140 |
> |
sprintf(painCave.errMsg, |
| 141 |
> |
"ForceManager::setupCutoffs: Could not find chosen cutoffMethod %s\n" |
| 142 |
> |
"\tShould be one of: " |
| 143 |
> |
"HARD, SWITCHED, SHIFTED_POTENTIAL, or SHIFTED_FORCE\n", |
| 144 |
> |
cutMeth.c_str()); |
| 145 |
> |
painCave.isFatal = 1; |
| 146 |
> |
painCave.severity = OPENMD_ERROR; |
| 147 |
> |
simError(); |
| 148 |
> |
} else { |
| 149 |
> |
cutoffMethod_ = i->second; |
| 150 |
> |
} |
| 151 |
> |
} else { |
| 152 |
> |
sprintf(painCave.errMsg, |
| 153 |
> |
"ForceManager::setupCutoffs: No value was set for the cutoffMethod.\n" |
| 154 |
> |
"\tOpenMD will use SHIFTED_FORCE.\n"); |
| 155 |
> |
painCave.isFatal = 0; |
| 156 |
> |
painCave.severity = OPENMD_INFO; |
| 157 |
> |
simError(); |
| 158 |
> |
cutoffMethod_ = SHIFTED_FORCE; |
| 159 |
|
} |
| 160 |
|
|
| 161 |
< |
preCalculation(); |
| 162 |
< |
|
| 163 |
< |
calcShortRangeInteraction(); |
| 161 |
> |
map<string, CutoffPolicy> stringToCutoffPolicy; |
| 162 |
> |
stringToCutoffPolicy["MIX"] = MIX; |
| 163 |
> |
stringToCutoffPolicy["MAX"] = MAX; |
| 164 |
> |
stringToCutoffPolicy["TRADITIONAL"] = TRADITIONAL; |
| 165 |
|
|
| 166 |
< |
calcLongRangeInteraction(needPotential, needStress); |
| 166 |
> |
std::string cutPolicy; |
| 167 |
> |
if (forceFieldOptions_.haveCutoffPolicy()){ |
| 168 |
> |
cutPolicy = forceFieldOptions_.getCutoffPolicy(); |
| 169 |
> |
}else if (simParams_->haveCutoffPolicy()) { |
| 170 |
> |
cutPolicy = simParams_->getCutoffPolicy(); |
| 171 |
> |
} |
| 172 |
|
|
| 173 |
< |
postCalculation(); |
| 173 |
> |
if (!cutPolicy.empty()){ |
| 174 |
> |
toUpper(cutPolicy); |
| 175 |
> |
map<string, CutoffPolicy>::iterator i; |
| 176 |
> |
i = stringToCutoffPolicy.find(cutPolicy); |
| 177 |
|
|
| 178 |
< |
/* |
| 179 |
< |
std::vector<BendOrderStruct> bendOrderStruct; |
| 180 |
< |
for(std::map<Bend*, BendDataSet>::iterator i = bendDataSets.begin(); i != bendDataSets.end(); ++i) { |
| 181 |
< |
BendOrderStruct tmp; |
| 182 |
< |
tmp.bend= const_cast<Bend*>(i->first); |
| 183 |
< |
tmp.dataSet = i->second; |
| 184 |
< |
bendOrderStruct.push_back(tmp); |
| 178 |
> |
if (i == stringToCutoffPolicy.end()) { |
| 179 |
> |
sprintf(painCave.errMsg, |
| 180 |
> |
"ForceManager::setupCutoffs: Could not find chosen cutoffPolicy %s\n" |
| 181 |
> |
"\tShould be one of: " |
| 182 |
> |
"MIX, MAX, or TRADITIONAL\n", |
| 183 |
> |
cutPolicy.c_str()); |
| 184 |
> |
painCave.isFatal = 1; |
| 185 |
> |
painCave.severity = OPENMD_ERROR; |
| 186 |
> |
simError(); |
| 187 |
> |
} else { |
| 188 |
> |
cutoffPolicy_ = i->second; |
| 189 |
> |
} |
| 190 |
> |
} else { |
| 191 |
> |
sprintf(painCave.errMsg, |
| 192 |
> |
"ForceManager::setupCutoffs: No value was set for the cutoffPolicy.\n" |
| 193 |
> |
"\tOpenMD will use TRADITIONAL.\n"); |
| 194 |
> |
painCave.isFatal = 0; |
| 195 |
> |
painCave.severity = OPENMD_INFO; |
| 196 |
> |
simError(); |
| 197 |
> |
cutoffPolicy_ = TRADITIONAL; |
| 198 |
|
} |
| 199 |
+ |
fDecomp_->setCutoffPolicy(cutoffPolicy_); |
| 200 |
+ |
} |
| 201 |
|
|
| 202 |
< |
std::vector<TorsionOrderStruct> torsionOrderStruct; |
| 203 |
< |
for(std::map<Torsion*, TorsionDataSet>::iterator j = torsionDataSets.begin(); j != torsionDataSets.end(); ++j) { |
| 204 |
< |
TorsionOrderStruct tmp; |
| 205 |
< |
tmp.torsion = const_cast<Torsion*>(j->first); |
| 206 |
< |
tmp.dataSet = j->second; |
| 207 |
< |
torsionOrderStruct.push_back(tmp); |
| 208 |
< |
} |
| 202 |
> |
/** |
| 203 |
> |
* setupSwitching |
| 204 |
> |
* |
| 205 |
> |
* Sets the values of switchingRadius and |
| 206 |
> |
* If the switchingRadius was explicitly set, use that value (but check it) |
| 207 |
> |
* If the switchingRadius was not explicitly set: use 0.85 * cutoffRadius_ |
| 208 |
> |
*/ |
| 209 |
> |
void ForceManager::setupSwitching() { |
| 210 |
> |
Globals* simParams_ = info_->getSimParams(); |
| 211 |
> |
|
| 212 |
> |
// create the switching function object: |
| 213 |
> |
switcher_ = new SwitchingFunction(); |
| 214 |
|
|
| 215 |
< |
std::sort(bendOrderStruct.begin(), bendOrderStruct.end(), std::ptr_fun(BendSortFunctor)); |
| 216 |
< |
