ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/ForceManager.cpp
(Generate patch)

Comparing:
trunk/src/brains/ForceManager.cpp (file contents), Revision 770 by tim, Fri Dec 2 15:38:03 2005 UTC vs.
branches/development/src/brains/ForceManager.cpp (file contents), Revision 1583 by gezelter, Thu Jun 16 22:00:08 2011 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42   /**
# Line 47 | Line 47
47   * @version 1.0
48   */
49  
50 +
51   #include "brains/ForceManager.hpp"
52   #include "primitives/Molecule.hpp"
53 < #include "UseTheForce/doForces_interface.h"
53 < #define __C
54 < #include "UseTheForce/DarkSide/fInteractionMap.h"
53 > #define __OPENMD_C
54   #include "utils/simError.h"
55 + #include "primitives/Bond.hpp"
56   #include "primitives/Bend.hpp"
57 < #include "primitives/Bend.hpp"
58 < namespace oopse {
57 > #include "primitives/Torsion.hpp"
58 > #include "primitives/Inversion.hpp"
59 > #include "nonbonded/NonBondedInteraction.hpp"
60 > #include "parallel/ForceMatrixDecomposition.hpp"
61  
62 < /*
63 <  struct BendOrderStruct {
64 <    Bend* bend;
63 <    BendDataSet dataSet;
64 <  };
65 <  struct TorsionOrderStruct {
66 <    Torsion* torsion;
67 <    TorsionDataSet dataSet;
68 <  };
62 > #include <cstdio>
63 > #include <iostream>
64 > #include <iomanip>
65  
66 <  bool  BendSortFunctor(const BendOrderStruct& b1, const BendOrderStruct& b2) {
67 <    return b1.dataSet.deltaV < b2.dataSet.deltaV;
66 > using namespace std;
67 > namespace OpenMD {
68 >  
69 >  ForceManager::ForceManager(SimInfo * info) : info_(info) {
70 >    forceField_ = info_->getForceField();
71 >    interactionMan_ = new InteractionManager();
72 >    fDecomp_ = new ForceMatrixDecomposition(info_, interactionMan_);
73    }
74  
75 <  bool  TorsionSortFunctor(const TorsionOrderStruct& t1, const TorsionOrderStruct& t2) {
76 <    return t1.dataSet.deltaV < t2.dataSet.deltaV;
77 <  }
78 <  */
79 <  void ForceManager::calcForces(bool needPotential, bool needStress) {
75 >  /**
76 >   * setupCutoffs
77 >   *
78 >   * Sets the values of cutoffRadius, cutoffMethod, and cutoffPolicy
79 >   *
80 >   * cutoffRadius : realType
81 >   *  If the cutoffRadius was explicitly set, use that value.
82 >   *  If the cutoffRadius was not explicitly set:
83 >   *      Are there electrostatic atoms?  Use 12.0 Angstroms.
84 >   *      No electrostatic atoms?  Poll the atom types present in the
85 >   *      simulation for suggested cutoff values (e.g. 2.5 * sigma).
86 >   *      Use the maximum suggested value that was found.
87 >   *
88 >   * cutoffMethod : (one of HARD, SWITCHED, SHIFTED_FORCE, SHIFTED_POTENTIAL)
89 >   *      If cutoffMethod was explicitly set, use that choice.
90 >   *      If cutoffMethod was not explicitly set, use SHIFTED_FORCE
91 >   *
92 >   * cutoffPolicy : (one of MIX, MAX, TRADITIONAL)
93 >   *      If cutoffPolicy was explicitly set, use that choice.
94 >   *      If cutoffPolicy was not explicitly set, use TRADITIONAL
95 >   */
96 >  void ForceManager::setupCutoffs() {
97 >    
98 >    Globals* simParams_ = info_->getSimParams();
99 >    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
100 >    
101 >    if (simParams_->haveCutoffRadius()) {
102 >      rCut_ = simParams_->getCutoffRadius();
103 >    } else {      
104 >      if (info_->usesElectrostaticAtoms()) {
105 >        sprintf(painCave.errMsg,
106 >                "ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n"
107 >                "\tOpenMD will use a default value of 12.0 angstroms"
108 >                "\tfor the cutoffRadius.\n");
109 >        painCave.isFatal = 0;
110 >        painCave.severity = OPENMD_INFO;
111 >        simError();
112 >        rCut_ = 12.0;
113 >      } else {
114 >        RealType thisCut;
115 >        set<AtomType*>::iterator i;
116 >        set<AtomType*> atomTypes;
117 >        atomTypes = info_->getSimulatedAtomTypes();        
118 >        for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
119 >          thisCut = interactionMan_->getSuggestedCutoffRadius((*i));
120 >          rCut_ = max(thisCut, rCut_);
121 >        }
122 >        sprintf(painCave.errMsg,
123 >                "ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n"
124 >                "\tOpenMD will use %lf angstroms.\n",
125 >                rCut_);
126 >        painCave.isFatal = 0;
127 >        painCave.severity = OPENMD_INFO;
128 >        simError();
129 >      }
130 >    }
131  
132 <    if (!info_->isFortranInitialized()) {
133 <      info_->update();
132 >    fDecomp_->setUserCutoff(rCut_);
133 >
134 >    map<string, CutoffMethod> stringToCutoffMethod;
135 >    stringToCutoffMethod["HARD"] = HARD;
136 >    stringToCutoffMethod["SWITCHED"] = SWITCHED;
137 >    stringToCutoffMethod["SHIFTED_POTENTIAL"] = SHIFTED_POTENTIAL;    
138 >    stringToCutoffMethod["SHIFTED_FORCE"] = SHIFTED_FORCE;
139 >  
140 >    if (simParams_->haveCutoffMethod()) {
141 >      string cutMeth = toUpperCopy(simParams_->getCutoffMethod());
142 >      map<string, CutoffMethod>::iterator i;
143 >      i = stringToCutoffMethod.find(cutMeth);
144 >      if (i == stringToCutoffMethod.end()) {
145 >        sprintf(painCave.errMsg,
146 >                "ForceManager::setupCutoffs: Could not find chosen cutoffMethod %s\n"
147 >                "\tShould be one of: "
148 >                "HARD, SWITCHED, SHIFTED_POTENTIAL, or SHIFTED_FORCE\n",
149 >                cutMeth.c_str());
150 >        painCave.isFatal = 1;
151 >        painCave.severity = OPENMD_ERROR;
152 >        simError();
153 >      } else {
154 >        cutoffMethod_ = i->second;
155 >      }
156 >    } else {
157 >      sprintf(painCave.errMsg,
158 >              "ForceManager::setupCutoffs: No value was set for the cutoffMethod.\n"
159 >              "\tOpenMD will use SHIFTED_FORCE.\n");
160 >      painCave.isFatal = 0;
161 >      painCave.severity = OPENMD_INFO;
162 >      simError();
163 >      cutoffMethod_ = SHIFTED_FORCE;        
164      }
165  
166 <    preCalculation();
167 <    
168 <    calcShortRangeInteraction();
166 >    map<string, CutoffPolicy> stringToCutoffPolicy;
167 >    stringToCutoffPolicy["MIX"] = MIX;
168 >    stringToCutoffPolicy["MAX"] = MAX;
169 >    stringToCutoffPolicy["TRADITIONAL"] = TRADITIONAL;    
170  
171 <    calcLongRangeInteraction(needPotential, needStress);
171 >    std::string cutPolicy;
172 >    if (forceFieldOptions_.haveCutoffPolicy()){
173 >      cutPolicy = forceFieldOptions_.getCutoffPolicy();
174 >    }else if (simParams_->haveCutoffPolicy()) {
175 >      cutPolicy = simParams_->getCutoffPolicy();
176 >    }
177  
178 <    postCalculation();
178 >    if (!cutPolicy.empty()){
179 >      toUpper(cutPolicy);
180 >      map<string, CutoffPolicy>::iterator i;
181 >      i = stringToCutoffPolicy.find(cutPolicy);
182  
183 < /*
184 <    std::vector<BendOrderStruct> bendOrderStruct;
185 <    for(std::map<Bend*, BendDataSet>::iterator i = bendDataSets.begin(); i != bendDataSets.end(); ++i) {
186 <        BendOrderStruct tmp;
187 <        tmp.bend= const_cast<Bend*>(i->first);
188 <        tmp.dataSet = i->second;
189 <        bendOrderStruct.push_back(tmp);
183 >      if (i == stringToCutoffPolicy.end()) {
184 >        sprintf(painCave.errMsg,
185 >                "ForceManager::setupCutoffs: Could not find chosen cutoffPolicy %s\n"
186 >                "\tShould be one of: "
187 >                "MIX, MAX, or TRADITIONAL\n",
188 >                cutPolicy.c_str());
189 >        painCave.isFatal = 1;
190 >        painCave.severity = OPENMD_ERROR;
191 >        simError();
192 >      } else {
193 >        cutoffPolicy_ = i->second;
194 >      }
195 >    } else {
196 >      sprintf(painCave.errMsg,
197 >              "ForceManager::setupCutoffs: No value was set for the cutoffPolicy.\n"
198 >              "\tOpenMD will use TRADITIONAL.\n");
199 >      painCave.isFatal = 0;
200 >      painCave.severity = OPENMD_INFO;
201 >      simError();
202 >      cutoffPolicy_ = TRADITIONAL;        
203      }
204 +    fDecomp_->setCutoffPolicy(cutoffPolicy_);
205 +  }
206  
207 <    std::vector<TorsionOrderStruct> torsionOrderStruct;
208 <    for(std::map<Torsion*, TorsionDataSet>::iterator j = torsionDataSets.begin(); j != torsionDataSets.end(); ++j) {
209 <        TorsionOrderStruct tmp;
210 <        tmp.torsion = const_cast<Torsion*>(j->first);
211 <        tmp.dataSet = j->second;
212 <        torsionOrderStruct.push_back(tmp);
213 <    }
207 >  /**
208 >   * setupSwitching
209 >   *
210 >   * Sets the values of switchingRadius and
211 >   *  If the switchingRadius was explicitly set, use that value (but check it)
212 >   *  If the switchingRadius was not explicitly set: use 0.85 * cutoffRadius_
213 >   */
214 >  void ForceManager::setupSwitching() {
215 >    Globals* simParams_ = info_->getSimParams();
216 >
217 >    // create the switching function object:
218 >    switcher_ = new SwitchingFunction();
219      
220 <    std::sort(bendOrderStruct.begin(), bendOrderStruct.end(), std::ptr_fun(BendSortFunctor));
221 <    std::sort(torsionOrderStruct.begin(), torsionOrderStruct.end(), std::ptr_fun(TorsionSortFunctor));
222 <    std::cout << "bend" << std::endl;
223 <    for (std::vector<BendOrderStruct>::iterator k = bendOrderStruct.begin(); k != bendOrderStruct.end(); ++k) {
224 <        Bend* bend = k->bend;
225 <        std::cout << "atom1=" <<bend->getAtomA()->getGlobalIndex() << ",atom2 = "<< bend->getAtomB()->getGlobalIndex() << ",atom3="<<bend->getAtomC()->getGlobalIndex() << " ";
226 <        std::cout << "deltaV=" << k->dataSet.deltaV << ",p_theta=" << k->dataSet.prev.angle <<",p_pot=" << k->dataSet.prev.potential<< ",c_theta=" << k->dataSet.curr.angle << ", c_pot = " << k->dataSet.curr.potential <<std::endl;
220 >    if (simParams_->haveSwitchingRadius()) {
221 >      rSwitch_ = simParams_->getSwitchingRadius();
222 >      if (rSwitch_ > rCut_) {        
223 >        sprintf(painCave.errMsg,
224 >                "ForceManager::setupSwitching: switchingRadius (%f) is larger "
225 >                "than the cutoffRadius(%f)\n", rSwitch_, rCut_);
226 >        painCave.isFatal = 1;
227 >        painCave.severity = OPENMD_ERROR;
228 >        simError();
229 >      }
230 >    } else {      
231 >      rSwitch_ = 0.85 * rCut_;
232 >      sprintf(painCave.errMsg,
233 >              "ForceManager::setupSwitching: No value was set for the switchingRadius.\n"
234 >              "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n"
235 >              "\tswitchingRadius = %f. for this simulation\n", rSwitch_);
236 >      painCave.isFatal = 0;
237 >      painCave.severity = OPENMD_WARNING;
238 >      simError();
239 >    }          
240 >    
241 >    // Default to cubic switching function.
242 >    sft_ = cubic;
243 >    if (simParams_->haveSwitchingFunctionType()) {
244 >      string funcType = simParams_->getSwitchingFunctionType();
245 >      toUpper(funcType);
246 >      if (funcType == "CUBIC") {
247 >        sft_ = cubic;
248 >      } else {
249 >        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
250 >          sft_ = fifth_order_poly;
251 >        } else {
252 >          // throw error        
253 >          sprintf( painCave.errMsg,
254 >                   "ForceManager::setupSwitching : Unknown switchingFunctionType. (Input file specified %s .)\n"
255 >                   "\tswitchingFunctionType must be one of: "
256 >                   "\"cubic\" or \"fifth_order_polynomial\".",
257 >                   funcType.c_str() );
258 >          painCave.isFatal = 1;
259 >          painCave.severity = OPENMD_ERROR;
260 >          simError();
261 >        }          
262 >      }
263      }
264 <    std::cout << "torsio" << std::endl;
265 <    for (std::vector<TorsionOrderStruct>::iterator l = torsionOrderStruct.begin(); l != torsionOrderStruct.end(); ++l) {
266 <        Torsion* torsion = l->torsion;
267 <        std::cout << "atom1=" <<torsion->getAtomA()->getGlobalIndex() << ",atom2 = "<< torsion->getAtomB()->getGlobalIndex() << ",atom3="<<torsion->getAtomC()->getGlobalIndex() << ",atom4="<<torsion->getAtomD()->getGlobalIndex()<< " ";
268 <        std::cout << "deltaV=" << l->dataSet.deltaV << ",p_theta=" << l->dataSet.prev.angle <<",p_pot=" << l->dataSet.prev.potential<< ",c_theta=" << l->dataSet.curr.angle << ", c_pot = " << l->dataSet.curr.potential <<std::endl;
264 >    switcher_->setSwitchType(sft_);
265 >    switcher_->setSwitch(rSwitch_, rCut_);
266 >  }
267 >  
268 >  void ForceManager::initialize() {
269 >
270 >    if (!info_->isTopologyDone()) {
271 >      info_->update();
272 >      interactionMan_->setSimInfo(info_);
273 >      interactionMan_->initialize();
274 >
275 >      // We want to delay the cutoffs until after the interaction
276 >      // manager has set up the atom-atom interactions so that we can
277 >      // query them for suggested cutoff values
278 >
279 >      setupCutoffs();
280 >      setupSwitching();
281 >
282 >      info_->prepareTopology();      
283      }
284 <   */
284 >
285 >    ForceFieldOptions& fopts = forceField_->getForceFieldOptions();
286 >    
287 >    // Force fields can set options on how to scale van der Waals and electrostatic
288 >    // interactions for atoms connected via bonds, bends and torsions
289 >    // in this case the topological distance between atoms is:
290 >    // 0 = topologically unconnected
291 >    // 1 = bonded together
292 >    // 2 = connected via a bend
293 >    // 3 = connected via a torsion
294 >    
295 >    vdwScale_.reserve(4);
296 >    fill(vdwScale_.begin(), vdwScale_.end(), 0.0);
297 >
298 >    electrostaticScale_.reserve(4);
299 >    fill(electrostaticScale_.begin(), electrostaticScale_.end(), 0.0);
300 >
301 >    vdwScale_[0] = 1.0;
302 >    vdwScale_[1] = fopts.getvdw12scale();
303 >    vdwScale_[2] = fopts.getvdw13scale();
304 >    vdwScale_[3] = fopts.getvdw14scale();
305 >    
306 >    electrostaticScale_[0] = 1.0;
307 >    electrostaticScale_[1] = fopts.getelectrostatic12scale();
308 >    electrostaticScale_[2] = fopts.getelectrostatic13scale();
309 >    electrostaticScale_[3] = fopts.getelectrostatic14scale();    
310 >    
311 >    fDecomp_->distributeInitialData();
312 >
313 >    initialized_ = true;
314 >
315    }
316  
317 +  void ForceManager::calcForces() {
318 +    
319 +    if (!initialized_) initialize();
320 +
321 +    preCalculation();  
322 +    shortRangeInteractions();
323 +    longRangeInteractions();
324 +    postCalculation();    
325 +  }
326 +  
327    void ForceManager::preCalculation() {
328      SimInfo::MoleculeIterator mi;
329      Molecule* mol;
# Line 130 | Line 331 | namespace oopse {
331      Atom* atom;
332      Molecule::RigidBodyIterator rbIter;
333      RigidBody* rb;
334 +    Molecule::CutoffGroupIterator ci;
335 +    CutoffGroup* cg;
336      
337      // forces are zeroed here, before any are accumulated.
338 <    // NOTE: do not rezero the forces in Fortran.
339 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
338 >    
339 >    for (mol = info_->beginMolecule(mi); mol != NULL;
340 >         mol = info_->nextMolecule(mi)) {
341        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
342          atom->zeroForcesAndTorques();
343        }
344 <        
344 >          
345        //change the positions of atoms which belong to the rigidbodies
346 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
346 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
347 >           rb = mol->nextRigidBody(rbIter)) {
348          rb->zeroForcesAndTorques();
349        }        
350 +
351 +      if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){
352 +        for(cg = mol->beginCutoffGroup(ci); cg != NULL;
353 +            cg = mol->nextCutoffGroup(ci)) {
354 +          //calculate the center of mass of cutoff group
355 +          cg->updateCOM();
356 +        }
357 +      }      
358      }
359 +  
360 +    // Zero out the stress tensor
361 +    tau *= 0.0;
362      
363    }
364 <
365 <  void ForceManager::calcShortRangeInteraction() {
364 >  
365 >  void ForceManager::shortRangeInteractions() {
366      Molecule* mol;
367      RigidBody* rb;
368      Bond* bond;
369      Bend* bend;
370      Torsion* torsion;
371 +    Inversion* inversion;
372      SimInfo::MoleculeIterator mi;
373      Molecule::RigidBodyIterator rbIter;
374      Molecule::BondIterator bondIter;;
375      Molecule::BendIterator  bendIter;
376      Molecule::TorsionIterator  torsionIter;
377 <    double bondPotential = 0.0;
378 <    double bendPotential = 0.0;
379 <    double torsionPotential = 0.0;
377 >    Molecule::InversionIterator  inversionIter;
378 >    RealType bondPotential = 0.0;
379 >    RealType bendPotential = 0.0;
380 >    RealType torsionPotential = 0.0;
381 >    RealType inversionPotential = 0.0;
382  
383      //calculate short range interactions    
384 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
384 >    for (mol = info_->beginMolecule(mi); mol != NULL;
385 >         mol = info_->nextMolecule(mi)) {
386  
387        //change the positions of atoms which belong to the rigidbodies
388 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
389 <          rb->updateAtoms();
388 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
389 >           rb = mol->nextRigidBody(rbIter)) {
390 >        rb->updateAtoms();
391        }
392  
393 <      for (bond = mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
393 >      for (bond = mol->beginBond(bondIter); bond != NULL;
394 >           bond = mol->nextBond(bondIter)) {
395          bond->calcForce();
396          bondPotential += bond->getPotential();
397        }
398  
399 <
400 <      for (bend = mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
401 <
402 <          double angle;
403 <            bend->calcForce(angle);
404 <          double currBendPot = bend->getPotential();          
405 <            bendPotential += bend->getPotential();
406 <          std::map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend);
407 <          if (i == bendDataSets.end()) {
408 <            BendDataSet dataSet;
409 <            dataSet.prev.angle = dataSet.curr.angle = angle;
410 <            dataSet.prev.potential = dataSet.curr.potential = currBendPot;
411 <            dataSet.deltaV = 0.0;
412 <            bendDataSets.insert(std::map<Bend*, BendDataSet>::value_type(bend, dataSet));
413 <          }else {
414 <            i->second.prev.angle = i->second.curr.angle;
415 <            i->second.prev.potential = i->second.curr.potential;
416 <            i->second.curr.angle = angle;
417 <            i->second.curr.potential = currBendPot;
418 <            i->second.deltaV =  fabs(i->second.curr.potential -  i->second.prev.potential);
419 <          }
399 >      for (bend = mol->beginBend(bendIter); bend != NULL;
400 >           bend = mol->nextBend(bendIter)) {
401 >        
402 >        RealType angle;
403 >        bend->calcForce(angle);
404 >        RealType currBendPot = bend->getPotential();          
405 >        
406 >        bendPotential += bend->getPotential();
407 >        map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend);
408 >        if (i == bendDataSets.end()) {
409 >          BendDataSet dataSet;
410 >          dataSet.prev.angle = dataSet.curr.angle = angle;
411 >          dataSet.prev.potential = dataSet.curr.potential = currBendPot;
412 >          dataSet.deltaV = 0.0;
413 >          bendDataSets.insert(map<Bend*, BendDataSet>::value_type(bend, dataSet));
414 >        }else {
415 >          i->second.prev.angle = i->second.curr.angle;
416 >          i->second.prev.potential = i->second.curr.potential;
417 >          i->second.curr.angle = angle;
418 >          i->second.curr.potential = currBendPot;
419 >          i->second.deltaV =  fabs(i->second.curr.potential -  
420 >                                   i->second.prev.potential);
421 >        }
422        }
423 <
424 <      for (torsion = mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
425 <        double angle;
426 <          torsion->calcForce(angle);
427 <        double currTorsionPot = torsion->getPotential();
428 <          torsionPotential += torsion->getPotential();
429 <          std::map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion);
430 <          if (i == torsionDataSets.end()) {
431 <            TorsionDataSet dataSet;
432 <            dataSet.prev.angle = dataSet.curr.angle = angle;
433 <            dataSet.prev.potential = dataSet.curr.potential = currTorsionPot;
434 <            dataSet.deltaV = 0.0;
435 <            torsionDataSets.insert(std::map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet));
436 <          }else {
437 <            i->second.prev.angle = i->second.curr.angle;
438 <            i->second.prev.potential = i->second.curr.potential;
439 <            i->second.curr.angle = angle;
440 <            i->second.curr.potential = currTorsionPot;
441 <            i->second.deltaV =  fabs(i->second.curr.potential -  i->second.prev.potential);
442 <          }      
443 <      }
444 <
423 >      
424 >      for (torsion = mol->beginTorsion(torsionIter); torsion != NULL;
425 >           torsion = mol->nextTorsion(torsionIter)) {
426 >        RealType angle;
427 >        torsion->calcForce(angle);
428 >        RealType currTorsionPot = torsion->getPotential();
429 >        torsionPotential += torsion->getPotential();
430 >        map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion);
431 >        if (i == torsionDataSets.end()) {
432 >          TorsionDataSet dataSet;
433 >          dataSet.prev.angle = dataSet.curr.angle = angle;
434 >          dataSet.prev.potential = dataSet.curr.potential = currTorsionPot;
435 >          dataSet.deltaV = 0.0;
436 >          torsionDataSets.insert(map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet));
437 >        }else {
438 >          i->second.prev.angle = i->second.curr.angle;
439 >          i->second.prev.potential = i->second.curr.potential;
440 >          i->second.curr.angle = angle;
441 >          i->second.curr.potential = currTorsionPot;
442 >          i->second.deltaV =  fabs(i->second.curr.potential -  
443 >                                   i->second.prev.potential);
444 >        }      
445 >      }      
446 >      
447 >      for (inversion = mol->beginInversion(inversionIter);
448 >           inversion != NULL;
449 >           inversion = mol->nextInversion(inversionIter)) {
450 >        RealType angle;
451 >        inversion->calcForce(angle);
452 >        RealType currInversionPot = inversion->getPotential();
453 >        inversionPotential += inversion->getPotential();
454 >        map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion);
455 >        if (i == inversionDataSets.end()) {
456 >          InversionDataSet dataSet;
457 >          dataSet.prev.angle = dataSet.curr.angle = angle;
458 >          dataSet.prev.potential = dataSet.curr.potential = currInversionPot;
459 >          dataSet.deltaV = 0.0;
460 >          inversionDataSets.insert(map<Inversion*, InversionDataSet>::value_type(inversion, dataSet));
461 >        }else {
462 >          i->second.prev.angle = i->second.curr.angle;
463 >          i->second.prev.potential = i->second.curr.potential;
464 >          i->second.curr.angle = angle;
465 >          i->second.curr.potential = currInversionPot;
466 >          i->second.deltaV =  fabs(i->second.curr.potential -  
467 >                                   i->second.prev.potential);
468 >        }      
469 >      }      
470      }
471      
472 <    double  shortRangePotential = bondPotential + bendPotential + torsionPotential;    
472 >    RealType  shortRangePotential = bondPotential + bendPotential +
473 >      torsionPotential +  inversionPotential;    
474      Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
475      curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential;
476      curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential;
477      curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential;
478      curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential;
479 <    
479 >    curSnapshot->statData[Stats::INVERSION_POTENTIAL] = inversionPotential;    
480    }
481 +  
482 +  void ForceManager::longRangeInteractions() {
483  
484 <  void ForceManager::calcLongRangeInteraction(bool needPotential, bool needStress) {
485 <    Snapshot* curSnapshot;
486 <    DataStorage* config;
235 <    double* frc;
236 <    double* pos;
237 <    double* trq;
238 <    double* A;
239 <    double* electroFrame;
240 <    double* rc;
241 <    
242 <    //get current snapshot from SimInfo
243 <    curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
484 >    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
485 >    DataStorage* config = &(curSnapshot->atomData);
486 >    DataStorage* cgConfig = &(curSnapshot->cgData);
487  
245    //get array pointers
246    config = &(curSnapshot->atomData);
247    frc = config->getArrayPointer(DataStorage::dslForce);
248    pos = config->getArrayPointer(DataStorage::dslPosition);
249    trq = config->getArrayPointer(DataStorage::dslTorque);
250    A   = config->getArrayPointer(DataStorage::dslAmat);
251    electroFrame = config->getArrayPointer(DataStorage::dslElectroFrame);
252
488      //calculate the center of mass of cutoff group
489 +
490      SimInfo::MoleculeIterator mi;
491      Molecule* mol;
492      Molecule::CutoffGroupIterator ci;
493      CutoffGroup* cg;
258    Vector3d com;
259    std::vector<Vector3d> rcGroup;
494  
495 <    if(info_->getNCutoffGroups() > 0){
496 <
497 <      for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
498 <        for(cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
499 <          cg->getCOM(com);
500 <          rcGroup.push_back(com);
495 >    if(info_->getNCutoffGroups() > 0){      
496 >      for (mol = info_->beginMolecule(mi); mol != NULL;
497 >           mol = info_->nextMolecule(mi)) {
498 >        for(cg = mol->beginCutoffGroup(ci); cg != NULL;
499 >            cg = mol->nextCutoffGroup(ci)) {
500 >          cg->updateCOM();
501          }
502 <      }// end for (mol)
269 <      
270 <      rc = rcGroup[0].getArrayPointer();
502 >      }      
503      } else {
504 <      // center of mass of the group is the same as position of the atom  if cutoff group does not exist
505 <      rc = pos;
504 >      // center of mass of the group is the same as position of the atom  
505 >      // if cutoff group does not exist
506 >      cgConfig->position = config->position;
507      }
508 <  
509 <    //initialize data before passing to fortran
510 <    double longRangePotential[LR_POT_TYPES];
278 <    double lrPot = 0.0;
508 >
509 >    fDecomp_->zeroWorkArrays();
510 >    fDecomp_->distributeData();
511      
512 <    Mat3x3d tau;
513 <    short int passedCalcPot = needPotential;
514 <    short int passedCalcStress = needStress;
515 <    int isError = 0;
512 >    int cg1, cg2, atom1, atom2, topoDist;
513 >    Vector3d d_grp, dag, d;
514 >    RealType rgrpsq, rgrp, r2, r;
515 >    RealType electroMult, vdwMult;
516 >    RealType vij;
517 >    Vector3d fij, fg, f1;
518 >    tuple3<RealType, RealType, RealType> cuts;
519 >    RealType rCutSq;
520 >    bool in_switching_region;
521 >    RealType sw, dswdr, swderiv;
522 >    vector<int> atomListColumn, atomListRow, atomListLocal;
523 >    InteractionData idat;
524 >    SelfData sdat;
525 >    RealType mf;
526 >    RealType lrPot;
527 >    RealType vpair;
528 >    potVec longRangePotential(0.0);
529 >    potVec workPot(0.0);
530  
531 <    for (int i=0; i<LR_POT_TYPES;i++){
532 <      longRangePotential[i]=0.0; //Initialize array
531 >    int loopStart, loopEnd;
532 >
533 >    idat.vdwMult = &vdwMult;
534 >    idat.electroMult = &electroMult;
535 >    idat.pot = &workPot;
536 >    sdat.pot = fDecomp_->getEmbeddingPotential();
537 >    idat.vpair = &vpair;
538 >    idat.f1 = &f1;
539 >    idat.sw = &sw;
540 >    idat.shiftedPot = (cutoffMethod_ == SHIFTED_POTENTIAL) ? true : false;
541 >    idat.shiftedForce = (cutoffMethod_ == SHIFTED_FORCE) ? true : false;
542 >    
543 >    loopEnd = PAIR_LOOP;
544 >    if (info_->requiresPrepair() ) {
545 >      loopStart = PREPAIR_LOOP;
546 >    } else {
547 >      loopStart = PAIR_LOOP;
548      }
549 +  
550 +    for (int iLoop = loopStart; iLoop <= loopEnd; iLoop++) {
551 +    
552 +      if (iLoop == loopStart) {
553 +        bool update_nlist = fDecomp_->checkNeighborList();
554 +        if (update_nlist)
555 +          neighborList = fDecomp_->buildNeighborList();
556 +      }      
557 +        
558 +      for (vector<pair<int, int> >::iterator it = neighborList.begin();
559 +             it != neighborList.end(); ++it) {
560 +                
561 +        cg1 = (*it).first;
562 +        cg2 = (*it).second;
563 +        
564 +        cuts = fDecomp_->getGroupCutoffs(cg1, cg2);
565  
566 <    doForceLoop( pos,
567 <                 rc,
568 <                 A,
292 <                 electroFrame,
293 <                 frc,
294 <                 trq,
295 <                 tau.getArrayPointer(),
296 <                 longRangePotential,
297 <                 &passedCalcPot,
298 <                 &passedCalcStress,
299 <                 &isError );
566 >        d_grp  = fDecomp_->getIntergroupVector(cg1, cg2);
567 >        curSnapshot->wrapVector(d_grp);        
568 >        rgrpsq = d_grp.lengthSquare();
569  
570 <    if( isError ){
571 <      sprintf( painCave.errMsg,
572 <               "Error returned from the fortran force calculation.\n" );
573 <      painCave.isFatal = 1;
574 <      simError();
570 >        rCutSq = cuts.second;
571 >
572 >        if (rgrpsq < rCutSq) {
573 >          idat.rcut = &cuts.first;
574 >          if (iLoop == PAIR_LOOP) {
575 >            vij *= 0.0;
576 >            fij = V3Zero;
577 >          }
578 >          
579 >          in_switching_region = switcher_->getSwitch(rgrpsq, sw, dswdr,
580 >                                                     rgrp);
581 >              
582 >          atomListRow = fDecomp_->getAtomsInGroupRow(cg1);
583 >          atomListColumn = fDecomp_->getAtomsInGroupColumn(cg2);
584 >
585 >          for (vector<int>::iterator ia = atomListRow.begin();
586 >               ia != atomListRow.end(); ++ia) {            
587 >            atom1 = (*ia);
588 >            
589 >            for (vector<int>::iterator jb = atomListColumn.begin();
590 >                 jb != atomListColumn.end(); ++jb) {              
591 >              atom2 = (*jb);
592 >            
593 >              if (!fDecomp_->skipAtomPair(atom1, atom2)) {
594 >                vpair = 0.0;
595 >                workPot = 0.0;
596 >                f1 = V3Zero;
597 >
598 >                fDecomp_->fillInteractionData(idat, atom1, atom2);
599 >                
600 >                topoDist = fDecomp_->getTopologicalDistance(atom1, atom2);
601 >                vdwMult = vdwScale_[topoDist];
602 >                electroMult = electrostaticScale_[topoDist];
603 >
604 >                if (atomListRow.size() == 1 && atomListColumn.size() == 1) {
605 >                  idat.d = &d_grp;
606 >                  idat.r2 = &rgrpsq;
607 >                } else {
608 >                  d = fDecomp_->getInteratomicVector(atom1, atom2);
609 >                  curSnapshot->wrapVector( d );
610 >                  r2 = d.lengthSquare();
611 >                  idat.d = &d;
612 >                  idat.r2 = &r2;
613 >                }
614 >                
615 >                r = sqrt( *(idat.r2) );
616 >                idat.rij = &r;
617 >              
618 >                if (iLoop == PREPAIR_LOOP) {
619 >                  interactionMan_->doPrePair(idat);
620 >                } else {
621 >                  interactionMan_->doPair(idat);
622 >                  fDecomp_->unpackInteractionData(idat, atom1, atom2);
623 >                  vij += vpair;
624 >                  fij += f1;
625 >                  tau -= outProduct( *(idat.d), f1);
626 >                }
627 >              }
628 >            }
629 >          }
630 >
631 >          if (iLoop == PAIR_LOOP) {
632 >            if (in_switching_region) {
633 >              swderiv = vij * dswdr / rgrp;
634 >              fg = swderiv * d_grp;
635 >
636 >              fij += fg;
637 >
638 >              if (atomListRow.size() == 1 && atomListColumn.size() == 1) {
639 >                tau -= outProduct( *(idat.d), fg);
640 >              }
641 >          
642 >              for (vector<int>::iterator ia = atomListRow.begin();
643 >                   ia != atomListRow.end(); ++ia) {            
644 >                atom1 = (*ia);                
645 >                mf = fDecomp_->getMassFactorRow(atom1);
646 >                // fg is the force on atom ia due to cutoff group's
647 >                // presence in switching region
648 >                fg = swderiv * d_grp * mf;
649 >                fDecomp_->addForceToAtomRow(atom1, fg);
650 >
651 >                if (atomListRow.size() > 1) {
652 >                  if (info_->usesAtomicVirial()) {
653 >                    // find the distance between the atom
654 >                    // and the center of the cutoff group:
655 >                    dag = fDecomp_->getAtomToGroupVectorRow(atom1, cg1);
656 >                    tau -= outProduct(dag, fg);
657 >                  }
658 >                }
659 >              }
660 >              for (vector<int>::iterator jb = atomListColumn.begin();
661 >                   jb != atomListColumn.end(); ++jb) {              
662 >                atom2 = (*jb);
663 >                mf = fDecomp_->getMassFactorColumn(atom2);
664 >                // fg is the force on atom jb due to cutoff group's
665 >                // presence in switching region
666 >                fg = -swderiv * d_grp * mf;
667 >                fDecomp_->addForceToAtomColumn(atom2, fg);
668 >
669 >                if (atomListColumn.size() > 1) {
670 >                  if (info_->usesAtomicVirial()) {
671 >                    // find the distance between the atom
672 >                    // and the center of the cutoff group:
673 >                    dag = fDecomp_->getAtomToGroupVectorColumn(atom2, cg2);
674 >                    tau -= outProduct(dag, fg);
675 >                  }
676 >                }
677 >              }
678 >            }
679 >            //if (!SIM_uses_AtomicVirial) {
680 >            //  tau -= outProduct(d_grp, fij);
681 >            //}
682 >          }
683 >        }
684 >      }
685 >
686 >      if (iLoop == PREPAIR_LOOP) {
687 >        if (info_->requiresPrepair()) {            
688 >          fDecomp_->collectIntermediateData();
689 >
690 >          for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) {
691 >            fDecomp_->fillSelfData(sdat, atom1);
692 >            interactionMan_->doPreForce(sdat);
693 >          }
694 >          
695 >          
696 >          fDecomp_->distributeIntermediateData();        
697 >        }
698 >      }
699 >
700      }
701 <    for (int i=0; i<LR_POT_TYPES;i++){
702 <      lrPot += longRangePotential[i]; //Quick hack
701 >    
702 >    fDecomp_->collectData();
703 >    
704 >    if ( info_->requiresSkipCorrection() ) {
705 >      
706 >      for (int atom1 = 0; atom1 < fDecomp_->getNAtomsInRow(); atom1++) {
707 >
708 >        vector<int> skipList = fDecomp_->getSkipsForAtom( atom1 );
709 >        
710 >        for (vector<int>::iterator jb = skipList.begin();
711 >             jb != skipList.end(); ++jb) {        
712 >    
713 >          atom2 = (*jb);
714 >          fDecomp_->fillSkipData(idat, atom1, atom2);
715 >          interactionMan_->doSkipCorrection(idat);
716 >          fDecomp_->unpackSkipData(idat, atom1, atom2);
717 >
718 >        }
719 >      }
720      }
721 +    
722 +    if (info_->requiresSelfCorrection()) {
723  
724 +      for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) {          
725 +        fDecomp_->fillSelfData(sdat, atom1);
726 +        interactionMan_->doSelfCorrection(sdat);
727 +      }
728 +
729 +    }
730 +
731 +    longRangePotential = *(fDecomp_->getEmbeddingPotential()) +
732 +      *(fDecomp_->getPairwisePotential());
733 +
734 +    lrPot = longRangePotential.sum();
735 +
736      //store the tau and long range potential    
737      curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot;
738 <    curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VDW_POT];
739 <    curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_POT];
315 <
316 <    curSnapshot->statData.setTau(tau);
738 >    curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VANDERWAALS_FAMILY];
739 >    curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_FAMILY];
740    }
741  
742 <
742 >  
743    void ForceManager::postCalculation() {
744      SimInfo::MoleculeIterator mi;
745      Molecule* mol;
746      Molecule::RigidBodyIterator rbIter;
747      RigidBody* rb;
748 +    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
749      
750      // collect the atomic forces onto rigid bodies
751 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
752 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
753 <        rb->calcForcesAndTorques();
751 >    
752 >    for (mol = info_->beginMolecule(mi); mol != NULL;
753 >         mol = info_->nextMolecule(mi)) {
754 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
755 >           rb = mol->nextRigidBody(rbIter)) {
756 >        Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial();
757 >        tau += rbTau;
758        }
759      }
760 <
760 >    
761 > #ifdef IS_MPI
762 >    Mat3x3d tmpTau(tau);
763 >    MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(),
764 >                  9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
765 > #endif
766 >    curSnapshot->statData.setTau(tau);
767    }
768  
769 < } //end namespace oopse
769 > } //end namespace OpenMD

Comparing:
trunk/src/brains/ForceManager.cpp (property svn:keywords), Revision 770 by tim, Fri Dec 2 15:38:03 2005 UTC vs.
branches/development/src/brains/ForceManager.cpp (property svn:keywords), Revision 1583 by gezelter, Thu Jun 16 22:00:08 2011 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines