6 |
|
* redistribute this software in source and binary code form, provided |
7 |
|
* that the following conditions are met: |
8 |
|
* |
9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
10 |
< |
* publication of scientific results based in part on use of the |
11 |
< |
* program. An acceptable form of acknowledgement is citation of |
12 |
< |
* the article in which the program was described (Matthew |
13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
< |
* |
18 |
< |
* 2. Redistributions of source code must retain the above copyright |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
* |
12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
* documentation and/or other materials provided with the |
15 |
|
* distribution. |
28 |
|
* arising out of the use of or inability to use software, even if the |
29 |
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
+ |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
|
*/ |
41 |
|
|
42 |
|
/** |
47 |
|
* @version 1.0 |
48 |
|
*/ |
49 |
|
|
50 |
+ |
|
51 |
|
#include "brains/ForceManager.hpp" |
52 |
|
#include "primitives/Molecule.hpp" |
53 |
< |
#include "UseTheForce/doForces_interface.h" |
53 |
< |
#define __C |
54 |
< |
#include "UseTheForce/DarkSide/fInteractionMap.h" |
53 |
> |
#define __OPENMD_C |
54 |
|
#include "utils/simError.h" |
55 |
+ |
#include "primitives/Bond.hpp" |
56 |
|
#include "primitives/Bend.hpp" |
57 |
< |
#include "primitives/Bend.hpp" |
58 |
< |
namespace oopse { |
57 |
> |
#include "primitives/Torsion.hpp" |
58 |
> |
#include "primitives/Inversion.hpp" |
59 |
> |
#include "nonbonded/NonBondedInteraction.hpp" |
60 |
> |
#include "parallel/ForceMatrixDecomposition.hpp" |
61 |
|
|
62 |
< |
/* |
63 |
< |
struct BendOrderStruct { |
64 |
< |
Bend* bend; |
63 |
< |
BendDataSet dataSet; |
64 |
< |
}; |
65 |
< |
struct TorsionOrderStruct { |
66 |
< |
Torsion* torsion; |
67 |
< |
TorsionDataSet dataSet; |
68 |
< |
}; |
62 |
> |
#include <cstdio> |
63 |
> |
#include <iostream> |
64 |
> |
#include <iomanip> |
65 |
|
|
66 |
< |
bool BendSortFunctor(const BendOrderStruct& b1, const BendOrderStruct& b2) { |
67 |
< |
return b1.dataSet.deltaV < b2.dataSet.deltaV; |
66 |
> |
using namespace std; |
67 |
> |
namespace OpenMD { |
68 |
> |
|
69 |
> |
ForceManager::ForceManager(SimInfo * info) : info_(info) { |
70 |
> |
forceField_ = info_->getForceField(); |
71 |
> |
interactionMan_ = new InteractionManager(); |
72 |
> |
fDecomp_ = new ForceMatrixDecomposition(info_, interactionMan_); |
73 |
|
} |
74 |
|
|
75 |
< |
bool TorsionSortFunctor(const TorsionOrderStruct& t1, const TorsionOrderStruct& t2) { |
76 |
< |
return t1.dataSet.deltaV < t2.dataSet.deltaV; |
77 |
< |
} |
78 |
< |
*/ |
79 |
< |
void ForceManager::calcForces(bool needPotential, bool needStress) { |
75 |
> |
/** |
76 |
> |
* setupCutoffs |
77 |
> |
* |
78 |
> |
* Sets the values of cutoffRadius, switchingRadius, cutoffMethod, |
79 |
> |
* and cutoffPolicy |
80 |
> |
* |
81 |
> |
* cutoffRadius : realType |
82 |
> |
* If the cutoffRadius was explicitly set, use that value. |
83 |
> |
* If the cutoffRadius was not explicitly set: |
84 |
> |
* Are there electrostatic atoms? Use 12.0 Angstroms. |
85 |
> |
* No electrostatic atoms? Poll the atom types present in the |
86 |
> |
* simulation for suggested cutoff values (e.g. 2.5 * sigma). |
87 |
> |
* Use the maximum suggested value that was found. |
88 |
> |
* |
89 |
> |
* cutoffMethod : (one of HARD, SWITCHED, SHIFTED_FORCE, |
90 |
> |
* or SHIFTED_POTENTIAL) |
91 |
> |
* If cutoffMethod was explicitly set, use that choice. |
92 |
> |
* If cutoffMethod was not explicitly set, use SHIFTED_FORCE |
93 |
> |
* |
94 |
> |
* cutoffPolicy : (one of MIX, MAX, TRADITIONAL) |
95 |
> |
* If cutoffPolicy was explicitly set, use that choice. |
96 |
> |
* If cutoffPolicy was not explicitly set, use TRADITIONAL |
97 |
> |
* |
98 |
> |
* switchingRadius : realType |
99 |
> |
* If the cutoffMethod was set to SWITCHED: |
100 |
> |
* If the switchingRadius was explicitly set, use that value |
101 |
> |
* (but do a sanity check first). |
102 |
> |
* If the switchingRadius was not explicitly set: use 0.85 * |
103 |
> |
* cutoffRadius_ |
104 |
> |
* If the cutoffMethod was not set to SWITCHED: |
105 |
> |
* Set switchingRadius equal to cutoffRadius for safety. |
106 |
> |
*/ |
107 |
> |
void ForceManager::setupCutoffs() { |
108 |
> |
|
109 |
> |
Globals* simParams_ = info_->getSimParams(); |
110 |
> |
ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions(); |
111 |
> |
|
112 |
> |
if (simParams_->haveCutoffRadius()) { |
113 |
> |
rCut_ = simParams_->getCutoffRadius(); |
114 |
> |
} else { |
115 |
> |
if (info_->usesElectrostaticAtoms()) { |
116 |
> |
sprintf(painCave.errMsg, |
117 |
> |
"ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n" |
118 |
> |
"\tOpenMD will use a default value of 12.0 angstroms" |
