ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/ForceManager.cpp
(Generate patch)

Comparing:
trunk/src/brains/ForceManager.cpp (file contents), Revision 963 by tim, Wed May 17 21:51:42 2006 UTC vs.
branches/development/src/brains/ForceManager.cpp (file contents), Revision 1616 by gezelter, Tue Aug 30 15:45:35 2011 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42   /**
# Line 47 | Line 47
47   * @version 1.0
48   */
49  
50 +
51   #include "brains/ForceManager.hpp"
52   #include "primitives/Molecule.hpp"
53 < #include "UseTheForce/doForces_interface.h"
53 < #define __C
54 < #include "UseTheForce/DarkSide/fInteractionMap.h"
53 > #define __OPENMD_C
54   #include "utils/simError.h"
55 + #include "primitives/Bond.hpp"
56   #include "primitives/Bend.hpp"
57 < #include "primitives/Bend.hpp"
58 < namespace oopse {
57 > #include "primitives/Torsion.hpp"
58 > #include "primitives/Inversion.hpp"
59 > #include "nonbonded/NonBondedInteraction.hpp"
60 > #include "parallel/ForceMatrixDecomposition.hpp"
61  
62 < /*
63 <  struct BendOrderStruct {
64 <    Bend* bend;
63 <    BendDataSet dataSet;
64 <  };
65 <  struct TorsionOrderStruct {
66 <    Torsion* torsion;
67 <    TorsionDataSet dataSet;
68 <  };
62 > #include <cstdio>
63 > #include <iostream>
64 > #include <iomanip>
65  
66 <  bool  BendSortFunctor(const BendOrderStruct& b1, const BendOrderStruct& b2) {
67 <    return b1.dataSet.deltaV < b2.dataSet.deltaV;
66 > using namespace std;
67 > namespace OpenMD {
68 >  
69 >  ForceManager::ForceManager(SimInfo * info) : info_(info) {
70 >    forceField_ = info_->getForceField();
71 >    interactionMan_ = new InteractionManager();
72 >    fDecomp_ = new ForceMatrixDecomposition(info_, interactionMan_);
73    }
74  
75 <  bool  TorsionSortFunctor(const TorsionOrderStruct& t1, const TorsionOrderStruct& t2) {
76 <    return t1.dataSet.deltaV < t2.dataSet.deltaV;
77 <  }
78 <  */
79 <  void ForceManager::calcForces(bool needPotential, bool needStress) {
80 <
81 <    if (!info_->isFortranInitialized()) {
82 <      info_->update();
75 >  /**
76 >   * setupCutoffs
77 >   *
78 >   * Sets the values of cutoffRadius, switchingRadius, cutoffMethod,
79 >   * and cutoffPolicy
80 >   *
81 >   * cutoffRadius : realType
82 >   *  If the cutoffRadius was explicitly set, use that value.
83 >   *  If the cutoffRadius was not explicitly set:
84 >   *      Are there electrostatic atoms?  Use 12.0 Angstroms.
85 >   *      No electrostatic atoms?  Poll the atom types present in the
86 >   *      simulation for suggested cutoff values (e.g. 2.5 * sigma).
87 >   *      Use the maximum suggested value that was found.
88 >   *
89 >   * cutoffMethod : (one of HARD, SWITCHED, SHIFTED_FORCE,
90 >   *                        or SHIFTED_POTENTIAL)
91 >   *      If cutoffMethod was explicitly set, use that choice.
92 >   *      If cutoffMethod was not explicitly set, use SHIFTED_FORCE
93 >   *
94 >   * cutoffPolicy : (one of MIX, MAX, TRADITIONAL)
95 >   *      If cutoffPolicy was explicitly set, use that choice.
96 >   *      If cutoffPolicy was not explicitly set, use TRADITIONAL
97 >   *
98 >   * switchingRadius : realType
99 >   *  If the cutoffMethod was set to SWITCHED:
100 >   *      If the switchingRadius was explicitly set, use that value
101 >   *          (but do a sanity check first).
102 >   *      If the switchingRadius was not explicitly set: use 0.85 *
103 >   *      cutoffRadius_
104 >   *  If the cutoffMethod was not set to SWITCHED:
105 >   *      Set switchingRadius equal to cutoffRadius for safety.