std::sort(torsionOrderStruct.begin(), torsionOrderStruct.end(), std::ptr_fun(TorsionSortFunctor)); |
| 217 |
< |
for (std::vector<BendOrderStruct>::iterator k = bendOrderStruct.begin(); k != bendOrderStruct.end(); ++k) { |
| 218 |
< |
Bend* bend = k->bend; |
| 219 |
< |
std::cout << "Bend: atom1=" <<bend->getAtomA()->getGlobalIndex() << ",atom2 = "<< bend->getAtomB()->getGlobalIndex() << ",atom3="<<bend->getAtomC()->getGlobalIndex() << " "; |
| 220 |
< |
std::cout << "deltaV=" << k->dataSet.deltaV << ",p_theta=" << k->dataSet.prev.angle <<",p_pot=" << k->dataSet.prev.potential<< ",c_theta=" << k->dataSet.curr.angle << ", c_pot = " << k->dataSet.curr.potential <<std::endl; |
| 215 |
> |
if (simParams_->haveSwitchingRadius()) { |
| 216 |
> |
rSwitch_ = simParams_->getSwitchingRadius(); |
| 217 |
> |
if (rSwitch_ > rCut_) { |
| 218 |
> |
sprintf(painCave.errMsg, |
| 219 |
> |
"ForceManager::setupSwitching: switchingRadius (%f) is larger " |
| 220 |
> |
"than the cutoffRadius(%f)\n", rSwitch_, rCut_); |
| 221 |
> |
painCave.isFatal = 1; |
| 222 |
> |
painCave.severity = OPENMD_ERROR; |
| 223 |
> |
simError(); |
| 224 |
> |
} |
| 225 |
> |
} else { |
| 226 |
> |
rSwitch_ = 0.85 * rCut_; |
| 227 |
> |
sprintf(painCave.errMsg, |
| 228 |
> |
"ForceManager::setupSwitching: No value was set for the switchingRadius.\n" |
| 229 |
> |
"\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n" |
| 230 |
> |
"\tswitchingRadius = %f. for this simulation\n", rSwitch_); |
| 231 |
> |
painCave.isFatal = 0; |
| 232 |
> |
painCave.severity = OPENMD_WARNING; |
| 233 |
> |
simError(); |
| 234 |
> |
} |
| 235 |
> |
|
| 236 |
> |
// Default to cubic switching function. |
| 237 |
> |
sft_ = cubic; |
| 238 |
> |
if (simParams_->haveSwitchingFunctionType()) { |
| 239 |
> |
string funcType = simParams_->getSwitchingFunctionType(); |
| 240 |
> |
toUpper(funcType); |
| 241 |
> |
if (funcType == "CUBIC") { |
| 242 |
> |
sft_ = cubic; |
| 243 |
> |
} else { |
| 244 |
> |
if (funcType == "FIFTH_ORDER_POLYNOMIAL") { |
| 245 |
> |
sft_ = fifth_order_poly; |
| 246 |
> |
} else { |
| 247 |
> |
// throw error |
| 248 |
> |
sprintf( painCave.errMsg, |
| 249 |
> |
"ForceManager::setupSwitching : Unknown switchingFunctionType. (Input file specified %s .)\n" |
| 250 |
> |
"\tswitchingFunctionType must be one of: " |
| 251 |
> |
"\"cubic\" or \"fifth_order_polynomial\".", |
| 252 |
> |
funcType.c_str() ); |
| 253 |
> |
painCave.isFatal = 1; |
| 254 |
> |
painCave.severity = OPENMD_ERROR; |
| 255 |
> |
simError(); |
| 256 |
> |
} |
| 257 |
> |
} |
| 258 |
|
} |
| 259 |
< |
for (std::vector<TorsionOrderStruct>::iterator l = torsionOrderStruct.begin(); l != torsionOrderStruct.end(); ++l) { |
| 260 |
< |
Torsion* torsion = l->torsion; |
| 261 |
< |
std::cout << "Torsion: atom1=" <<torsion->getAtomA()->getGlobalIndex() << ",atom2 = "<< torsion->getAtomB()->getGlobalIndex() << ",atom3="<<torsion->getAtomC()->getGlobalIndex() << ",atom4="<<torsion->getAtomD()->getGlobalIndex()<< " "; |
| 262 |
< |
std::cout << "deltaV=" << l->dataSet.deltaV << ",p_theta=" << l->dataSet.prev.angle <<",p_pot=" << l->dataSet.prev.potential<< ",c_theta=" << l->dataSet.curr.angle << ", c_pot = " << l->dataSet.curr.potential <<std::endl; |
| 259 |
> |
switcher_->setSwitchType(sft_); |
| 260 |
> |
switcher_->setSwitch(rSwitch_, rCut_); |
| 261 |
> |
} |
| 262 |
> |
|
| 263 |
> |
void ForceManager::initialize() { |
| 264 |
> |
|
| 265 |
> |
if (!info_->isTopologyDone()) { |
| 266 |
> |
info_->update(); |
| 267 |
> |
interactionMan_->setSimInfo(info_); |
| 268 |
> |
interactionMan_->initialize(); |
| 269 |
> |
|
| 270 |
> |
// We want to delay the cutoffs until after the interaction |
| 271 |
> |
// manager has set up the atom-atom interactions so that we can |
| 272 |
> |
// query them for suggested cutoff values |
| 273 |
> |
|
| 274 |
> |
setupCutoffs(); |
| 275 |
> |
setupSwitching(); |
| 276 |
> |
|
| 277 |
> |
info_->prepareTopology(); |
| 278 |
|
} |
| 279 |
< |
*/ |
| 279 |
> |
|
| 280 |
> |
ForceFieldOptions& fopts = forceField_->getForceFieldOptions(); |
| 281 |
> |
|
| 282 |
> |
// Force fields can set options on how to scale van der Waals and electrostatic |
| 283 |
> |