119 |
> |
"\tfor the cutoffRadius.\n"); |
120 |
> |
painCave.isFatal = 0; |
121 |
> |
painCave.severity = OPENMD_INFO; |
122 |
> |
simError(); |
123 |
> |
rCut_ = 12.0; |
124 |
> |
} else { |
125 |
> |
RealType thisCut; |
126 |
> |
set<AtomType*>::iterator i; |
127 |
> |
set<AtomType*> atomTypes; |
128 |
> |
atomTypes = info_->getSimulatedAtomTypes(); |
129 |
> |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
130 |
> |
thisCut = interactionMan_->getSuggestedCutoffRadius((*i)); |
131 |
> |
rCut_ = max(thisCut, rCut_); |
132 |
> |
} |
133 |
> |
sprintf(painCave.errMsg, |
134 |
> |
"ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n" |
135 |
> |
"\tOpenMD will use %lf angstroms.\n", |
136 |
> |
rCut_); |
137 |
> |
painCave.isFatal = 0; |
138 |
> |
painCave.severity = OPENMD_INFO; |
139 |
> |
simError(); |
140 |
> |
} |
141 |
> |
} |
142 |
|
|
143 |
< |
if (!info_->isFortranInitialized()) { |
144 |
< |
info_->update(); |
143 |
> |
fDecomp_->setUserCutoff(rCut_); |
144 |
> |
interactionMan_->setCutoffRadius(rCut_); |
145 |
> |
|
146 |
> |
map<string, CutoffMethod> stringToCutoffMethod; |
147 |
> |
stringToCutoffMethod["HARD"] = HARD; |
148 |
> |
stringToCutoffMethod["SWITCHED"] = SWITCHED; |
149 |
> |
stringToCutoffMethod["SHIFTED_POTENTIAL"] = SHIFTED_POTENTIAL; |
150 |
> |
stringToCutoffMethod["SHIFTED_FORCE"] = SHIFTED_FORCE; |
151 |
> |
|
152 |
> |
if (simParams_->haveCutoffMethod()) { |
153 |
> |
string cutMeth = toUpperCopy(simParams_->getCutoffMethod()); |
154 |
> |
map<string, CutoffMethod>::iterator i; |
155 |
> |
i = stringToCutoffMethod.find(cutMeth); |
156 |
> |
if (i == stringToCutoffMethod.end()) { |
157 |
> |
sprintf(painCave.errMsg, |
158 |
> |
"ForceManager::setupCutoffs: Could not find chosen cutoffMethod %s\n" |
159 |
> |
"\tShould be one of: " |
160 |
> |
"HARD, SWITCHED, SHIFTED_POTENTIAL, or SHIFTED_FORCE\n", |
161 |
> |
cutMeth.c_str()); |
162 |
> |
painCave.isFatal = 1; |
163 |
> |
painCave.severity = OPENMD_ERROR; |
164 |
> |
simError(); |
165 |
> |
} else { |
166 |
> |
cutoffMethod_ = i->second; |
167 |
> |
} |
168 |
> |
} else { |
169 |
> |
sprintf(painCave.errMsg, |
170 |
> |
"ForceManager::setupCutoffs: No value was set for the cutoffMethod.\n" |
171 |
> |
"\tOpenMD will use SHIFTED_FORCE.\n"); |
172 |
> |
painCave.isFatal = 0; |
173 |
> |
painCave.severity = OPENMD_INFO; |
174 |
> |
simError(); |
175 |
> |
cutoffMethod_ = SHIFTED_FORCE; |
176 |
|
} |
177 |
|
|
178 |
< |
preCalculation(); |
179 |
< |
|
180 |
< |
calcShortRangeInteraction(); |
178 |
> |
map<string, CutoffPolicy> stringToCutoffPolicy; |
179 |
> |
stringToCutoffPolicy["MIX"] = MIX; |
180 |
> |
stringToCutoffPolicy["MAX"] = MAX; |
181 |
> |
stringToCutoffPolicy["TRADITIONAL"] = TRADITIONAL; |
182 |
|
|
183 |
< |
calcLongRangeInteraction(needPotential, needStress); |
183 |
> |
std::string cutPolicy; |
184 |
> |
if (forceFieldOptions_.haveCutoffPolicy()){ |
185 |
> |
cutPolicy = forceFieldOptions_.getCutoffPolicy(); |
186 |
> |
}else if (simParams_->haveCutoffPolicy()) { |
187 |
> |
cutPolicy = simParams_->getCutoffPolicy(); |
188 |
> |
} |
189 |
|
|
190 |
< |
postCalculation(); |
190 |
> |
if (!cutPolicy.empty()){ |
191 |
> |
toUpper(cutPolicy); |
192 |
> |
map<string, CutoffPolicy>::iterator i; |
193 |
> |
i = stringToCutoffPolicy.find(cutPolicy); |
194 |
|
|
195 |
< |
/* |
196 |
< |
std::vector<BendOrderStruct> bendOrderStruct; |
197 |
< |
for(std::map<Bend*, BendDataSet>::iterator i = bendDataSets.begin(); i != bendDataSets.end(); ++i) { |
198 |
< |
BendOrderStruct tmp; |
199 |
< |
tmp.bend= const_cast<Bend*>(i->first); |
200 |
< |
tmp.dataSet = i->second; |
201 |
< |
bendOrderStruct.push_back(tmp); |
195 |
> |
if (i == stringToCutoffPolicy.end()) { |
196 |
> |
sprintf(painCave.errMsg, |
197 |
> |
"ForceManager::setupCutoffs: Could not find chosen cutoffPolicy %s\n" |
198 |
> |
"\tShould be one of: " |
199 |
> |
"MIX, MAX, or TRADITIONAL\n", |
200 |
> |
cutPolicy.c_str()); |
201 |
> |
painCave.isFatal = 1; |
202 |
> |
painCave.severity = OPENMD_ERROR; |
203 |
> |
simError(); |
204 |
> |
} else { |
205 |
> |
cutoffPolicy_ = i->second; |
206 |
> |
} |
207 |
> |
} else { |
208 |
> |
sprintf(painCave.errMsg, |
209 |
> |
"ForceManager::setupCutoffs: No value was set for the cutoffPolicy.\n" |
210 |
> |
"\tOpenMD will use TRADITIONAL.\n"); |
211 |
> |
painCave.isFatal = 0; |
212 |
> |
painCave.severity = OPENMD_INFO; |
213 |
> |
simError(); |
214 |
> |
cutoffPolicy_ = TRADITIONAL; |
215 |
|
} |
216 |
|
|
217 |
< |
std::vector<TorsionOrderStruct> torsionOrderStruct; |
218 |
< |
for(std::map<Torsion*, TorsionDataSet>::iterator j = torsionDataSets.begin(); j != torsionDataSets.end(); ++j) { |
219 |
< |
TorsionOrderStruct tmp; |
220 |
< |
tmp.torsion = const_cast<Torsion*>(j->first); |
221 |
< |
tmp.dataSet = j->second; |
222 |
< |
torsionOrderStruct.push_back(tmp); |
217 |
> |
fDecomp_->setCutoffPolicy(cutoffPolicy_); |
218 |
> |
|
219 |
> |
// create the switching function object: |
220 |
> |
|
221 |
> |
switcher_ = new SwitchingFunction(); |
222 |
> |
|
223 |
> |
if (cutoffMethod_ == SWITCHED) { |
224 |
> |
if (simParams_->haveSwitchingRadius()) { |
225 |
> |
rSwitch_ = simParams_->getSwitchingRadius(); |
226 |
> |
if (rSwitch_ > rCut_) { |
227 |
> |
sprintf(painCave.errMsg, |
228 |
> |
"ForceManager::setupCutoffs: switchingRadius (%f) is larger " |
229 |
> |
"than the cutoffRadius(%f)\n", rSwitch_, rCut_); |
230 |
> |
painCave.isFatal = 1; |
231 |
> |
painCave.severity = OPENMD_ERROR; |
232 |
> |
simError(); |
233 |
> |
} |
234 |
> |
} else { |
235 |
> |
rSwitch_ = 0.85 * rCut_; |
236 |
> |
sprintf(painCave.errMsg, |
237 |
> |
"ForceManager::setupCutoffs: No value was set for the switchingRadius.\n" |
238 |
> |
"\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n" |
239 |
> |
"\tswitchingRadius = %f. for this simulation\n", rSwitch_); |
240 |
> |
painCave.isFatal = 0; |
241 |
> |
painCave.severity = OPENMD_WARNING; |
242 |
> |
simError(); |
243 |
> |
} |
244 |
> |
} else { |
245 |
> |
if (simParams_->haveSwitchingRadius()) { |
246 |
> |
map<string, CutoffMethod>::const_iterator it; |
247 |
> |
string theMeth; |
248 |
> |
for (it = stringToCutoffMethod.begin(); |
249 |
> |
it != stringToCutoffMethod.end(); ++it) { |
250 |
> |
if (it->second == cutoffMethod_) { |
251 |
> |
theMeth = it->first; |
252 |
> |
break; |
253 |
> |
} |
254 |
> |
} |
255 |
> |
sprintf(painCave.errMsg, |
256 |
> |
"ForceManager::setupCutoffs: the cutoffMethod (%s)\n" |
257 |
> |
"\tis not set to SWITCHED, so switchingRadius value\n" |
258 |
> |
"\twill be ignored for this simulation\n", theMeth.c_str()); |
259 |
> |
painCave.isFatal = 0; |
260 |
> |
painCave.severity = OPENMD_WARNING; |
261 |
> |
simError(); |
262 |
> |
} |
263 |
> |
|
264 |
> |
rSwitch_ = rCut_; |
265 |
|
} |
266 |
|
|
267 |
< |
std::sort(bendOrderStruct.begin(), bendOrderStruct.end(), std::ptr_fun(BendSortFunctor)); |
268 |
< |
std::sort(torsionOrderStruct.begin(), torsionOrderStruct.end(), std::ptr_fun(TorsionSortFunctor)); |
269 |
< |
for (std::vector<BendOrderStruct>::iterator k = bendOrderStruct.begin(); k != bendOrderStruct.end(); ++k) { |
270 |
< |
Bend* bend = k->bend; |
271 |
< |
std::cout << "Bend: atom1=" <<bend->getAtomA()->getGlobalIndex() << ",atom2 = "<< bend->getAtomB()->getGlobalIndex() << ",atom3="<<bend->getAtomC()->getGlobalIndex() << " "; |
272 |
< |
std::cout << "deltaV=" << k->dataSet.deltaV << ",p_theta=" << k->dataSet.prev.angle <<",p_pot=" << k->dataSet.prev.potential<< ",c_theta=" << k->dataSet.curr.angle << ", c_pot = " << k->dataSet.curr.potential <<std::endl; |
267 |
> |
// Default to cubic switching function. |
268 |
> |
sft_ = cubic; |
269 |
> |
if (simParams_->haveSwitchingFunctionType()) { |
270 |
> |
string funcType = simParams_->getSwitchingFunctionType(); |
271 |
> |
toUpper(funcType); |
272 |
> |
if (funcType == "CUBIC") { |
273 |
> |
sft_ = cubic; |
274 |
> |
} else { |
275 |
> |
if (funcType == "FIFTH_ORDER_POLYNOMIAL") { |
276 |
> |
sft_ = fifth_order_poly; |
277 |
> |
} else { |
278 |
> |
// throw error |
279 |
> |
sprintf( painCave.errMsg, |
280 |
> |
"ForceManager::setupSwitching : Unknown switchingFunctionType. (Input file specified %s .)\n" |
281 |
> |
"\tswitchingFunctionType must be one of: " |
282 |
> |
"\"cubic\" or \"fifth_order_polynomial\".", |
283 |
> |
funcType.c_str() ); |
284 |
> |
painCave.isFatal = 1; |
285 |
> |
painCave.severity = OPENMD_ERROR; |
286 |
> |
simError(); |
287 |
> |
} |
288 |
> |
} |
289 |
|
} |
290 |
< |
for (std::vector<TorsionOrderStruct>::iterator l = torsionOrderStruct.begin(); l != torsionOrderStruct.end(); ++l) { |
291 |
< |
Torsion* torsion = l->torsion; |
292 |
< |
std::cout << "Torsion: atom1=" <<torsion->getAtomA()->getGlobalIndex() << ",atom2 = "<< torsion->getAtomB()->getGlobalIndex() << ",atom3="<<torsion->getAtomC()->getGlobalIndex() << ",atom4="<<torsion->getAtomD()->getGlobalIndex()<< " "; |
293 |
< |
std::cout << "deltaV=" << l->dataSet.deltaV << ",p_theta=" << l->dataSet.prev.angle <<",p_pot=" << l->dataSet.prev.potential<< ",c_theta=" << l->dataSet.curr.angle << ", c_pot = " << l->dataSet.curr.potential <<std::endl; |
290 |
> |
switcher_->setSwitchType(sft_); |
291 |
> |
switcher_->setSwitch(rSwitch_, rCut_); |
292 |
> |
interactionMan_->setSwitchingRadius(rSwitch_); |
293 |
> |
} |
294 |
> |
|
295 |
> |
void ForceManager::initialize() { |
296 |
> |
|
297 |
> |
if (!info_->isTopologyDone()) { |
298 |
> |
|
299 |
> |
info_->update(); |
300 |
> |
interactionMan_->setSimInfo(info_); |
301 |
> |
interactionMan_->initialize(); |
302 |
> |
|
303 |
> |
// We want to delay the cutoffs until after the interaction |
304 |
> |
// manager has set up the atom-atom interactions so that we can |
305 |
> |
// query them for suggested cutoff values |
306 |
> |
setupCutoffs(); |
307 |
> |
|
308 |
> |
info_->prepareTopology(); |
309 |
|
} |
310 |
< |
*/ |
310 |
> |
|
311 |
> |
ForceFieldOptions& fopts = forceField_->getForceFieldOptions(); |
312 |
> |
|
313 |
> |
// Force fields can set options on how to scale van der Waals and |
314 |
> |
// electrostatic interactions for atoms connected via bonds, bends |
315 |
> |
// and torsions in this case the topological distance between |
316 |
> |
// atoms is: |
317 |
> |
// 0 = topologically unconnected |
318 |
> |
// 1 = bonded together |
319 |
> |
// 2 = connected via a bend |
320 |
> |
// 3 = connected via a torsion |
321 |
> |
|
322 |
> |
vdwScale_.reserve(4); |
323 |
> |
fill(vdwScale_.begin(), vdwScale_.end(), 0.0); |
324 |
> |
|
325 |
> |
electrostaticScale_.reserve(4); |
326 |
> |
fill(electrostaticScale_.begin(), electrostaticScale_.end(), 0.0); |
327 |
> |
|
328 |
> |
vdwScale_[0] = 1.0; |
329 |
> |
vdwScale_[1] = fopts.getvdw12scale(); |
330 |
> |
vdwScale_[2] = fopts.getvdw13scale(); |
331 |
> |
vdwScale_[3] = fopts.getvdw14scale(); |
332 |
> |
|
333 |
> |
electrostaticScale_[0] = 1.0; |
334 |
> |
electrostaticScale_[1] = fopts.getelectrostatic12scale(); |
335 |
> |
electrostaticScale_[2] = fopts.getelectrostatic13scale(); |
336 |
> |
electrostaticScale_[3] = fopts.getelectrostatic14scale(); |
337 |
> |
|
338 |
> |
fDecomp_->distributeInitialData(); |
339 |
> |
|
340 |
> |
initialized_ = true; |
341 |
> |
|
342 |
|
} |
343 |
|
|
344 |
+ |
void ForceManager::calcForces() { |
345 |
+ |
|
346 |
+ |
if (!initialized_) initialize(); |
347 |
+ |
|
348 |
+ |
preCalculation(); |
349 |
+ |
shortRangeInteractions(); |
350 |
+ |
longRangeInteractions(); |
351 |
+ |
postCalculation(); |
352 |
+ |
} |
353 |
+ |
|
354 |
|
void ForceManager::preCalculation() { |
355 |
|
SimInfo::MoleculeIterator mi; |
356 |
|
Molecule* mol; |
358 |
|
Atom* atom; |
359 |
|
Molecule::RigidBodyIterator rbIter; |
360 |
|
RigidBody* rb; |
361 |
+ |
Molecule::CutoffGroupIterator ci; |
362 |
+ |
CutoffGroup* cg; |
363 |
|
|
364 |
|
// forces are zeroed here, before any are accumulated. |
365 |
< |
// NOTE: do not rezero the forces in Fortran. |
366 |
< |
for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) { |
367 |
< |
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
365 |
> |
|
366 |
> |
for (mol = info_->beginMolecule(mi); mol != NULL; |
367 |
> |
mol = info_->nextMolecule(mi)) { |
368 |
> |
for(atom = mol->beginAtom(ai); atom != NULL; |
369 |
> |
atom = mol->nextAtom(ai)) { |
370 |
|
atom->zeroForcesAndTorques(); |
371 |
+ |
cerr << "apos = " << atom->getPos() << "\n"; |
372 |
|
} |
373 |
< |
|
373 |
> |
|
374 |
|
//change the positions of atoms which belong to the rigidbodies |
375 |
< |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
375 |
> |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
376 |
> |
rb = mol->nextRigidBody(rbIter)) { |
377 |
|
rb->zeroForcesAndTorques(); |
378 |
|
} |
379 |
+ |
|
380 |
+ |
if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){ |
381 |
+ |
for(cg = mol->beginCutoffGroup(ci); cg != NULL; |
382 |
+ |
cg = mol->nextCutoffGroup(ci)) { |
383 |
+ |
//calculate the center of mass of cutoff group |
384 |
+ |
cg->updateCOM(); |
385 |
+ |
cerr << "cgpos = " << cg->getPos() << "\n"; |
386 |
+ |
} |
387 |
+ |
} |
388 |
|
} |
389 |
|
|
390 |
+ |
// Zero out the stress tensor |
391 |
+ |
tau *= 0.0; |
392 |
+ |
|
393 |
|
} |
394 |
< |
|
395 |
< |
void ForceManager::calcShortRangeInteraction() { |
394 |
> |
|
395 |
> |
void ForceManager::shortRangeInteractions() { |
396 |
|
Molecule* mol; |
397 |
|
RigidBody* rb; |
398 |
|
Bond* bond; |
399 |
|
Bend* bend; |
400 |
|
Torsion* torsion; |
401 |
+ |
Inversion* inversion; |
402 |
|
SimInfo::MoleculeIterator mi; |
403 |
|
Molecule::RigidBodyIterator rbIter; |
404 |
|
Molecule::BondIterator bondIter;; |
405 |
|
Molecule::BendIterator bendIter; |
406 |
|
Molecule::TorsionIterator torsionIter; |
407 |
+ |
Molecule::InversionIterator inversionIter; |
408 |
|
RealType bondPotential = 0.0; |
409 |
|
RealType bendPotential = 0.0; |
410 |
|
RealType torsionPotential = 0.0; |
411 |
+ |
RealType inversionPotential = 0.0; |
412 |
|
|
413 |
|
//calculate short range interactions |
414 |
< |
for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) { |
414 |
> |
for (mol = info_->beginMolecule(mi); mol != NULL; |
415 |
> |
mol = info_->nextMolecule(mi)) { |
416 |
|
|
417 |
|
//change the positions of atoms which belong to the rigidbodies |
418 |
< |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
419 |
< |
rb->updateAtoms(); |
418 |
> |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
419 |
> |
rb = mol->nextRigidBody(rbIter)) { |
420 |
> |
rb->updateAtoms(); |
421 |
|
} |
422 |
|
|
423 |
< |
for (bond = mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) { |
423 |
> |
for (bond = mol->beginBond(bondIter); bond != NULL; |
424 |
> |
bond = mol->nextBond(bondIter)) { |
425 |
|
bond->calcForce(); |
426 |
|
bondPotential += bond->getPotential(); |
427 |
|
} |
428 |
|
|
429 |
< |
|
430 |
< |
for (bend = mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) { |
431 |
< |
|
432 |
< |
RealType angle; |
433 |
< |
bend->calcForce(angle); |
434 |
< |
RealType currBendPot = bend->getPotential(); |
435 |
< |
bendPotential += bend->getPotential(); |
436 |
< |
std::map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend); |
437 |
< |
if (i == bendDataSets.end()) { |
438 |
< |
BendDataSet dataSet; |
439 |
< |
dataSet.prev.angle = dataSet.curr.angle = angle; |
440 |
< |
dataSet.prev.potential = dataSet.curr.potential = currBendPot; |
441 |
< |
dataSet.deltaV = 0.0; |
442 |
< |
bendDataSets.insert(std::map<Bend*, BendDataSet>::value_type(bend, dataSet)); |
443 |
< |
}else { |
444 |
< |
i->second.prev.angle = i->second.curr.angle; |
445 |
< |
i->second.prev.potential = i->second.curr.potential; |
446 |
< |
i->second.curr.angle = angle; |
447 |
< |
i->second.curr.potential = currBendPot; |
448 |
< |
i->second.deltaV = fabs(i->second.curr.potential - i->second.prev.potential); |
449 |
< |
} |
450 |
< |
} |
451 |
< |
|
452 |
< |
for (torsion = mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) { |
199 |
< |
RealType angle; |
200 |
< |
torsion->calcForce(angle); |
201 |
< |
RealType currTorsionPot = torsion->getPotential(); |
202 |
< |
torsionPotential += torsion->getPotential(); |
203 |
< |
std::map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion); |
204 |
< |
if (i == torsionDataSets.end()) { |
205 |
< |
TorsionDataSet dataSet; |
206 |
< |
dataSet.prev.angle = dataSet.curr.angle = angle; |
207 |
< |
dataSet.prev.potential = dataSet.curr.potential = currTorsionPot; |
208 |
< |
dataSet.deltaV = 0.0; |
209 |
< |
torsionDataSets.insert(std::map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet)); |
210 |
< |
}else { |
211 |
< |
i->second.prev.angle = i->second.curr.angle; |
212 |
< |
i->second.prev.potential = i->second.curr.potential; |
213 |
< |
i->second.curr.angle = angle; |
214 |
< |
i->second.curr.potential = currTorsionPot; |
215 |
< |
i->second.deltaV = fabs(i->second.curr.potential - i->second.prev.potential); |
216 |
< |
} |
429 |
> |
for (bend = mol->beginBend(bendIter); bend != NULL; |
430 |
> |
bend = mol->nextBend(bendIter)) { |
431 |
> |
|
432 |
> |
RealType angle; |
433 |
> |
bend->calcForce(angle); |
434 |
> |
RealType currBendPot = bend->getPotential(); |
435 |
> |
|
436 |
> |
bendPotential += bend->getPotential(); |
437 |
> |
map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend); |
438 |
> |
if (i == bendDataSets.end()) { |
439 |
> |
BendDataSet dataSet; |
440 |
> |
dataSet.prev.angle = dataSet.curr.angle = angle; |
441 |
> |
dataSet.prev.potential = dataSet.curr.potential = currBendPot; |
442 |
> |
dataSet.deltaV = 0.0; |
443 |
> |
bendDataSets.insert(map<Bend*, BendDataSet>::value_type(bend, |
444 |
> |
dataSet)); |
445 |
> |
}else { |
446 |
> |
i->second.prev.angle = i->second.curr.angle; |
447 |
> |
i->second.prev.potential = i->second.curr.potential; |
448 |
> |
i->second.curr.angle = angle; |
449 |
> |
i->second.curr.potential = currBendPot; |
450 |
> |
i->second.deltaV = fabs(i->second.curr.potential - |
451 |
> |
i->second.prev.potential); |
452 |
> |
} |
453 |
|
} |
454 |
< |
|
454 |
> |
|
455 |
> |
for (torsion = mol->beginTorsion(torsionIter); torsion != NULL; |
456 |
> |
torsion = mol->nextTorsion(torsionIter)) { |
457 |
> |
RealType angle; |
458 |
> |
torsion->calcForce(angle); |
459 |
> |
RealType currTorsionPot = torsion->getPotential(); |
460 |
> |
torsionPotential += torsion->getPotential(); |
461 |
> |
map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion); |
462 |
> |
if (i == torsionDataSets.end()) { |
463 |
> |
TorsionDataSet dataSet; |
464 |
> |
dataSet.prev.angle = dataSet.curr.angle = angle; |
465 |
> |
dataSet.prev.potential = dataSet.curr.potential = currTorsionPot; |
466 |
> |
dataSet.deltaV = 0.0; |
467 |
> |
torsionDataSets.insert(map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet)); |
468 |
> |
}else { |
469 |
> |
i->second.prev.angle = i->second.curr.angle; |
470 |
> |
i->second.prev.potential = i->second.curr.potential; |
471 |
> |
i->second.curr.angle = angle; |
472 |
> |
i->second.curr.potential = currTorsionPot; |
473 |
> |
i->second.deltaV = fabs(i->second.curr.potential - |
474 |
> |
i->second.prev.potential); |
475 |
> |
} |
476 |
> |
} |
477 |
> |
|
478 |
> |
for (inversion = mol->beginInversion(inversionIter); |
479 |
> |
inversion != NULL; |
480 |
> |
inversion = mol->nextInversion(inversionIter)) { |
481 |
> |
RealType angle; |
482 |
> |
inversion->calcForce(angle); |
483 |
> |
RealType currInversionPot = inversion->getPotential(); |
484 |
> |
inversionPotential += inversion->getPotential(); |
485 |
> |
map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion); |
486 |
> |
if (i == inversionDataSets.end()) { |
487 |
> |
InversionDataSet dataSet; |
488 |
> |
dataSet.prev.angle = dataSet.curr.angle = angle; |
489 |
> |
dataSet.prev.potential = dataSet.curr.potential = currInversionPot; |
490 |
> |
dataSet.deltaV = 0.0; |
491 |
> |
inversionDataSets.insert(map<Inversion*, InversionDataSet>::value_type(inversion, dataSet)); |
492 |
> |
}else { |
493 |
> |
i->second.prev.angle = i->second.curr.angle; |
494 |
> |
i->second.prev.potential = i->second.curr.potential; |
495 |
> |
i->second.curr.angle = angle; |
496 |
> |
i->second.curr.potential = currInversionPot; |
497 |
> |
i->second.deltaV = fabs(i->second.curr.potential - |
498 |
> |
i->second.prev.potential); |
499 |
> |
} |
500 |
> |
} |
501 |
|
} |
502 |
|
|
503 |
< |
RealType shortRangePotential = bondPotential + bendPotential + torsionPotential; |
503 |
> |
RealType shortRangePotential = bondPotential + bendPotential + |
504 |
> |
torsionPotential + inversionPotential; |
505 |
|
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
506 |
|
curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential; |
507 |
|
curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential; |
508 |
|
curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential; |
509 |
|
curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential; |
510 |
< |
|
510 |
> |
curSnapshot->statData[Stats::INVERSION_POTENTIAL] = inversionPotential; |
511 |
|
} |
512 |
+ |
|
513 |
+ |
void ForceManager::longRangeInteractions() { |
514 |
|
|
515 |
< |
void ForceManager::calcLongRangeInteraction(bool needPotential, bool needStress) { |
516 |
< |
Snapshot* curSnapshot; |
517 |
< |
DataStorage* config; |
233 |
< |
RealType* frc; |
234 |
< |
RealType* pos; |
235 |
< |
RealType* trq; |
236 |
< |
RealType* A; |
237 |
< |
RealType* electroFrame; |
238 |
< |
RealType* rc; |
239 |
< |
|
240 |
< |
//get current snapshot from SimInfo |
241 |
< |
curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
515 |
> |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
516 |
> |
DataStorage* config = &(curSnapshot->atomData); |
517 |
> |
DataStorage* cgConfig = &(curSnapshot->cgData); |
518 |
|
|
243 |
– |
//get array pointers |
244 |
– |
config = &(curSnapshot->atomData); |
245 |
– |
frc = config->getArrayPointer(DataStorage::dslForce); |
246 |
– |
pos = config->getArrayPointer(DataStorage::dslPosition); |
247 |
– |
trq = config->getArrayPointer(DataStorage::dslTorque); |
248 |
– |
A = config->getArrayPointer(DataStorage::dslAmat); |
249 |
– |
electroFrame = config->getArrayPointer(DataStorage::dslElectroFrame); |
250 |
– |
|
519 |
|
//calculate the center of mass of cutoff group |
520 |
+ |
|
521 |
|
SimInfo::MoleculeIterator mi; |
522 |
|
Molecule* mol; |
523 |
|
Molecule::CutoffGroupIterator ci; |
524 |
|
CutoffGroup* cg; |
256 |
– |
Vector3d com; |
257 |
– |
std::vector<Vector3d> rcGroup; |
525 |
|
|
526 |
< |
if(info_->getNCutoffGroups() > 0){ |
527 |
< |
|
528 |
< |
for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) { |
529 |
< |
for(cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { |
530 |
< |
cg->getCOM(com); |
531 |
< |
rcGroup.push_back(com); |
526 |
> |
if(info_->getNCutoffGroups() > 0){ |
527 |
> |
for (mol = info_->beginMolecule(mi); mol != NULL; |
528 |
> |
mol = info_->nextMolecule(mi)) { |
529 |
> |
for(cg = mol->beginCutoffGroup(ci); cg != NULL; |
530 |
> |
cg = mol->nextCutoffGroup(ci)) { |
531 |
> |
cerr << "branch1\n"; |
532 |
> |
cerr << "globind = " << cg->getGlobalIndex() << "\n"; |
533 |
> |
cg->updateCOM(); |
534 |
|
} |
535 |
< |
}// end for (mol) |
267 |
< |
|
268 |
< |
rc = rcGroup[0].getArrayPointer(); |
535 |
> |
} |
536 |
|
} else { |
537 |
< |
// center of mass of the group is the same as position of the atom if cutoff group does not exist |
538 |
< |
rc = pos; |
537 |
> |
// center of mass of the group is the same as position of the atom |
538 |
> |
// if cutoff group does not exist |
539 |
> |
cerr << "branch2\n"; |
540 |
> |
cgConfig->position = config->position; |
541 |
|
} |
542 |
< |
|
543 |
< |
//initialize data before passing to fortran |
544 |
< |
RealType longRangePotential[LR_POT_TYPES]; |
276 |
< |
RealType lrPot = 0.0; |
542 |
> |
|
543 |
> |
fDecomp_->zeroWorkArrays(); |
544 |
> |
fDecomp_->distributeData(); |
545 |
|
|
546 |
< |
Mat3x3d tau; |
547 |
< |
short int passedCalcPot = needPotential; |
548 |
< |
short int passedCalcStress = needStress; |
549 |
< |
int isError = 0; |
546 |
> |
int cg1, cg2, atom1, atom2, topoDist; |
547 |
> |
Vector3d d_grp, dag, d; |
548 |
> |
RealType rgrpsq, rgrp, r2, r; |
549 |
> |
RealType electroMult, vdwMult; |
550 |
> |
RealType vij; |
551 |
> |
Vector3d fij, fg, f1; |
552 |
> |
tuple3<RealType, RealType, RealType> cuts; |
553 |
> |
RealType rCutSq; |
554 |
> |
bool in_switching_region; |
555 |
> |
RealType sw, dswdr, swderiv; |
556 |
> |
vector<int> atomListColumn, atomListRow, atomListLocal; |
557 |
> |
InteractionData idat; |
558 |
> |
SelfData sdat; |
559 |
> |
RealType mf; |
560 |
> |
RealType lrPot; |
561 |
> |
RealType vpair; |
562 |
> |
potVec longRangePotential(0.0); |
563 |
> |
potVec workPot(0.0); |
564 |
|
|
565 |
< |
for (int i=0; i<LR_POT_TYPES;i++){ |
566 |
< |
longRangePotential[i]=0.0; //Initialize array |
565 |
> |
int loopStart, loopEnd; |
566 |
> |
|
567 |
> |
idat.vdwMult = &vdwMult; |
568 |
> |
idat.electroMult = &electroMult; |
569 |
> |
idat.pot = &workPot; |
570 |
> |
sdat.pot = fDecomp_->getEmbeddingPotential(); |
571 |
> |
idat.vpair = &vpair; |
572 |
> |
idat.f1 = &f1; |
573 |
> |
idat.sw = &sw; |
574 |
> |
idat.shiftedPot = (cutoffMethod_ == SHIFTED_POTENTIAL) ? true : false; |
575 |
> |
idat.shiftedForce = (cutoffMethod_ == SHIFTED_FORCE) ? true : false; |
576 |
> |
|
577 |
> |
loopEnd = PAIR_LOOP; |
578 |
> |
if (info_->requiresPrepair() ) { |
579 |
> |
loopStart = PREPAIR_LOOP; |
580 |
> |
} else { |
581 |
> |
loopStart = PAIR_LOOP; |
582 |
|
} |
583 |
+ |
|
584 |
+ |
for (int iLoop = loopStart; iLoop <= loopEnd; iLoop++) { |
585 |
+ |
|
586 |
+ |
if (iLoop == loopStart) { |
587 |
+ |
bool update_nlist = fDecomp_->checkNeighborList(); |
588 |
+ |
if (update_nlist) |
589 |
+ |
neighborList = fDecomp_->buildNeighborList(); |
590 |
+ |
} |
591 |
+ |
|
592 |
+ |
for (vector<pair<int, int> >::iterator it = neighborList.begin(); |
593 |
+ |
it != neighborList.end(); ++it) { |
594 |
+ |
|
595 |
+ |
cg1 = (*it).first; |
596 |
+ |
cg2 = (*it).second; |
597 |
+ |
|
598 |
+ |
cuts = fDecomp_->getGroupCutoffs(cg1, cg2); |
599 |
|
|
600 |
< |
doForceLoop( pos, |
601 |
< |
rc, |
602 |
< |
A, |
290 |
< |
electroFrame, |
291 |
< |
frc, |
292 |
< |
trq, |
293 |
< |
tau.getArrayPointer(), |
294 |
< |
longRangePotential, |
295 |
< |
&passedCalcPot, |
296 |
< |
&passedCalcStress, |
297 |
< |
&isError ); |
600 |
> |
d_grp = fDecomp_->getIntergroupVector(cg1, cg2); |
601 |
> |
curSnapshot->wrapVector(d_grp); |
602 |
> |
rgrpsq = d_grp.lengthSquare(); |
603 |
|
|
604 |
< |
if( isError ){ |
605 |
< |
sprintf( painCave.errMsg, |
606 |
< |
"Error returned from the fortran force calculation.\n" ); |
607 |
< |
painCave.isFatal = 1; |
608 |
< |
simError(); |
604 |
> |
rCutSq = cuts.second; |
605 |
> |
|
606 |
> |
if (rgrpsq < rCutSq) { |
607 |
> |
idat.rcut = &cuts.first; |
608 |
> |
if (iLoop == PAIR_LOOP) { |
609 |
> |
vij = 0.0; |
610 |
> |
fij = V3Zero; |
611 |
> |
} |
612 |
> |
|
613 |
> |
in_switching_region = switcher_->getSwitch(rgrpsq, sw, dswdr, |
614 |
> |
rgrp); |
615 |
> |
|
616 |
> |
atomListRow = fDecomp_->getAtomsInGroupRow(cg1); |
617 |
> |
atomListColumn = fDecomp_->getAtomsInGroupColumn(cg2); |
618 |
> |
|
619 |
> |
for (vector<int>::iterator ia = atomListRow.begin(); |
620 |
> |
ia != atomListRow.end(); ++ia) { |
621 |
> |
atom1 = (*ia); |
622 |
> |
|
623 |
> |
for (vector<int>::iterator jb = atomListColumn.begin(); |
624 |
> |
jb != atomListColumn.end(); ++jb) { |
625 |
> |
atom2 = (*jb); |
626 |
> |
|
627 |
> |
if (!fDecomp_->skipAtomPair(atom1, atom2)) { |
628 |
> |
vpair = 0.0; |
629 |
> |
workPot = 0.0; |
630 |
> |
f1 = V3Zero; |
631 |
> |
|
632 |
> |
fDecomp_->fillInteractionData(idat, atom1, atom2); |
633 |
> |
|
634 |
> |
topoDist = fDecomp_->getTopologicalDistance(atom1, atom2); |
635 |
> |
vdwMult = vdwScale_[topoDist]; |
636 |
> |
electroMult = electrostaticScale_[topoDist]; |
637 |
> |
|
638 |
> |
if (atomListRow.size() == 1 && atomListColumn.size() == 1) { |
639 |
> |
idat.d = &d_grp; |
640 |
> |
idat.r2 = &rgrpsq; |
641 |
> |
cerr << "dgrp = " << d_grp << "\n"; |
642 |
> |
} else { |
643 |
> |
d = fDecomp_->getInteratomicVector(atom1, atom2); |
644 |
> |
curSnapshot->wrapVector( d ); |
645 |
> |
r2 = d.lengthSquare(); |
646 |
> |
cerr << "datm = " << d<< "\n"; |
647 |
> |
idat.d = &d; |
648 |
> |
idat.r2 = &r2; |
649 |
> |
} |
650 |
> |
|
651 |
> |
cerr << "idat.d = " << *(idat.d) << "\n"; |
652 |
> |
r = sqrt( *(idat.r2) ); |
653 |
> |
idat.rij = &r; |
654 |
> |
|
655 |
> |
if (iLoop == PREPAIR_LOOP) { |
656 |
> |
interactionMan_->doPrePair(idat); |
657 |
> |
} else { |
658 |
> |
interactionMan_->doPair(idat); |
659 |
> |
fDecomp_->unpackInteractionData(idat, atom1, atom2); |
660 |
> |
|
661 |
> |
cerr << "d = " << *(idat.d) << "\tv=" << vpair << "\tf=" << f1 << "\n"; |
662 |
> |
vij += vpair; |
663 |
> |
fij += f1; |
664 |
> |
tau -= outProduct( *(idat.d), f1); |
665 |
> |
} |
666 |
> |
} |
667 |
> |
} |
668 |
> |
} |
669 |
> |
|
670 |
> |
if (iLoop == PAIR_LOOP) { |
671 |
> |
if (in_switching_region) { |
672 |
> |
swderiv = vij * dswdr / rgrp; |
673 |
> |
fg = swderiv * d_grp; |
674 |
> |
fij += fg; |
675 |
> |
|
676 |
> |
if (atomListRow.size() == 1 && atomListColumn.size() == 1) { |
677 |
> |
tau -= outProduct( *(idat.d), fg); |
678 |
> |
} |
679 |
> |
|
680 |
> |
for (vector<int>::iterator ia = atomListRow.begin(); |
681 |
> |
ia != atomListRow.end(); ++ia) { |
682 |
> |
atom1 = (*ia); |
683 |
> |
mf = fDecomp_->getMassFactorRow(atom1); |
684 |
> |
// fg is the force on atom ia due to cutoff group's |
685 |
> |
// presence in switching region |
686 |
> |
fg = swderiv * d_grp * mf; |
687 |
> |
fDecomp_->addForceToAtomRow(atom1, fg); |
688 |
> |
|
689 |
> |
if (atomListRow.size() > 1) { |
690 |
> |
if (info_->usesAtomicVirial()) { |
691 |
> |
// find the distance between the atom |
692 |
> |
// and the center of the cutoff group: |
693 |
> |
dag = fDecomp_->getAtomToGroupVectorRow(atom1, cg1); |
694 |
> |
tau -= outProduct(dag, fg); |
695 |
> |
} |
696 |
> |
} |
697 |
> |
} |
698 |
> |
for (vector<int>::iterator jb = atomListColumn.begin(); |
699 |
> |
jb != atomListColumn.end(); ++jb) { |
700 |
> |
atom2 = (*jb); |
701 |
> |
mf = fDecomp_->getMassFactorColumn(atom2); |
702 |
> |
// fg is the force on atom jb due to cutoff group's |
703 |
> |
// presence in switching region |
704 |
> |
fg = -swderiv * d_grp * mf; |
705 |
> |
fDecomp_->addForceToAtomColumn(atom2, fg); |
706 |
> |
|
707 |
> |
if (atomListColumn.size() > 1) { |
708 |
> |
if (info_->usesAtomicVirial()) { |
709 |
> |
// find the distance between the atom |
710 |
> |
// and the center of the cutoff group: |
711 |
> |
dag = fDecomp_->getAtomToGroupVectorColumn(atom2, cg2); |
712 |
> |
tau -= outProduct(dag, fg); |
713 |
> |
} |
714 |
> |
} |
715 |
> |
} |
716 |
> |
} |
717 |
> |
//if (!SIM_uses_AtomicVirial) { |
718 |
> |
// tau -= outProduct(d_grp, fij); |
719 |
> |
//} |
720 |
> |
} |
721 |
> |
} |
722 |
> |
} |
723 |
> |
|
724 |
> |
if (iLoop == PREPAIR_LOOP) { |
725 |
> |
if (info_->requiresPrepair()) { |
726 |
> |
|
727 |
> |
fDecomp_->collectIntermediateData(); |
728 |
> |
|
729 |
> |
for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) { |
730 |
> |
fDecomp_->fillSelfData(sdat, atom1); |
731 |
> |
interactionMan_->doPreForce(sdat); |
732 |
> |
} |
733 |
> |
|
734 |
> |
fDecomp_->distributeIntermediateData(); |
735 |
> |
|
736 |
> |
} |
737 |
> |
} |
738 |
> |
|
739 |
|
} |
740 |
< |
for (int i=0; i<LR_POT_TYPES;i++){ |
741 |
< |
lrPot += longRangePotential[i]; //Quick hack |
740 |
> |
|
741 |
> |
fDecomp_->collectData(); |
742 |
> |
|
743 |
> |
if (info_->requiresSelfCorrection()) { |
744 |
> |
|
745 |
> |
for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) { |
746 |
> |
fDecomp_->fillSelfData(sdat, atom1); |
747 |
> |
interactionMan_->doSelfCorrection(sdat); |
748 |
> |
} |
749 |
> |
|
750 |
|
} |
751 |
|
|
752 |
+ |
longRangePotential = *(fDecomp_->getEmbeddingPotential()) + |
753 |
+ |
*(fDecomp_->getPairwisePotential()); |
754 |
+ |
|
755 |
+ |
lrPot = longRangePotential.sum(); |
756 |
+ |
|
757 |
|
//store the tau and long range potential |
758 |
|
curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot; |
759 |
< |
curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VDW_POT]; |
760 |
< |
curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_POT]; |
313 |
< |
|
314 |
< |
curSnapshot->statData.setTau(tau); |
759 |
> |
curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VANDERWAALS_FAMILY]; |
760 |
> |
curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_FAMILY]; |
761 |
|
} |
762 |
|
|
763 |
< |
|
763 |
> |
|
764 |
|
void ForceManager::postCalculation() { |
765 |
|
SimInfo::MoleculeIterator mi; |
766 |
|
Molecule* mol; |
767 |
|
Molecule::RigidBodyIterator rbIter; |
768 |
|
RigidBody* rb; |
769 |
+ |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
770 |
|
|
771 |
|
// collect the atomic forces onto rigid bodies |
772 |
< |
for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) { |
773 |
< |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
774 |
< |
rb->calcForcesAndTorques(); |
772 |
> |
|
773 |
> |
for (mol = info_->beginMolecule(mi); mol != NULL; |
774 |
> |
mol = info_->nextMolecule(mi)) { |
775 |
> |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
776 |
> |
rb = mol->nextRigidBody(rbIter)) { |
777 |
> |
Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial(); |
778 |
> |
tau += rbTau; |
779 |
|
} |
780 |
|
} |
781 |
< |
|
781 |
> |
|
782 |
> |
#ifdef IS_MPI |
783 |
> |
Mat3x3d tmpTau(tau); |
784 |
> |
MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(), |
785 |
> |
9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
786 |
> |
#endif |
787 |
> |
curSnapshot->statData.setTau(tau); |
788 |
|
} |
789 |
|
|
790 |
< |
} //end namespace oopse |
790 |
> |
} //end namespace OpenMD |