106 >   */
107 >  void ForceManager::setupCutoffs() {
108 >    
109 >    Globals* simParams_ = info_->getSimParams();
110 >    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
111 >    int mdFileVersion;
112 >    
113 >    if (simParams_->haveMDfileVersion())
114 >      mdFileVersion = simParams_->getMDfileVersion();
115 >    else
116 >      mdFileVersion = 0;
117 >  
118 >    if (simParams_->haveCutoffRadius()) {
119 >      rCut_ = simParams_->getCutoffRadius();
120 >    } else {      
121 >      if (info_->usesElectrostaticAtoms()) {
122 >        sprintf(painCave.errMsg,
123 >                "ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n"
124 >                "\tOpenMD will use a default value of 12.0 angstroms"
125 >                "\tfor the cutoffRadius.\n");
126 >        painCave.isFatal = 0;
127 >        painCave.severity = OPENMD_INFO;
128 >        simError();
129 >        rCut_ = 12.0;
130 >      } else {
131 >        RealType thisCut;
132 >        set<AtomType*>::iterator i;
133 >        set<AtomType*> atomTypes;
134 >        atomTypes = info_->getSimulatedAtomTypes();        
135 >        for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
136 >          thisCut = interactionMan_->getSuggestedCutoffRadius((*i));
137 >          rCut_ = max(thisCut, rCut_);
138 >        }
139 >        sprintf(painCave.errMsg,
140 >                "ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n"
141 >                "\tOpenMD will use %lf angstroms.\n",
142 >                rCut_);
143 >        painCave.isFatal = 0;
144 >        painCave.severity = OPENMD_INFO;
145 >        simError();
146 >      }
147      }
148  
149 <    preCalculation();
150 <    
86 <    calcShortRangeInteraction();
149 >    fDecomp_->setUserCutoff(rCut_);
150 >    interactionMan_->setCutoffRadius(rCut_);
151  
152 <    calcLongRangeInteraction(needPotential, needStress);
152 >    map<string, CutoffMethod> stringToCutoffMethod;
153 >    stringToCutoffMethod["HARD"] = HARD;
154 >    stringToCutoffMethod["SWITCHED"] = SWITCHED;
155 >    stringToCutoffMethod["SHIFTED_POTENTIAL"] = SHIFTED_POTENTIAL;    
156 >    stringToCutoffMethod["SHIFTED_FORCE"] = SHIFTED_FORCE;
157 >  
158 >    if (simParams_->haveCutoffMethod()) {
159 >      string cutMeth = toUpperCopy(simParams_->getCutoffMethod());
160 >      map<string, CutoffMethod>::iterator i;
161 >      i = stringToCutoffMethod.find(cutMeth);
162 >      if (i == stringToCutoffMethod.end()) {
163 >        sprintf(painCave.errMsg,
164 >                "ForceManager::setupCutoffs: Could not find chosen cutoffMethod %s\n"
165 >                "\tShould be one of: "
166 >                "HARD, SWITCHED, SHIFTED_POTENTIAL, or SHIFTED_FORCE\n",
167 >                cutMeth.c_str());
168 >        painCave.isFatal = 1;
169 >        painCave.severity = OPENMD_ERROR;
170 >        simError();
171 >      } else {
172 >        cutoffMethod_ = i->second;
173 >      }
174 >    } else {
175 >      if (mdFileVersion > 1) {
176 >        sprintf(painCave.errMsg,
177 >                "ForceManager::setupCutoffs: No value was set for the cutoffMethod.\n"
178 >                "\tOpenMD will use SHIFTED_FORCE.\n");
179 >        painCave.isFatal = 0;
180 >        painCave.severity = OPENMD_INFO;
181 >        simError();
182 >        cutoffMethod_ = SHIFTED_FORCE;        
183 >      } else {
184 >        // handle the case where the old file version was in play
185 >        // (there should be no cutoffMethod, so we have to deduce it
186 >        // from other data).        
187  
188 <    postCalculation();
188 >        sprintf(painCave.errMsg,
189 >                "ForceManager::setupCutoffs : DEPRECATED FILE FORMAT!\n"
190 >                "\tOpenMD found a file which does not set a cutoffMethod.\n"
191 >                "\tOpenMD will attempt to deduce a cutoffMethod using the\n"
192 >                "\tbehavior of the older (version 1) code.  To remove this\n"
193 >                "\twarning, add an explicit cutoffMethod and change the top\n"
194 >                "\tof the file so that it begins with <OpenMD version=2>\n");
195 >        painCave.isFatal = 0;
196 >        painCave.severity = OPENMD_WARNING;
197 >        simError();            
198 >                
199 >        // The old file version tethered the shifting behavior to the
200 >        // electrostaticSummationMethod keyword.
201 >        
202 >        if (simParams_->haveElectrostaticSummationMethod()) {
203 >          std::string myMethod = simParams_->getElectrostaticSummationMethod();
204 >          toUpper(myMethod);
205 >        
206 >          if (myMethod == "SHIFTED_POTENTIAL") {
207 >            cutoffMethod_ = SHIFTED_POTENTIAL;
208 >          } else if (myMethod == "SHIFTED_FORCE") {
209 >            cutoffMethod_ = SHIFTED_FORCE;
210 >          }
211 >        
212 >          if (simParams_->haveSwitchingRadius())
213 >            rSwitch_ = simParams_->getSwitchingRadius();
214  
215 < /*
216 <    std::vector<BendOrderStruct> bendOrderStruct;
217 <    for(std::map<Bend*, BendDataSet>::iterator i = bendDataSets.begin(); i != bendDataSets.end(); ++i) {
218 <        BendOrderStruct tmp;
219 <        tmp.bend= const_cast<Bend*>(i->first);
220 <        tmp.dataSet = i->second;
221 <        bendOrderStruct.push_back(tmp);
215 >          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
216 >            if (simParams_->haveSwitchingRadius()){
217 >              sprintf(painCave.errMsg,
218 >                      "ForceManager::setupCutoffs : DEPRECATED ERROR MESSAGE\n"
219 >                      "\tA value was set for the switchingRadius\n"
220 >                      "\teven though the electrostaticSummationMethod was\n"
221 >                      "\tset to %s\n", myMethod.c_str());
222 >              painCave.severity = OPENMD_WARNING;
223 >              painCave.isFatal = 1;
224 >              simError();            
225 >            }
226 >          }
227 >          if (abs(rCut_ - rSwitch_) < 0.0001) {