// interactions for atoms connected via bonds, bends and torsions |
| 284 |
> |
// in this case the topological distance between atoms is: |
| 285 |
> |
// 0 = topologically unconnected |
| 286 |
> |
// 1 = bonded together |
| 287 |
> |
// 2 = connected via a bend |
| 288 |
> |
// 3 = connected via a torsion |
| 289 |
> |
|
| 290 |
> |
vdwScale_.reserve(4); |
| 291 |
> |
fill(vdwScale_.begin(), vdwScale_.end(), 0.0); |
| 292 |
> |
|
| 293 |
> |
electrostaticScale_.reserve(4); |
| 294 |
> |
fill(electrostaticScale_.begin(), electrostaticScale_.end(), 0.0); |
| 295 |
> |
|
| 296 |
> |
vdwScale_[0] = 1.0; |
| 297 |
> |
vdwScale_[1] = fopts.getvdw12scale(); |
| 298 |
> |
vdwScale_[2] = fopts.getvdw13scale(); |
| 299 |
> |
vdwScale_[3] = fopts.getvdw14scale(); |
| 300 |
> |
|
| 301 |
> |
electrostaticScale_[0] = 1.0; |
| 302 |
> |
electrostaticScale_[1] = fopts.getelectrostatic12scale(); |
| 303 |
> |
electrostaticScale_[2] = fopts.getelectrostatic13scale(); |
| 304 |
> |
electrostaticScale_[3] = fopts.getelectrostatic14scale(); |
| 305 |
> |
|
| 306 |
> |
fDecomp_->distributeInitialData(); |
| 307 |
> |
|
| 308 |
> |
initialized_ = true; |
| 309 |
> |
|
| 310 |
|
} |
| 311 |
|
|
| 312 |
+ |
void ForceManager::calcForces() { |
| 313 |
+ |
|
| 314 |
+ |
if (!initialized_) initialize(); |
| 315 |
+ |
|
| 316 |
+ |
preCalculation(); |
| 317 |
+ |
shortRangeInteractions(); |
| 318 |
+ |
longRangeInteractions(); |
| 319 |
+ |
postCalculation(); |
| 320 |
+ |
} |
| 321 |
+ |
|
| 322 |
|
void ForceManager::preCalculation() { |
| 323 |
|
SimInfo::MoleculeIterator mi; |
| 324 |
|
Molecule* mol; |
| 326 |
|
Atom* atom; |
| 327 |
|
Molecule::RigidBodyIterator rbIter; |
| 328 |
|
RigidBody* rb; |
| 329 |
+ |
Molecule::CutoffGroupIterator ci; |
| 330 |
+ |
CutoffGroup* cg; |
| 331 |
|
|
| 332 |
|
// forces are zeroed here, before any are accumulated. |
| 333 |
< |
// NOTE: do not rezero the forces in Fortran. |
| 334 |
< |
for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) { |
| 333 |
> |
|
| 334 |
> |
for (mol = info_->beginMolecule(mi); mol != NULL; |
| 335 |
> |
mol = info_->nextMolecule(mi)) { |
| 336 |
|
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
| 337 |
|
atom->zeroForcesAndTorques(); |
| 338 |
|
} |
| 339 |
< |
|
| 339 |
> |
|
| 340 |
|
//change the positions of atoms which belong to the rigidbodies |
| 341 |
< |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
| 341 |
> |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
| 342 |
> |
rb = mol->nextRigidBody(rbIter)) { |
| 343 |
|
rb->zeroForcesAndTorques(); |
| 344 |
|
} |
| 345 |
+ |
|
| 346 |
+ |
if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){ |
| 347 |
+ |
for(cg = mol->beginCutoffGroup(ci); cg != NULL; |
| 348 |
+ |
cg = mol->nextCutoffGroup(ci)) { |
| 349 |
+ |
//calculate the center of mass of cutoff group |
| 350 |
+ |
cg->updateCOM(); |
| 351 |
+ |
} |
| 352 |
+ |
} |
| 353 |
|
} |
| 354 |
+ |
|
| 355 |
+ |
// Zero out the stress tensor |
| 356 |
+ |
tau *= 0.0; |
| 357 |
|
|
| 358 |
|
} |
| 359 |
< |
|
| 360 |
< |
void ForceManager::calcShortRangeInteraction() { |
| 359 |
> |
|
| 360 |
> |
void ForceManager::shortRangeInteractions() { |
| 361 |
|
Molecule* mol; |
| 362 |
|
RigidBody* rb; |
| 363 |
|
Bond* bond; |
| 364 |
|
Bend* bend; |
| 365 |
|
Torsion* torsion; |
| 366 |
+ |
Inversion* inversion; |
| 367 |
|
SimInfo::MoleculeIterator mi; |
| 368 |
|
Molecule::RigidBodyIterator rbIter; |
| 369 |
|
Molecule::BondIterator bondIter;; |
| 370 |
|
Molecule::BendIterator bendIter; |
| 371 |
|
Molecule::TorsionIterator torsionIter; |
| 372 |
+ |
Molecule::InversionIterator inversionIter; |
| 373 |
|
RealType bondPotential = 0.0; |
| 374 |
|
RealType bendPotential = 0.0; |
| 375 |
|
RealType torsionPotential = 0.0; |
| 376 |
+ |
RealType inversionPotential = 0.0; |
| 377 |
|
|
| 378 |
|
//calculate short range interactions |
| 379 |
< |
for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) { |
| 379 |
> |
for (mol = info_->beginMolecule(mi); mol != NULL; |
| 380 |
> |
mol = info_->nextMolecule(mi)) { |
| 381 |
|
|
| 382 |
|
//change the positions of atoms which belong to the rigidbodies |
| 383 |
< |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
| 384 |
< |
rb->updateAtoms(); |
| 383 |
> |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
| 384 |
> |
rb = mol->nextRigidBody(rbIter)) { |
| 385 |
> |
rb->updateAtoms(); |
| 386 |
|
} |
| 387 |
|
|
| 388 |
< |
for (bond = mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) { |
| 388 |
> |
for (bond = mol->beginBond(bondIter); bond != NULL; |
| 389 |
> |
bond = mol->nextBond(bondIter)) { |
| 390 |
|
bond->calcForce(); |
| 391 |
|
bondPotential += bond->getPotential(); |
| 392 |
|
} |
| 393 |
|
|
| 394 |
< |
|
| 395 |
< |
for (bend = mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) { |
| 396 |
< |
|
| 178 |
< |
RealType angle; |
| 179 |
< |
bend->calcForce(angle); |
| 180 |
< |
RealType currBendPot = bend->getPotential(); |
| 181 |
< |
bendPotential += bend->getPotential(); |
| 182 |
< |
std::map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend); |
| 183 |
< |
if (i == bendDataSets.end()) { |
| 184 |
< |
BendDataSet dataSet; |
| 185 |
< |
dataSet.prev.angle = dataSet.curr.angle = angle; |
| 186 |
< |
dataSet.prev.potential = dataSet.curr.potential = currBendPot; |
| 187 |
< |
dataSet.deltaV = 0.0; |
| 188 |
< |
bendDataSets.insert(std::map<Bend*, BendDataSet>::value_type(bend, dataSet)); |
| 189 |
< |
}else { |
| 190 |
< |
i->second.prev.angle = i->second.curr.angle; |
| 191 |
< |
i->second.prev.potential = i->second.curr.potential; |
| 192 |
< |
i->second.curr.angle = angle; |
| 193 |
< |
i->second.curr.potential = currBendPot; |
| 194 |
< |
i->second.deltaV = fabs(i->second.curr.potential - i->second.prev.potential); |
| 195 |
< |
} |
| 196 |
< |
} |
| 197 |
< |
|
| 198 |
< |
for (torsion = mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) { |
| 394 |
> |
for (bend = mol->beginBend(bendIter); bend != NULL; |
| 395 |
> |
bend = mol->nextBend(bendIter)) { |
| 396 |
> |
|
| 397 |
|
RealType angle; |
| 398 |
< |
torsion->calcForce(angle); |
| 399 |
< |
RealType currTorsionPot = torsion->getPotential(); |
| 400 |
< |
torsionPotential += torsion->getPotential(); |
| 401 |
< |
std::map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion); |
| 402 |
< |
if (i == torsionDataSets.end()) { |
| 403 |
< |
TorsionDataSet dataSet; |
| 404 |
< |
dataSet.prev.angle = dataSet.curr.angle = angle; |
| 405 |
< |
dataSet.prev.potential = dataSet.curr.potential = currTorsionPot; |
| 406 |
< |
dataSet.deltaV = 0.0; |
| 407 |
< |
torsionDataSets.insert(std::map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet)); |
| 408 |
< |
}else { |
| 409 |
< |
i->second.prev.angle = i->second.curr.angle; |
| 410 |
< |
i->second.prev.potential = i->second.curr.potential; |
| 411 |
< |
i->second.curr.angle = angle; |
| 412 |
< |
i->second.curr.potential = currTorsionPot; |
| 413 |
< |
i->second.deltaV = fabs(i->second.curr.potential - i->second.prev.potential); |
| 414 |
< |
} |
| 398 |
> |
bend->calcForce(angle); |
| 399 |
> |
RealType currBendPot = bend->getPotential(); |
| 400 |
> |
|
| 401 |
> |
bendPotential += bend->getPotential(); |
| 402 |
> |
map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend); |
| 403 |
> |
if (i == bendDataSets.end()) { |
| 404 |
> |
BendDataSet dataSet; |
| 405 |
> |
dataSet.prev.angle = dataSet.curr.angle = angle; |
| 406 |
> |
dataSet.prev.potential = dataSet.curr.potential = currBendPot; |
| 407 |
> |
dataSet.deltaV = 0.0; |
| 408 |
> |
bendDataSets.insert(map<Bend*, BendDataSet>::value_type(bend, dataSet)); |
| 409 |
> |
}else { |
| 410 |
> |
i->second.prev.angle = i->second.curr.angle; |
| 411 |
> |
i->second.prev.potential = i->second.curr.potential; |
| 412 |
> |
i->second.curr.angle = angle; |
| 413 |
> |
i->second.curr.potential = currBendPot; |
| 414 |
> |
i->second.deltaV = fabs(i->second.curr.potential - |
| 415 |
> |
i->second.prev.potential); |
| 416 |
> |
} |
| 417 |
|
} |
| 418 |
< |
|
| 418 |
> |
|
| 419 |
> |
for (torsion = mol->beginTorsion(torsionIter); torsion != NULL; |
| 420 |
> |
torsion = mol->nextTorsion(torsionIter)) { |
| 421 |
> |
RealType angle; |
| 422 |
> |
torsion->calcForce(angle); |
| 423 |
> |
RealType currTorsionPot = torsion->getPotential(); |
| 424 |
> |
torsionPotential += torsion->getPotential(); |
| 425 |
> |
map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion); |
| 426 |
> |
if (i == torsionDataSets.end()) { |
| 427 |
> |
TorsionDataSet dataSet; |
| 428 |
> |
dataSet.prev.angle = dataSet.curr.angle = angle; |
| 429 |
> |
dataSet.prev.potential = dataSet.curr.potential = currTorsionPot; |
| 430 |
> |
dataSet.deltaV = 0.0; |
| 431 |
> |
torsionDataSets.insert(map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet)); |
| 432 |
> |
}else { |
| 433 |
> |
i->second.prev.angle = i->second.curr.angle; |
| 434 |
> |
i->second.prev.potential = i->second.curr.potential; |
| 435 |
> |
i->second.curr.angle = angle; |
| 436 |
> |
i->second.curr.potential = currTorsionPot; |
| 437 |
> |
i->second.deltaV = fabs(i->second.curr.potential - |
| 438 |
> |
i->second.prev.potential); |
| 439 |
> |
} |
| 440 |
> |
} |
| 441 |
> |
|
| 442 |
> |
for (inversion = mol->beginInversion(inversionIter); |
| 443 |
> |
inversion != NULL; |
| 444 |
> |
inversion = mol->nextInversion(inversionIter)) { |
| 445 |
> |
RealType angle; |
| 446 |
> |
inversion->calcForce(angle); |
| 447 |
> |
RealType currInversionPot = inversion->getPotential(); |
| 448 |
> |
inversionPotential += inversion->getPotential(); |
| 449 |
> |
map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion); |
| 450 |
> |
if (i == inversionDataSets.end()) { |
| 451 |
> |
InversionDataSet dataSet; |
| 452 |
> |
dataSet.prev.angle = dataSet.curr.angle = angle; |
| 453 |
> |
dataSet.prev.potential = dataSet.curr.potential = currInversionPot; |
| 454 |
> |
dataSet.deltaV = 0.0; |
| 455 |
> |
inversionDataSets.insert(map<Inversion*, InversionDataSet>::value_type(inversion, dataSet)); |
| 456 |
> |
}else { |
| 457 |
> |
i->second.prev.angle = i->second.curr.angle; |
| 458 |
> |
i->second.prev.potential = i->second.curr.potential; |
| 459 |
> |
i->second.curr.angle = angle; |
| 460 |
> |
i->second.curr.potential = currInversionPot; |
| 461 |
> |
i->second.deltaV = fabs(i->second.curr.potential - |
| 462 |
> |
i->second.prev.potential); |
| 463 |
> |
} |
| 464 |
> |
} |
| 465 |
|
} |
| 466 |
|
|
| 467 |
< |
RealType shortRangePotential = bondPotential + bendPotential + torsionPotential; |
| 467 |
> |
RealType shortRangePotential = bondPotential + bendPotential + |
| 468 |
> |
torsionPotential + inversionPotential; |
| 469 |
|
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
| 470 |
|
curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential; |
| 471 |
|
curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential; |
| 472 |
|
curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential; |
| 473 |
|
curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential; |
| 474 |
< |
|
| 474 |
> |
curSnapshot->statData[Stats::INVERSION_POTENTIAL] = inversionPotential; |
| 475 |
|
} |
| 476 |
+ |
|
| 477 |
+ |
void ForceManager::longRangeInteractions() { |
| 478 |
+ |
// some of this initial stuff will go away: |
| 479 |
+ |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
| 480 |
+ |
DataStorage* config = &(curSnapshot->atomData); |
| 481 |
+ |
DataStorage* cgConfig = &(curSnapshot->cgData); |
| 482 |
+ |
RealType* frc = config->getArrayPointer(DataStorage::dslForce); |
| 483 |
+ |
RealType* pos = config->getArrayPointer(DataStorage::dslPosition); |
| 484 |
+ |
RealType* trq = config->getArrayPointer(DataStorage::dslTorque); |
| 485 |
+ |
RealType* A = config->getArrayPointer(DataStorage::dslAmat); |
| 486 |
+ |
RealType* electroFrame = config->getArrayPointer(DataStorage::dslElectroFrame); |
| 487 |
+ |
RealType* particlePot = config->getArrayPointer(DataStorage::dslParticlePot); |
| 488 |
|
|
| 489 |
< |
void ForceManager::calcLongRangeInteraction(bool needPotential, bool needStress) { |
| 231 |
< |
Snapshot* curSnapshot; |
| 232 |
< |
DataStorage* config; |
| 233 |
< |
RealType* frc; |
| 234 |
< |
RealType* pos; |
| 235 |
< |
RealType* trq; |
| 236 |
< |
RealType* A; |
| 237 |
< |
RealType* electroFrame; |
| 238 |
< |
RealType* rc; |
| 489 |
> |
// new stuff starts here: |
| 490 |
|
|
| 491 |
< |
//get current snapshot from SimInfo |
| 492 |
< |
curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
| 491 |
> |
fDecomp_->zeroWorkArrays(); |
| 492 |
> |
fDecomp_->distributeData(); |
| 493 |
> |
|
| 494 |
> |
int cg1, cg2, atom1, atom2, topoDist; |
| 495 |
> |
Vector3d d_grp, dag, d; |
| 496 |
> |
RealType rgrpsq, rgrp, r2, r; |
| 497 |
> |
RealType electroMult, vdwMult; |
| 498 |
> |
RealType vij; |
| 499 |
> |
Vector3d fij, fg; |
| 500 |
> |
tuple3<RealType, RealType, RealType> cuts; |
| 501 |
> |
RealType rCutSq; |
| 502 |
> |
bool in_switching_region; |
| 503 |
> |
RealType sw, dswdr, swderiv; |
| 504 |
> |
vector<int> atomListColumn, atomListRow, atomListLocal; |
| 505 |
> |
InteractionData idat; |
| 506 |
> |
SelfData sdat; |
| 507 |
> |
RealType mf; |
| 508 |
> |
potVec pot(0.0); |
| 509 |
> |
potVec longRangePotential(0.0); |
| 510 |
> |
RealType lrPot; |
| 511 |
> |
RealType vpair; |
| 512 |
|
|
| 513 |
< |
//get array pointers |
| 244 |
< |
config = &(curSnapshot->atomData); |
| 245 |
< |
frc = config->getArrayPointer(DataStorage::dslForce); |
| 246 |
< |
pos = config->getArrayPointer(DataStorage::dslPosition); |
| 247 |
< |
trq = config->getArrayPointer(DataStorage::dslTorque); |
| 248 |
< |
A = config->getArrayPointer(DataStorage::dslAmat); |
| 249 |
< |
electroFrame = config->getArrayPointer(DataStorage::dslElectroFrame); |
| 513 |
> |
int loopStart, loopEnd; |
| 514 |
|
|
| 515 |
< |
//calculate the center of mass of cutoff group |
| 516 |
< |
SimInfo::MoleculeIterator mi; |
| 517 |
< |
Molecule* mol; |
| 518 |
< |
Molecule::CutoffGroupIterator ci; |
| 519 |
< |
CutoffGroup* cg; |
| 520 |
< |
Vector3d com; |
| 521 |
< |
std::vector<Vector3d> rcGroup; |
| 515 |
> |
loopEnd = PAIR_LOOP; |
| 516 |
> |
if (info_->requiresPrepair() ) { |
| 517 |
> |
loopStart = PREPAIR_LOOP; |
| 518 |
> |
} else { |
| 519 |
> |
loopStart = PAIR_LOOP; |
| 520 |
> |
} |
| 521 |
> |
|
| 522 |
|
|
| 523 |
< |
if(info_->getNCutoffGroups() > 0){ |
| 524 |
< |
|
| 525 |
< |
for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) { |
| 526 |
< |
for(cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { |
| 527 |
< |
cg->getCOM(com); |
| 528 |
< |
rcGroup.push_back(com); |
| 523 |
> |
for (int iLoop = loopStart; iLoop <= loopEnd; iLoop++) { |
| 524 |
> |
|
| 525 |
> |
if (iLoop == loopStart) { |
| 526 |
> |
bool update_nlist = fDecomp_->checkNeighborList(); |
| 527 |
> |
if (update_nlist) |
| 528 |
> |
neighborList = fDecomp_->buildNeighborList(); |
| 529 |
> |
} |
| 530 |
> |
|
| 531 |
> |
for (vector<pair<int, int> >::iterator it = neighborList.begin(); |
| 532 |
> |
it != neighborList.end(); ++it) { |
| 533 |
> |
|
| 534 |
> |
cg1 = (*it).first; |
| 535 |
> |
cg2 = (*it).second; |
| 536 |
> |
|
| 537 |
> |
cuts = fDecomp_->getGroupCutoffs(cg1, cg2); |
| 538 |
> |
|
| 539 |
> |
d_grp = fDecomp_->getIntergroupVector(cg1, cg2); |
| 540 |
> |
curSnapshot->wrapVector(d_grp); |
| 541 |
> |
rgrpsq = d_grp.lengthSquare(); |
| 542 |
> |
|
| 543 |
> |
rCutSq = cuts.second; |
| 544 |
> |
|
| 545 |
> |
if (rgrpsq < rCutSq) { |
| 546 |
> |
idat.rcut = &cuts.first; |
| 547 |
> |
if (iLoop == PAIR_LOOP) { |
| 548 |
> |
vij *= 0.0; |
| 549 |
> |
fij = V3Zero; |
| 550 |
> |
} |
| 551 |
> |
|
| 552 |
> |
in_switching_region = switcher_->getSwitch(rgrpsq, sw, dswdr, |
| 553 |
> |
rgrp); |
| 554 |
> |
|
| 555 |
> |
idat.sw = &sw; |
| 556 |
> |
|
| 557 |
> |
atomListRow = fDecomp_->getAtomsInGroupRow(cg1); |
| 558 |
> |
atomListColumn = fDecomp_->getAtomsInGroupColumn(cg2); |
| 559 |
> |
|
| 560 |
> |
for (vector<int>::iterator ia = atomListRow.begin(); |
| 561 |
> |
ia != atomListRow.end(); ++ia) { |
| 562 |
> |
atom1 = (*ia); |
| 563 |
> |
|
| 564 |
> |
for (vector<int>::iterator jb = atomListColumn.begin(); |
| 565 |
> |
jb != atomListColumn.end(); ++jb) { |
| 566 |
> |
atom2 = (*jb); |
| 567 |
> |
|
| 568 |
> |
cerr << "doing atoms " << atom1 << " " << atom2 << "\n"; |
| 569 |
> |
if (!fDecomp_->skipAtomPair(atom1, atom2)) { |
| 570 |
> |
|
| 571 |
> |
vpair = 0.0; |
| 572 |
> |
|
| 573 |
> |
cerr << "filling idat atoms " << atom1 << " " << atom2 << "\n"; |
| 574 |
> |
idat = fDecomp_->fillInteractionData(atom1, atom2); |
| 575 |
> |
cerr << "done with idat\n"; |
| 576 |
> |
|
| 577 |
> |
topoDist = fDecomp_->getTopologicalDistance(atom1, atom2); |
| 578 |
> |
vdwMult = vdwScale_[topoDist]; |
| 579 |
> |
electroMult = electrostaticScale_[topoDist]; |
| 580 |
> |
|
| 581 |
> |
idat.vdwMult = &vdwMult; |
| 582 |
> |
idat.electroMult = &electroMult; |
| 583 |
> |
idat.pot = &pot; |
| 584 |
> |
idat.vpair = &vpair; |
| 585 |
> |
|
| 586 |
> |
if (atomListRow.size() == 1 && atomListColumn.size() == 1) { |
| 587 |
> |
idat.d = &d_grp; |
| 588 |
> |
idat.r2 = &rgrpsq; |
| 589 |
> |
} else { |
| 590 |
> |
d = fDecomp_->getInteratomicVector(atom1, atom2); |
| 591 |
> |
curSnapshot->wrapVector( d ); |
| 592 |
> |
r2 = d.lengthSquare(); |
| 593 |
> |
idat.d = &d; |
| 594 |
> |
idat.r2 = &r2; |
| 595 |
> |
} |
| 596 |
> |
|
| 597 |
> |
cerr << "d = " << d << "\n"; |
| 598 |
> |
cerr << "r2 = " << r2 << "\n"; |
| 599 |
> |
r = sqrt( r2 ); |
| 600 |
> |
idat.rij = &r; |
| 601 |
> |
|
| 602 |
> |
if (iLoop == PREPAIR_LOOP) { |
| 603 |
> |
interactionMan_->doPrePair(idat); |
| 604 |
> |
} else { |
| 605 |
> |
cerr << "doing doPair " << atom1 << " " << atom2 << " " << r << "\n"; |
| 606 |
> |
interactionMan_->doPair(idat); |
| 607 |
> |
fDecomp_->unpackInteractionData(idat, atom1, atom2); |
| 608 |
> |
vij += *(idat.vpair); |
| 609 |
> |
fij += *(idat.f1); |
| 610 |
> |
tau -= outProduct( *(idat.d), *(idat.f1)); |
| 611 |
> |
} |
| 612 |
> |
} |
| 613 |
> |
} |
| 614 |
> |
} |
| 615 |
> |
|
| 616 |
> |
if (iLoop == PAIR_LOOP) { |
| 617 |
> |
if (in_switching_region) { |
| 618 |
> |
swderiv = vij * dswdr / rgrp; |
| 619 |
> |
fg = swderiv * d_grp; |
| 620 |
> |
|
| 621 |
> |
fij += fg; |
| 622 |
> |
|
| 623 |
> |
if (atomListRow.size() == 1 && atomListColumn.size() == 1) { |
| 624 |
> |
tau -= outProduct( *(idat.d), fg); |
| 625 |
> |
} |
| 626 |
> |
|
| 627 |
> |
for (vector<int>::iterator ia = atomListRow.begin(); |
| 628 |
> |
ia != atomListRow.end(); ++ia) { |
| 629 |
> |
atom1 = (*ia); |
| 630 |
> |
mf = fDecomp_->getMassFactorRow(atom1); |
| 631 |
> |
// fg is the force on atom ia due to cutoff group's |
| 632 |
> |
// presence in switching region |
| 633 |
> |
fg = swderiv * d_grp * mf; |
| 634 |
> |
fDecomp_->addForceToAtomRow(atom1, fg); |
| 635 |
> |
|
| 636 |
> |
if (atomListRow.size() > 1) { |
| 637 |
> |
if (info_->usesAtomicVirial()) { |
| 638 |
> |
// find the distance between the atom |
| 639 |
> |
// and the center of the cutoff group: |
| 640 |
> |
dag = fDecomp_->getAtomToGroupVectorRow(atom1, cg1); |
| 641 |
> |
tau -= outProduct(dag, fg); |
| 642 |
> |
} |
| 643 |
> |
} |
| 644 |
> |
} |
| 645 |
> |
for (vector<int>::iterator jb = atomListColumn.begin(); |
| 646 |
> |
jb != atomListColumn.end(); ++jb) { |
| 647 |
> |
atom2 = (*jb); |
| 648 |
> |
mf = fDecomp_->getMassFactorColumn(atom2); |
| 649 |
> |
// fg is the force on atom jb due to cutoff group's |
| 650 |
> |
// presence in switching region |
| 651 |
> |
fg = -swderiv * d_grp * mf; |
| 652 |
> |
fDecomp_->addForceToAtomColumn(atom2, fg); |
| 653 |
> |
|
| 654 |
> |
if (atomListColumn.size() > 1) { |
| 655 |
> |
if (info_->usesAtomicVirial()) { |
| 656 |
> |
// find the distance between the atom |
| 657 |
> |
// and the center of the cutoff group: |
| 658 |
> |
dag = fDecomp_->getAtomToGroupVectorColumn(atom2, cg2); |
| 659 |
> |
tau -= outProduct(dag, fg); |
| 660 |
> |
} |
| 661 |
> |
} |
| 662 |
> |
} |
| 663 |
> |
} |
| 664 |
> |
//if (!SIM_uses_AtomicVirial) { |
| 665 |
> |
// tau -= outProduct(d_grp, fij); |
| 666 |
> |
//} |
| 667 |
> |
} |
| 668 |
|
} |
| 669 |
< |
}// end for (mol) |
| 670 |
< |
|
| 671 |
< |
rc = rcGroup[0].getArrayPointer(); |
| 672 |
< |
} else { |
| 673 |
< |
// center of mass of the group is the same as position of the atom if cutoff group does not exist |
| 674 |
< |
rc = pos; |
| 669 |
> |
} |
| 670 |
> |
|
| 671 |
> |
if (iLoop == PREPAIR_LOOP) { |
| 672 |
> |
if (info_->requiresPrepair()) { |
| 673 |
> |
fDecomp_->collectIntermediateData(); |
| 674 |
> |
|
| 675 |
> |
for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) { |
| 676 |
> |
sdat = fDecomp_->fillSelfData(atom1); |
| 677 |
> |
interactionMan_->doPreForce(sdat); |
| 678 |
> |
} |
| 679 |
> |
|
| 680 |
> |
fDecomp_->distributeIntermediateData(); |
| 681 |
> |
} |
| 682 |
> |
} |
| 683 |
> |
|
| 684 |
|
} |
| 273 |
– |
|
| 274 |
– |
//initialize data before passing to fortran |
| 275 |
– |
RealType longRangePotential[LR_POT_TYPES]; |
| 276 |
– |
RealType lrPot = 0.0; |
| 685 |
|
|
| 686 |
< |
Mat3x3d tau; |
| 687 |
< |
short int passedCalcPot = needPotential; |
| 688 |
< |
short int passedCalcStress = needStress; |
| 689 |
< |
int isError = 0; |
| 686 |
> |
fDecomp_->collectData(); |
| 687 |
> |
|
| 688 |
> |
if ( info_->requiresSkipCorrection() ) { |
| 689 |
> |
|
| 690 |
> |
for (int atom1 = 0; atom1 < fDecomp_->getNAtomsInRow(); atom1++) { |
| 691 |
|
|
| 692 |
< |
for (int i=0; i<LR_POT_TYPES;i++){ |
| 693 |
< |
longRangePotential[i]=0.0; //Initialize array |
| 692 |
> |
vector<int> skipList = fDecomp_->getSkipsForAtom( atom1 ); |
| 693 |
> |
|
| 694 |
> |
for (vector<int>::iterator jb = skipList.begin(); |
| 695 |
> |
jb != skipList.end(); ++jb) { |
| 696 |
> |
|
| 697 |
> |
atom2 = (*jb); |
| 698 |
> |
idat = fDecomp_->fillSkipData(atom1, atom2); |
| 699 |
> |
interactionMan_->doSkipCorrection(idat); |
| 700 |
> |
|
| 701 |
> |
} |
| 702 |
> |
} |
| 703 |
|
} |
| 704 |
+ |
|
| 705 |
+ |
if (info_->requiresSelfCorrection()) { |
| 706 |
|
|
| 707 |
< |
doForceLoop( pos, |
| 708 |
< |
rc, |
| 709 |
< |
A, |
| 710 |
< |
electroFrame, |
| 291 |
< |
frc, |
| 292 |
< |
trq, |
| 293 |
< |
tau.getArrayPointer(), |
| 294 |
< |
longRangePotential, |
| 295 |
< |
&passedCalcPot, |
| 296 |
< |
&passedCalcStress, |
| 297 |
< |
&isError ); |
| 707 |
> |
for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) { |
| 708 |
> |
sdat = fDecomp_->fillSelfData(atom1); |
| 709 |
> |
interactionMan_->doSelfCorrection(sdat); |
| 710 |
> |
} |
| 711 |
|
|
| 299 |
– |
if( isError ){ |
| 300 |
– |
sprintf( painCave.errMsg, |
| 301 |
– |
"Error returned from the fortran force calculation.\n" ); |
| 302 |
– |
painCave.isFatal = 1; |
| 303 |
– |
simError(); |
| 712 |
|
} |
| 305 |
– |
for (int i=0; i<LR_POT_TYPES;i++){ |
| 306 |
– |
lrPot += longRangePotential[i]; //Quick hack |
| 307 |
– |
} |
| 713 |
|
|
| 714 |
+ |
longRangePotential = fDecomp_->getLongRangePotential(); |
| 715 |
+ |
lrPot = longRangePotential.sum(); |
| 716 |
+ |
|
| 717 |
|
//store the tau and long range potential |
| 718 |
|
curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot; |
| 719 |
< |
curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VDW_POT]; |
| 720 |
< |
curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_POT]; |
| 313 |
< |
|
| 314 |
< |
curSnapshot->statData.setTau(tau); |
| 719 |
> |
curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VANDERWAALS_FAMILY]; |
| 720 |
> |
curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_FAMILY]; |
| 721 |
|
} |
| 722 |
|
|
| 723 |
< |
|
| 723 |
> |
|
| 724 |
|
void ForceManager::postCalculation() { |
| 725 |
|
SimInfo::MoleculeIterator mi; |
| 726 |
|
Molecule* mol; |
| 727 |
|
Molecule::RigidBodyIterator rbIter; |
| 728 |
|
RigidBody* rb; |
| 729 |
+ |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
| 730 |
|
|
| 731 |
|
// collect the atomic forces onto rigid bodies |
| 732 |
< |
for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) { |
| 733 |
< |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
| 734 |
< |
rb->calcForcesAndTorques(); |
| 732 |
> |
|
| 733 |
> |
for (mol = info_->beginMolecule(mi); mol != NULL; |
| 734 |
> |
mol = info_->nextMolecule(mi)) { |
| 735 |
> |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
| 736 |
> |
rb = mol->nextRigidBody(rbIter)) { |
| 737 |
> |
Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial(); |
| 738 |
> |
tau += rbTau; |
| 739 |
|
} |
| 740 |
|
} |
| 741 |
< |
|
| 741 |
> |
|
| 742 |
> |
#ifdef IS_MPI |
| 743 |
> |
Mat3x3d tmpTau(tau); |
| 744 |
> |
MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(), |
| 745 |
> |
9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
| 746 |
> |
#endif |
| 747 |
> |
curSnapshot->statData.setTau(tau); |
| 748 |
|
} |
| 749 |
|
|
| 750 |
< |
} //end namespace oopse |
| 750 |
> |
} //end namespace OpenMD |