86 |
|
* simulation for suggested cutoff values (e.g. 2.5 * sigma). |
87 |
|
* Use the maximum suggested value that was found. |
88 |
|
* |
89 |
< |
* cutoffMethod : (one of HARD, SWITCHED, SHIFTED_FORCE, SHIFTED_POTENTIAL) |
89 |
> |
* cutoffMethod : (one of HARD, SWITCHED, SHIFTED_FORCE, |
90 |
> |
* or SHIFTED_POTENTIAL) |
91 |
|
* If cutoffMethod was explicitly set, use that choice. |
92 |
|
* If cutoffMethod was not explicitly set, use SHIFTED_FORCE |
93 |
|
* |
295 |
|
void ForceManager::initialize() { |
296 |
|
|
297 |
|
if (!info_->isTopologyDone()) { |
298 |
+ |
|
299 |
|
info_->update(); |
300 |
|
interactionMan_->setSimInfo(info_); |
301 |
|
interactionMan_->initialize(); |
303 |
|
// We want to delay the cutoffs until after the interaction |
304 |
|
// manager has set up the atom-atom interactions so that we can |
305 |
|
// query them for suggested cutoff values |
304 |
– |
|
306 |
|
setupCutoffs(); |
307 |
|
|
308 |
|
info_->prepareTopology(); |
310 |
|
|
311 |
|
ForceFieldOptions& fopts = forceField_->getForceFieldOptions(); |
312 |
|
|
313 |
< |
// Force fields can set options on how to scale van der Waals and electrostatic |
314 |
< |
// interactions for atoms connected via bonds, bends and torsions |
315 |
< |
// in this case the topological distance between atoms is: |
313 |
> |
// Force fields can set options on how to scale van der Waals and |
314 |
> |
// electrostatic interactions for atoms connected via bonds, bends |
315 |
> |
// and torsions in this case the topological distance between |
316 |
> |
// atoms is: |
317 |
|
// 0 = topologically unconnected |
318 |
|
// 1 = bonded together |
319 |
|
// 2 = connected via a bend |
365 |
|
|
366 |
|
for (mol = info_->beginMolecule(mi); mol != NULL; |
367 |
|
mol = info_->nextMolecule(mi)) { |
368 |
< |
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
368 |
> |
for(atom = mol->beginAtom(ai); atom != NULL; |
369 |
> |
atom = mol->nextAtom(ai)) { |
370 |
|
atom->zeroForcesAndTorques(); |
371 |
|
} |
372 |
< |
|
372 |
> |
|
373 |
|
//change the positions of atoms which belong to the rigidbodies |
374 |
|
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
375 |
|
rb = mol->nextRigidBody(rbIter)) { |
376 |
|
rb->zeroForcesAndTorques(); |
377 |
|
} |
378 |
< |
|
378 |
> |
|
379 |
|
if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){ |
380 |
|
for(cg = mol->beginCutoffGroup(ci); cg != NULL; |
381 |
|
cg = mol->nextCutoffGroup(ci)) { |
384 |
|
} |
385 |
|
} |
386 |
|
} |
387 |
< |
|
387 |
> |
|
388 |
|
// Zero out the stress tensor |
389 |
|
tau *= 0.0; |
390 |
|
|
438 |
|
dataSet.prev.angle = dataSet.curr.angle = angle; |
439 |
|
dataSet.prev.potential = dataSet.curr.potential = currBendPot; |
440 |
|
dataSet.deltaV = 0.0; |
441 |
< |
bendDataSets.insert(map<Bend*, BendDataSet>::value_type(bend, dataSet)); |
441 |
> |
bendDataSets.insert(map<Bend*, BendDataSet>::value_type(bend, |
442 |
> |
dataSet)); |
443 |
|
}else { |
444 |
|
i->second.prev.angle = i->second.curr.angle; |
445 |
|
i->second.prev.potential = i->second.curr.potential; |
526 |
|
mol = info_->nextMolecule(mi)) { |
527 |
|
for(cg = mol->beginCutoffGroup(ci); cg != NULL; |
528 |
|
cg = mol->nextCutoffGroup(ci)) { |
529 |
+ |
cerr << "branch1\n"; |
530 |
+ |
cerr << "globind = " << cg->getGlobalIndex() << "\n"; |
531 |
|
cg->updateCOM(); |
532 |
|
} |
533 |
|
} |
534 |
|
} else { |
535 |
|
// center of mass of the group is the same as position of the atom |
536 |
|
// if cutoff group does not exist |
537 |
+ |
cerr << "branch2\n"; |
538 |
|
cgConfig->position = config->position; |
539 |
|
} |
540 |
|
|
621 |
|
for (vector<int>::iterator jb = atomListColumn.begin(); |
622 |
|
jb != atomListColumn.end(); ++jb) { |
623 |
|
atom2 = (*jb); |
624 |
< |
|
624 |
> |
|
625 |
|
if (!fDecomp_->skipAtomPair(atom1, atom2)) { |
626 |
|
vpair = 0.0; |
627 |
|
workPot = 0.0; |
636 |
|
if (atomListRow.size() == 1 && atomListColumn.size() == 1) { |
637 |
|
idat.d = &d_grp; |
638 |
|
idat.r2 = &rgrpsq; |
639 |
+ |
cerr << "dgrp = " << d_grp << "\n"; |
640 |
|
} else { |
641 |
|
d = fDecomp_->getInteratomicVector(atom1, atom2); |
642 |
|
curSnapshot->wrapVector( d ); |
643 |
|
r2 = d.lengthSquare(); |
644 |
+ |
cerr << "datm = " << d<< "\n"; |
645 |
|
idat.d = &d; |
646 |
|
idat.r2 = &r2; |
647 |
|
} |
648 |
|
|
649 |
+ |
cerr << "idat.d = " << *(idat.d) << "\n"; |
650 |
|
r = sqrt( *(idat.r2) ); |
651 |
|
idat.rij = &r; |
652 |
|
|
655 |
|
} else { |
656 |
|
interactionMan_->doPair(idat); |
657 |
|
fDecomp_->unpackInteractionData(idat, atom1, atom2); |
658 |
+ |
|
659 |
+ |
cerr << "d = " << *(idat.d) << "\tv=" << vpair << "\tf=" << f1 << "\n"; |
660 |
|
vij += vpair; |
661 |
|
fij += f1; |
662 |
|
tau -= outProduct( *(idat.d), f1); |
720 |
|
} |
721 |
|
|
722 |
|
if (iLoop == PREPAIR_LOOP) { |
723 |
< |
if (info_->requiresPrepair()) { |
723 |
> |
if (info_->requiresPrepair()) { |
724 |
> |
|
725 |
|
fDecomp_->collectIntermediateData(); |
726 |
|
|
727 |
|
for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) { |
728 |
|
fDecomp_->fillSelfData(sdat, atom1); |
729 |
|
interactionMan_->doPreForce(sdat); |
730 |
|
} |
731 |
< |
|
732 |
< |
|
733 |
< |
fDecomp_->distributeIntermediateData(); |
731 |
> |
|
732 |
> |
fDecomp_->distributeIntermediateData(); |
733 |
> |
|
734 |
|
} |
735 |
|
} |
736 |
|
|