228 >            if (cutoffMethod_ == SHIFTED_FORCE) {              
229 >              sprintf(painCave.errMsg,
230 >                      "ForceManager::setupCutoffs : DEPRECATED BEHAVIOR\n"
231 >                      "\tcutoffRadius and switchingRadius are set to the\n"
232 >                      "\tsame value.  OpenMD will use shifted force\n"
233 >                      "\tpotentials instead of switching functions.\n");
234 >              painCave.isFatal = 0;
235 >              painCave.severity = OPENMD_WARNING;
236 >              simError();            
237 >            } else {
238 >              cutoffMethod_ = SHIFTED_POTENTIAL;
239 >              sprintf(painCave.errMsg,
240 >                      "ForceManager::setupCutoffs : DEPRECATED BEHAVIOR\n"
241 >                      "\tcutoffRadius and switchingRadius are set to the\n"
242 >                      "\tsame value.  OpenMD will use shifted potentials\n"
243 >                      "\tinstead of switching functions.\n");
244 >              painCave.isFatal = 0;
245 >              painCave.severity = OPENMD_WARNING;
246 >              simError();            
247 >            }
248 >          }
249 >        }
250 >      }
251      }
252  
253 <    std::vector<TorsionOrderStruct> torsionOrderStruct;
254 <    for(std::map<Torsion*, TorsionDataSet>::iterator j = torsionDataSets.begin(); j != torsionDataSets.end(); ++j) {
255 <        TorsionOrderStruct tmp;
256 <        tmp.torsion = const_cast<Torsion*>(j->first);
257 <        tmp.dataSet = j->second;
258 <        torsionOrderStruct.push_back(tmp);
253 >    map<string, CutoffPolicy> stringToCutoffPolicy;
254 >    stringToCutoffPolicy["MIX"] = MIX;
255 >    stringToCutoffPolicy["MAX"] = MAX;
256 >    stringToCutoffPolicy["TRADITIONAL"] = TRADITIONAL;    
257 >
258 >    std::string cutPolicy;
259 >    if (forceFieldOptions_.haveCutoffPolicy()){
260 >      cutPolicy = forceFieldOptions_.getCutoffPolicy();
261 >    }else if (simParams_->haveCutoffPolicy()) {
262 >      cutPolicy = simParams_->getCutoffPolicy();
263      }
264 +
265 +    if (!cutPolicy.empty()){
266 +      toUpper(cutPolicy);
267 +      map<string, CutoffPolicy>::iterator i;
268 +      i = stringToCutoffPolicy.find(cutPolicy);
269 +
270 +      if (i == stringToCutoffPolicy.end()) {
271 +        sprintf(painCave.errMsg,
272 +                "ForceManager::setupCutoffs: Could not find chosen cutoffPolicy %s\n"
273 +                "\tShould be one of: "
274 +                "MIX, MAX, or TRADITIONAL\n",
275 +                cutPolicy.c_str());
276 +        painCave.isFatal = 1;
277 +        painCave.severity = OPENMD_ERROR;
278 +        simError();
279 +      } else {
280 +        cutoffPolicy_ = i->second;
281 +      }
282 +    } else {
283 +      sprintf(painCave.errMsg,
284 +              "ForceManager::setupCutoffs: No value was set for the cutoffPolicy.\n"
285 +              "\tOpenMD will use TRADITIONAL.\n");
286 +      painCave.isFatal = 0;
287 +      painCave.severity = OPENMD_INFO;
288 +      simError();
289 +      cutoffPolicy_ = TRADITIONAL;        
290 +    }
291 +
292 +    fDecomp_->setCutoffPolicy(cutoffPolicy_);
293 +        
294 +    // create the switching function object:
295 +
296 +    switcher_ = new SwitchingFunction();
297 +  
298 +    if (cutoffMethod_ == SWITCHED) {
299 +      if (simParams_->haveSwitchingRadius()) {
300 +        rSwitch_ = simParams_->getSwitchingRadius();
301 +        if (rSwitch_ > rCut_) {        
302 +          sprintf(painCave.errMsg,
303 +                  "ForceManager::setupCutoffs: switchingRadius (%f) is larger "
304 +                  "than the cutoffRadius(%f)\n", rSwitch_, rCut_);
305 +          painCave.isFatal = 1;
306 +          painCave.severity = OPENMD_ERROR;
307 +          simError();
308 +        }
309 +      } else {      
310 +        rSwitch_ = 0.85 * rCut_;
311 +        sprintf(painCave.errMsg,
312 +                "ForceManager::setupCutoffs: No value was set for the switchingRadius.\n"
313 +                "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n"
314 +                "\tswitchingRadius = %f. for this simulation\n", rSwitch_);
315 +        painCave.isFatal = 0;
316 +        painCave.severity = OPENMD_WARNING;
317 +        simError();
318 +      }
319 +    } else {
320 +      if (simParams_->haveSwitchingRadius()) {
321 +        map<string, CutoffMethod>::const_iterator it;
322 +        string theMeth;
323 +        for (it = stringToCutoffMethod.begin();
324 +             it != stringToCutoffMethod.end(); ++it) {
325 +          if (it->second == cutoffMethod_) {
326 +            theMeth = it->first;
327 +            break;
328 +          }
329 +        }
330 +        sprintf(painCave.errMsg,
331 +                "ForceManager::setupCutoffs: the cutoffMethod (%s)\n"
332 +                "\tis not set to SWITCHED, so switchingRadius value\n"
333 +                "\twill be ignored for this simulation\n", theMeth.c_str());
334 +        painCave.isFatal = 0;
335 +        painCave.severity = OPENMD_WARNING;
336 +        simError();
337 +      }
338 +
339 +      rSwitch_ = rCut_;
340 +    }
341      
342 <    std::sort(bendOrderStruct.begin(), bendOrderStruct.end(), std::ptr_fun(BendSortFunctor));
343 <    std::sort(torsionOrderStruct.begin(), torsionOrderStruct.end(), std::ptr_fun(TorsionSortFunctor));
344 <    for (std::vector<BendOrderStruct>::iterator k = bendOrderStruct.begin(); k != bendOrderStruct.end(); ++k) {
345 <        Bend* bend = k->bend;
346 <        std::cout << "Bend: atom1=" <<bend->getAtomA()->getGlobalIndex() << ",atom2 = "<< bend->getAtomB()->getGlobalIndex() << ",atom3="<<bend->getAtomC()->getGlobalIndex() << " ";
347 <        std::cout << "deltaV=" << k->dataSet.deltaV << ",p_theta=" << k->dataSet.prev.angle <<",p_pot=" << k->dataSet.prev.potential<< ",c_theta=" << k->dataSet.curr.angle << ", c_pot = " << k->dataSet.curr.potential <<std::endl;
342 >    // Default to cubic switching function.
343 >    sft_ = cubic;
344 >    if (simParams_->haveSwitchingFunctionType()) {
345 >      string funcType = simParams_->getSwitchingFunctionType();
346 >      toUpper(funcType);
347 >      if (funcType == "CUBIC") {
348 >        sft_ = cubic;
349 >      } else {
350 >        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
351 >          sft_ = fifth_order_poly;
352 >        } else {
353 >          // throw error        
354 >          sprintf( painCave.errMsg,
355 >                   "ForceManager::setupSwitching : Unknown switchingFunctionType. (Input file specified %s .)\n"
356 >                   "\tswitchingFunctionType must be one of: "
357 >                   "\"cubic\" or \"fifth_order_polynomial\".",
358 >                   funcType.c_str() );
359 >          painCave.isFatal = 1;
360 >          painCave.severity = OPENMD_ERROR;
361 >          simError();
362 >        }          
363 >      }
364      }
365 <    for (std::vector<TorsionOrderStruct>::iterator l = torsionOrderStruct.begin(); l != torsionOrderStruct.end(); ++l) {
366 <        Torsion* torsion = l->torsion;
367 <        std::cout << "Torsion: atom1=" <<torsion->getAtomA()->getGlobalIndex() << ",atom2 = "<< torsion->getAtomB()->getGlobalIndex() << ",atom3="<<torsion->getAtomC()->getGlobalIndex() << ",atom4="<<torsion->getAtomD()->getGlobalIndex()<< " ";
368 <        std::cout << "deltaV=" << l->dataSet.deltaV << ",p_theta=" << l->dataSet.prev.angle <<",p_pot=" << l->dataSet.prev.potential<< ",c_theta=" << l->dataSet.curr.angle << ", c_pot = " << l->dataSet.curr.potential <<std::endl;
365 >    switcher_->setSwitchType(sft_);
366 >    switcher_->setSwitch(rSwitch_, rCut_);
367 >    interactionMan_->setSwitchingRadius(rSwitch_);
368 >  }
369 >
370 >
371 >
372 >  
373 >  void ForceManager::initialize() {
374 >
375 >    if (!info_->isTopologyDone()) {
376 >
377 >      info_->update();
378 >      interactionMan_->setSimInfo(info_);
379 >      interactionMan_->initialize();
380 >
381 >      // We want to delay the cutoffs until after the interaction
382 >      // manager has set up the atom-atom interactions so that we can
383 >      // query them for suggested cutoff values
384 >      setupCutoffs();
385 >
386 >      info_->prepareTopology();      
387      }
388 <   */
388 >
389 >    ForceFieldOptions& fopts = forceField_->getForceFieldOptions();
390 >    
391 >    // Force fields can set options on how to scale van der Waals and
392 >    // electrostatic interactions for atoms connected via bonds, bends
393 >    // and torsions in this case the topological distance between
394 >    // atoms is:
395 >    // 0 = topologically unconnected
396 >    // 1 = bonded together
397 >    // 2 = connected via a bend
398 >    // 3 = connected via a torsion
399 >    
400 >    vdwScale_.reserve(4);
401 >    fill(vdwScale_.begin(), vdwScale_.end(), 0.0);
402 >
403 >    electrostaticScale_.reserve(4);
404 >    fill(electrostaticScale_.begin(), electrostaticScale_.end(), 0.0);
405 >
406 >    vdwScale_[0] = 1.0;
407 >    vdwScale_[1] = fopts.getvdw12scale();
408 >    vdwScale_[2] = fopts.getvdw13scale();
409 >    vdwScale_[3] = fopts.getvdw14scale();
410 >    
411 >    electrostaticScale_[0] = 1.0;
412 >    electrostaticScale_[1] = fopts.getelectrostatic12scale();
413 >    electrostaticScale_[2] = fopts.getelectrostatic13scale();
414 >    electrostaticScale_[3] = fopts.getelectrostatic14scale();    
415 >    
416 >    fDecomp_->distributeInitialData();
417 >
418 >    initialized_ = true;
419 >
420    }
421  
422 +  void ForceManager::calcForces() {
423 +    
424 +    if (!initialized_) initialize();
425 +
426 +    preCalculation();  
427 +    shortRangeInteractions();
428 +    longRangeInteractions();
429 +    postCalculation();    
430 +  }
431 +  
432    void ForceManager::preCalculation() {
433      SimInfo::MoleculeIterator mi;
434      Molecule* mol;
# Line 128 | Line 436 | namespace oopse {
436      Atom* atom;
437      Molecule::RigidBodyIterator rbIter;
438      RigidBody* rb;
439 +    Molecule::CutoffGroupIterator ci;
440 +    CutoffGroup* cg;
441      
442      // forces are zeroed here, before any are accumulated.
443 <    // NOTE: do not rezero the forces in Fortran.
444 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
445 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
443 >    
444 >    for (mol = info_->beginMolecule(mi); mol != NULL;
445 >         mol = info_->nextMolecule(mi)) {
446 >      for(atom = mol->beginAtom(ai); atom != NULL;
447 >          atom = mol->nextAtom(ai)) {
448          atom->zeroForcesAndTorques();
449        }
450 <        
450 >      
451        //change the positions of atoms which belong to the rigidbodies
452 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
452 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
453 >           rb = mol->nextRigidBody(rbIter)) {
454          rb->zeroForcesAndTorques();
455        }        
456 +      
457 +      if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){
458 +        for(cg = mol->beginCutoffGroup(ci); cg != NULL;
459 +            cg = mol->nextCutoffGroup(ci)) {
460 +          //calculate the center of mass of cutoff group
461 +          cg->updateCOM();
462 +        }
463 +      }      
464      }
465      
466 +    // Zero out the stress tensor
467 +    tau *= 0.0;
468 +    
469    }
470 <
471 <  void ForceManager::calcShortRangeInteraction() {
470 >  
471 >  void ForceManager::shortRangeInteractions() {
472      Molecule* mol;
473      RigidBody* rb;
474      Bond* bond;
475      Bend* bend;
476      Torsion* torsion;
477 +    Inversion* inversion;
478      SimInfo::MoleculeIterator mi;
479      Molecule::RigidBodyIterator rbIter;
480      Molecule::BondIterator bondIter;;
481      Molecule::BendIterator  bendIter;
482      Molecule::TorsionIterator  torsionIter;
483 +    Molecule::InversionIterator  inversionIter;
484      RealType bondPotential = 0.0;
485      RealType bendPotential = 0.0;
486      RealType torsionPotential = 0.0;
487 +    RealType inversionPotential = 0.0;
488  
489      //calculate short range interactions    
490 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
490 >    for (mol = info_->beginMolecule(mi); mol != NULL;
491 >         mol = info_->nextMolecule(mi)) {
492  
493        //change the positions of atoms which belong to the rigidbodies
494 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
495 <          rb->updateAtoms();
494 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
495 >           rb = mol->nextRigidBody(rbIter)) {
496 >        rb->updateAtoms();
497        }
498  
499 <      for (bond = mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
499 >      for (bond = mol->beginBond(bondIter); bond != NULL;
500 >           bond = mol->nextBond(bondIter)) {
501          bond->calcForce();
502          bondPotential += bond->getPotential();
503        }
504  
505 <
506 <      for (bend = mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
507 <
508 <          RealType angle;
509 <            bend->calcForce(angle);
510 <          RealType currBendPot = bend->getPotential();          
511 <            bendPotential += bend->getPotential();
512 <          std::map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend);
513 <          if (i == bendDataSets.end()) {
514 <            BendDataSet dataSet;
515 <            dataSet.prev.angle = dataSet.curr.angle = angle;
516 <            dataSet.prev.potential = dataSet.curr.potential = currBendPot;
517 <            dataSet.deltaV = 0.0;
518 <            bendDataSets.insert(std::map<Bend*, BendDataSet>::value_type(bend, dataSet));
519 <          }else {
520 <            i->second.prev.angle = i->second.curr.angle;
521 <            i->second.prev.potential = i->second.curr.potential;
522 <            i->second.curr.angle = angle;
523 <            i->second.curr.potential = currBendPot;
524 <            i->second.deltaV =  fabs(i->second.curr.potential -  i->second.prev.potential);
525 <          }
505 >      for (bend = mol->beginBend(bendIter); bend != NULL;
506 >           bend = mol->nextBend(bendIter)) {
507 >        
508 >        RealType angle;
509 >        bend->calcForce(angle);
510 >        RealType currBendPot = bend->getPotential();          
511 >        
512 >        bendPotential += bend->getPotential();
513 >        map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend);
514 >        if (i == bendDataSets.end()) {
515 >          BendDataSet dataSet;
516 >          dataSet.prev.angle = dataSet.curr.angle = angle;
517 >          dataSet.prev.potential = dataSet.curr.potential = currBendPot;
518 >          dataSet.deltaV = 0.0;
519 >          bendDataSets.insert(map<Bend*, BendDataSet>::value_type(bend,
520 >                                                                  dataSet));
521 >        }else {
522 >          i->second.prev.angle = i->second.curr.angle;
523 >          i->second.prev.potential = i->second.curr.potential;
524 >          i->second.curr.angle = angle;
525 >          i->second.curr.potential = currBendPot;
526 >          i->second.deltaV =  fabs(i->second.curr.potential -  
527 >                                   i->second.prev.potential);
528 >        }
529        }
530 <
531 <      for (torsion = mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
530 >      
531 >      for (torsion = mol->beginTorsion(torsionIter); torsion != NULL;
532 >           torsion = mol->nextTorsion(torsionIter)) {
533          RealType angle;
534 <          torsion->calcForce(angle);
534 >        torsion->calcForce(angle);
535          RealType currTorsionPot = torsion->getPotential();
536 <          torsionPotential += torsion->getPotential();
537 <          std::map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion);
538 <          if (i == torsionDataSets.end()) {
539 <            TorsionDataSet dataSet;
540 <            dataSet.prev.angle = dataSet.curr.angle = angle;
541 <            dataSet.prev.potential = dataSet.curr.potential = currTorsionPot;
542 <            dataSet.deltaV = 0.0;
543 <            torsionDataSets.insert(std::map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet));
544 <          }else {
545 <            i->second.prev.angle = i->second.curr.angle;
546 <            i->second.prev.potential = i->second.curr.potential;
547 <            i->second.curr.angle = angle;
548 <            i->second.curr.potential = currTorsionPot;
549 <            i->second.deltaV =  fabs(i->second.curr.potential -  i->second.prev.potential);
550 <          }      
551 <      }
552 <
536 >        torsionPotential += torsion->getPotential();
537 >        map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion);
538 >        if (i == torsionDataSets.end()) {
539 >          TorsionDataSet dataSet;
540 >          dataSet.prev.angle = dataSet.curr.angle = angle;
541 >          dataSet.prev.potential = dataSet.curr.potential = currTorsionPot;
542 >          dataSet.deltaV = 0.0;
543 >          torsionDataSets.insert(map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet));
544 >        }else {
545 >          i->second.prev.angle = i->second.curr.angle;
546 >          i->second.prev.potential = i->second.curr.potential;
547 >          i->second.curr.angle = angle;
548 >          i->second.curr.potential = currTorsionPot;
549 >          i->second.deltaV =  fabs(i->second.curr.potential -  
550 >                                   i->second.prev.potential);
551 >        }      
552 >      }      
553 >      
554 >      for (inversion = mol->beginInversion(inversionIter);
555 >           inversion != NULL;
556 >           inversion = mol->nextInversion(inversionIter)) {
557 >        RealType angle;
558 >        inversion->calcForce(angle);
559 >        RealType currInversionPot = inversion->getPotential();
560 >        inversionPotential += inversion->getPotential();
561 >        map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion);
562 >        if (i == inversionDataSets.end()) {
563 >          InversionDataSet dataSet;
564 >          dataSet.prev.angle = dataSet.curr.angle = angle;
565 >          dataSet.prev.potential = dataSet.curr.potential = currInversionPot;
566 >          dataSet.deltaV = 0.0;
567 >          inversionDataSets.insert(map<Inversion*, InversionDataSet>::value_type(inversion, dataSet));
568 >        }else {
569 >          i->second.prev.angle = i->second.curr.angle;
570 >          i->second.prev.potential = i->second.curr.potential;
571 >          i->second.curr.angle = angle;
572 >          i->second.curr.potential = currInversionPot;
573 >          i->second.deltaV =  fabs(i->second.curr.potential -  
574 >                                   i->second.prev.potential);
575 >        }      
576 >      }      
577      }
578      
579 <    RealType  shortRangePotential = bondPotential + bendPotential + torsionPotential;    
579 >    RealType  shortRangePotential = bondPotential + bendPotential +
580 >      torsionPotential +  inversionPotential;    
581      Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
582      curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential;
583      curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential;
584      curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential;
585      curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential;
586 <    
586 >    curSnapshot->statData[Stats::INVERSION_POTENTIAL] = inversionPotential;    
587    }
588 +  
589 +  void ForceManager::longRangeInteractions() {
590  
591 <  void ForceManager::calcLongRangeInteraction(bool needPotential, bool needStress) {
592 <    Snapshot* curSnapshot;
593 <    DataStorage* config;
233 <    RealType* frc;
234 <    RealType* pos;
235 <    RealType* trq;
236 <    RealType* A;
237 <    RealType* electroFrame;
238 <    RealType* rc;
239 <    
240 <    //get current snapshot from SimInfo
241 <    curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
591 >    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
592 >    DataStorage* config = &(curSnapshot->atomData);
593 >    DataStorage* cgConfig = &(curSnapshot->cgData);
594  
243    //get array pointers
244    config = &(curSnapshot->atomData);
245    frc = config->getArrayPointer(DataStorage::dslForce);
246    pos = config->getArrayPointer(DataStorage::dslPosition);
247    trq = config->getArrayPointer(DataStorage::dslTorque);
248    A   = config->getArrayPointer(DataStorage::dslAmat);
249    electroFrame = config->getArrayPointer(DataStorage::dslElectroFrame);
250
595      //calculate the center of mass of cutoff group
596 +
597      SimInfo::MoleculeIterator mi;
598      Molecule* mol;
599      Molecule::CutoffGroupIterator ci;
600      CutoffGroup* cg;
256    Vector3d com;
257    std::vector<Vector3d> rcGroup;
601  
602 <    if(info_->getNCutoffGroups() > 0){
603 <
604 <      for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
605 <        for(cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
606 <          cg->getCOM(com);
607 <          rcGroup.push_back(com);
602 >    if(info_->getNCutoffGroups() > 0){      
603 >      for (mol = info_->beginMolecule(mi); mol != NULL;
604 >           mol = info_->nextMolecule(mi)) {
605 >        for(cg = mol->beginCutoffGroup(ci); cg != NULL;
606 >            cg = mol->nextCutoffGroup(ci)) {
607 >          cg->updateCOM();
608          }
609 <      }// end for (mol)
267 <      
268 <      rc = rcGroup[0].getArrayPointer();
609 >      }      
610      } else {
611 <      // center of mass of the group is the same as position of the atom  if cutoff group does not exist
612 <      rc = pos;
611 >      // center of mass of the group is the same as position of the atom  
612 >      // if cutoff group does not exist
613 >      cgConfig->position = config->position;
614      }
615 <  
616 <    //initialize data before passing to fortran
617 <    RealType longRangePotential[LR_POT_TYPES];
276 <    RealType lrPot = 0.0;
615 >
616 >    fDecomp_->zeroWorkArrays();
617 >    fDecomp_->distributeData();
618      
619 <    Mat3x3d tau;
620 <    short int passedCalcPot = needPotential;
621 <    short int passedCalcStress = needStress;
622 <    int isError = 0;
619 >    int cg1, cg2, atom1, atom2, topoDist;
620 >    Vector3d d_grp, dag, d;
621 >    RealType rgrpsq, rgrp, r2, r;
622 >    RealType electroMult, vdwMult;
623 >    RealType vij;
624 >    Vector3d fij, fg, f1;
625 >    tuple3<RealType, RealType, RealType> cuts;
626 >    RealType rCutSq;
627 >    bool in_switching_region;
628 >    RealType sw, dswdr, swderiv;
629 >    vector<int> atomListColumn, atomListRow, atomListLocal;
630 >    InteractionData idat;
631 >    SelfData sdat;
632 >    RealType mf;
633 >    RealType lrPot;
634 >    RealType vpair;
635 >    potVec longRangePotential(0.0);
636 >    potVec workPot(0.0);
637  
638 <    for (int i=0; i<LR_POT_TYPES;i++){
639 <      longRangePotential[i]=0.0; //Initialize array
638 >    int loopStart, loopEnd;
639 >
640 >    idat.vdwMult = &vdwMult;
641 >    idat.electroMult = &electroMult;
642 >    idat.pot = &workPot;
643 >    sdat.pot = fDecomp_->getEmbeddingPotential();
644 >    idat.vpair = &vpair;
645 >    idat.f1 = &f1;
646 >    idat.sw = &sw;
647 >    idat.shiftedPot = (cutoffMethod_ == SHIFTED_POTENTIAL) ? true : false;
648 >    idat.shiftedForce = (cutoffMethod_ == SHIFTED_FORCE) ? true : false;
649 >    
650 >    loopEnd = PAIR_LOOP;
651 >    if (info_->requiresPrepair() ) {
652 >      loopStart = PREPAIR_LOOP;
653 >    } else {
654 >      loopStart = PAIR_LOOP;
655      }
656 +  
657 +    for (int iLoop = loopStart; iLoop <= loopEnd; iLoop++) {
658 +    
659 +      if (iLoop == loopStart) {
660 +        bool update_nlist = fDecomp_->checkNeighborList();
661 +        if (update_nlist)
662 +          neighborList = fDecomp_->buildNeighborList();
663 +      }            
664  
665 <    doForceLoop( pos,
666 <                 rc,
667 <                 A,
668 <                 electroFrame,
669 <                 frc,
670 <                 trq,
671 <                 tau.getArrayPointer(),
294 <                 longRangePotential,
295 <                 &passedCalcPot,
296 <                 &passedCalcStress,
297 <                 &isError );
665 >      for (vector<pair<int, int> >::iterator it = neighborList.begin();
666 >             it != neighborList.end(); ++it) {
667 >                
668 >        cg1 = (*it).first;
669 >        cg2 = (*it).second;
670 >        
671 >        cuts = fDecomp_->getGroupCutoffs(cg1, cg2);
672  
673 <    if( isError ){
674 <      sprintf( painCave.errMsg,
675 <               "Error returned from the fortran force calculation.\n" );
676 <      painCave.isFatal = 1;
677 <      simError();
673 >        d_grp  = fDecomp_->getIntergroupVector(cg1, cg2);
674 >
675 >        curSnapshot->wrapVector(d_grp);        
676 >        rgrpsq = d_grp.lengthSquare();
677 >        rCutSq = cuts.second;
678 >
679 >        if (rgrpsq < rCutSq) {
680 >          idat.rcut = &cuts.first;
681 >          if (iLoop == PAIR_LOOP) {
682 >            vij = 0.0;
683 >            fij = V3Zero;
684 >          }
685 >          
686 >          in_switching_region = switcher_->getSwitch(rgrpsq, sw, dswdr,
687 >                                                     rgrp);
688 >          
689 >          atomListRow = fDecomp_->getAtomsInGroupRow(cg1);
690 >          atomListColumn = fDecomp_->getAtomsInGroupColumn(cg2);
691 >
692 >          for (vector<int>::iterator ia = atomListRow.begin();
693 >               ia != atomListRow.end(); ++ia) {            
694 >            atom1 = (*ia);
695 >            
696 >            for (vector<int>::iterator jb = atomListColumn.begin();
697 >                 jb != atomListColumn.end(); ++jb) {              
698 >              atom2 = (*jb);
699 >
700 >              if (!fDecomp_->skipAtomPair(atom1, atom2)) {
701 >                vpair = 0.0;
702 >                workPot = 0.0;
703 >                f1 = V3Zero;
704 >
705 >                fDecomp_->fillInteractionData(idat, atom1, atom2);
706 >                
707 >                topoDist = fDecomp_->getTopologicalDistance(atom1, atom2);
708 >                vdwMult = vdwScale_[topoDist];
709 >                electroMult = electrostaticScale_[topoDist];
710 >
711 >                if (atomListRow.size() == 1 && atomListColumn.size() == 1) {
712 >                  idat.d = &d_grp;
713 >                  idat.r2 = &rgrpsq;
714 >                } else {
715 >                  d = fDecomp_->getInteratomicVector(atom1, atom2);
716 >                  curSnapshot->wrapVector( d );
717 >                  r2 = d.lengthSquare();
718 >                  idat.d = &d;
719 >                  idat.r2 = &r2;
720 >                }
721 >              
722 >                r = sqrt( *(idat.r2) );
723 >                idat.rij = &r;
724 >              
725 >                if (iLoop == PREPAIR_LOOP) {
726 >                  interactionMan_->doPrePair(idat);
727 >                } else {
728 >                  interactionMan_->doPair(idat);
729 >                  fDecomp_->unpackInteractionData(idat, atom1, atom2);
730 >                  vij += vpair;
731 >                  fij += f1;
732 >                  tau -= outProduct( *(idat.d), f1);
733 >                }
734 >              }
735 >            }
736 >          }
737 >
738 >          if (iLoop == PAIR_LOOP) {
739 >            if (in_switching_region) {
740 >              swderiv = vij * dswdr / rgrp;
741 >              fg = swderiv * d_grp;
742 >              fij += fg;
743 >
744 >              if (atomListRow.size() == 1 && atomListColumn.size() == 1) {
745 >                tau -= outProduct( *(idat.d), fg);
746 >              }
747 >          
748 >              for (vector<int>::iterator ia = atomListRow.begin();
749 >                   ia != atomListRow.end(); ++ia) {            
750 >                atom1 = (*ia);                
751 >                mf = fDecomp_->getMassFactorRow(atom1);
752 >                // fg is the force on atom ia due to cutoff group's
753 >                // presence in switching region
754 >                fg = swderiv * d_grp * mf;
755 >                fDecomp_->addForceToAtomRow(atom1, fg);
756 >                if (atomListRow.size() > 1) {
757 >                  if (info_->usesAtomicVirial()) {
758 >                    // find the distance between the atom
759 >                    // and the center of the cutoff group:
760 >                    dag = fDecomp_->getAtomToGroupVectorRow(atom1, cg1);
761 >                    tau -= outProduct(dag, fg);
762 >                  }
763 >                }
764 >              }
765 >              for (vector<int>::iterator jb = atomListColumn.begin();
766 >                   jb != atomListColumn.end(); ++jb) {              
767 >                atom2 = (*jb);
768 >                mf = fDecomp_->getMassFactorColumn(atom2);
769 >                // fg is the force on atom jb due to cutoff group's
770 >                // presence in switching region
771 >                fg = -swderiv * d_grp * mf;
772 >                fDecomp_->addForceToAtomColumn(atom2, fg);
773 >
774 >                if (atomListColumn.size() > 1) {
775 >                  if (info_->usesAtomicVirial()) {
776 >                    // find the distance between the atom
777 >                    // and the center of the cutoff group:
778 >                    dag = fDecomp_->getAtomToGroupVectorColumn(atom2, cg2);
779 >                    tau -= outProduct(dag, fg);
780 >                  }
781 >                }
782 >              }
783 >            }
784 >            //if (!info_->usesAtomicVirial()) {
785 >            //  tau -= outProduct(d_grp, fij);
786 >            //}
787 >          }
788 >        }
789 >      }
790 >
791 >      if (iLoop == PREPAIR_LOOP) {
792 >        if (info_->requiresPrepair()) {
793 >
794 >          fDecomp_->collectIntermediateData();
795 >
796 >          for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) {
797 >            fDecomp_->fillSelfData(sdat, atom1);
798 >            interactionMan_->doPreForce(sdat);
799 >          }
800 >
801 >          fDecomp_->distributeIntermediateData();
802 >
803 >        }
804 >      }
805      }
806 <    for (int i=0; i<LR_POT_TYPES;i++){
807 <      lrPot += longRangePotential[i]; //Quick hack
806 >    
807 >    fDecomp_->collectData();
808 >        
809 >    if (info_->requiresSelfCorrection()) {
810 >
811 >      for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) {          
812 >        fDecomp_->fillSelfData(sdat, atom1);
813 >        interactionMan_->doSelfCorrection(sdat);
814 >      }
815 >
816      }
817  
818 +    longRangePotential = *(fDecomp_->getEmbeddingPotential()) +
819 +      *(fDecomp_->getPairwisePotential());
820 +
821 +    lrPot = longRangePotential.sum();
822 +
823      //store the tau and long range potential    
824      curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot;
825 <    curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VDW_POT];
826 <    curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_POT];
313 <
314 <    curSnapshot->statData.setTau(tau);
825 >    curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VANDERWAALS_FAMILY];
826 >    curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_FAMILY];
827    }
828  
829 <
829 >  
830    void ForceManager::postCalculation() {
831      SimInfo::MoleculeIterator mi;
832      Molecule* mol;
833      Molecule::RigidBodyIterator rbIter;
834      RigidBody* rb;
835 +    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
836      
837      // collect the atomic forces onto rigid bodies
838 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
839 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
840 <        rb->calcForcesAndTorques();
838 >    
839 >    for (mol = info_->beginMolecule(mi); mol != NULL;
840 >         mol = info_->nextMolecule(mi)) {
841 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
842 >           rb = mol->nextRigidBody(rbIter)) {
843 >        Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial();
844 >        tau += rbTau;
845        }
846      }
847 <
847 >    
848 > #ifdef IS_MPI
849 >    Mat3x3d tmpTau(tau);
850 >    MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(),
851 >                  9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
852 > #endif
853 >    curSnapshot->statData.setTau(tau);
854    }
855  
856 < } //end namespace oopse
856 > } //end namespace OpenMD

Comparing:
trunk/src/brains/ForceManager.cpp (property svn:keywords), Revision 963 by tim, Wed May 17 21:51:42 2006 UTC vs.
branches/development/src/brains/ForceManager.cpp (property svn:keywords), Revision 1616 by gezelter, Tue Aug 30 15:45:35 2011 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines