58 |
|
#include "primitives/Torsion.hpp" |
59 |
|
#include "primitives/Inversion.hpp" |
60 |
|
#include "nonbonded/NonBondedInteraction.hpp" |
61 |
+ |
#include "perturbations/ElectricField.hpp" |
62 |
|
#include "parallel/ForceMatrixDecomposition.hpp" |
63 |
|
|
64 |
|
#include <cstdio> |
111 |
|
Globals* simParams_ = info_->getSimParams(); |
112 |
|
ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions(); |
113 |
|
int mdFileVersion; |
114 |
+ |
rCut_ = 0.0; //Needs a value for a later max() call; |
115 |
|
|
116 |
|
if (simParams_->haveMDfileVersion()) |
117 |
|
mdFileVersion = simParams_->getMDfileVersion(); |
370 |
|
} |
371 |
|
switcher_->setSwitchType(sft_); |
372 |
|
switcher_->setSwitch(rSwitch_, rCut_); |
371 |
– |
interactionMan_->setSwitchingRadius(rSwitch_); |
373 |
|
} |
374 |
|
|
375 |
|
|
389 |
|
setupCutoffs(); |
390 |
|
|
391 |
|
info_->prepareTopology(); |
392 |
+ |
|
393 |
+ |
doParticlePot_ = info_->getSimParams()->getOutputParticlePotential(); |
394 |
+ |
doHeatFlux_ = info_->getSimParams()->getPrintHeatFlux(); |
395 |
+ |
if (doHeatFlux_) doParticlePot_ = true; |
396 |
+ |
|
397 |
+ |
doElectricField_ = info_->getSimParams()->getOutputElectricField(); |
398 |
+ |
|
399 |
|
} |
400 |
|
|
401 |
|
ForceFieldOptions& fopts = forceField_->getForceFieldOptions(); |
425 |
|
electrostaticScale_[2] = fopts.getelectrostatic13scale(); |
426 |
|
electrostaticScale_[3] = fopts.getelectrostatic14scale(); |
427 |
|
|
428 |
+ |
if (info_->getSimParams()->haveElectricField()) { |
429 |
+ |
ElectricField* eField = new ElectricField(info_); |
430 |
+ |
perturbations_.push_back(eField); |
431 |
+ |
} |
432 |
+ |
|
433 |
|
fDecomp_->distributeInitialData(); |
434 |
|
|
435 |
|
initialized_ = true; |
456 |
|
Molecule::CutoffGroupIterator ci; |
457 |
|
CutoffGroup* cg; |
458 |
|
|
459 |
< |
// forces are zeroed here, before any are accumulated. |
459 |
> |
// forces and potentials are zeroed here, before any are |
460 |
> |
// accumulated. |
461 |
|
|
462 |
+ |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
463 |
+ |
|
464 |
+ |
snap->setBondPotential(0.0); |
465 |
+ |
snap->setBendPotential(0.0); |
466 |
+ |
snap->setTorsionPotential(0.0); |
467 |
+ |
snap->setInversionPotential(0.0); |
468 |
+ |
|
469 |
+ |
potVec zeroPot(0.0); |
470 |
+ |
snap->setLongRangePotential(zeroPot); |
471 |
+ |
snap->setExcludedPotentials(zeroPot); |
472 |
+ |
|
473 |
+ |
snap->setRestraintPotential(0.0); |
474 |
+ |
snap->setRawPotential(0.0); |
475 |
+ |
|
476 |
|
for (mol = info_->beginMolecule(mi); mol != NULL; |
477 |
|
mol = info_->nextMolecule(mi)) { |
478 |
|
for(atom = mol->beginAtom(ai); atom != NULL; |
496 |
|
} |
497 |
|
|
498 |
|
// Zero out the stress tensor |
499 |
< |
tau *= 0.0; |
500 |
< |
|
499 |
> |
stressTensor *= 0.0; |
500 |
> |
// Zero out the heatFlux |
501 |
> |
fDecomp_->setHeatFlux( Vector3d(0.0) ); |
502 |
|
} |
503 |
|
|
504 |
|
void ForceManager::shortRangeInteractions() { |
531 |
|
|
532 |
|
for (bond = mol->beginBond(bondIter); bond != NULL; |
533 |
|
bond = mol->nextBond(bondIter)) { |
534 |
< |
bond->calcForce(); |
534 |
> |
bond->calcForce(doParticlePot_); |
535 |
|
bondPotential += bond->getPotential(); |
536 |
|
} |
537 |
|
|
539 |
|
bend = mol->nextBend(bendIter)) { |
540 |
|
|
541 |
|
RealType angle; |
542 |
< |
bend->calcForce(angle); |
542 |
> |
bend->calcForce(angle, doParticlePot_); |
543 |
|
RealType currBendPot = bend->getPotential(); |
544 |
|
|
545 |
|
bendPotential += bend->getPotential(); |
564 |
|
for (torsion = mol->beginTorsion(torsionIter); torsion != NULL; |
565 |
|
torsion = mol->nextTorsion(torsionIter)) { |
566 |
|
RealType angle; |
567 |
< |
torsion->calcForce(angle); |
567 |
> |
torsion->calcForce(angle, doParticlePot_); |
568 |
|
RealType currTorsionPot = torsion->getPotential(); |
569 |
|
torsionPotential += torsion->getPotential(); |
570 |
|
map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion); |
588 |
|
inversion != NULL; |
589 |
|
inversion = mol->nextInversion(inversionIter)) { |
590 |
|
RealType angle; |
591 |
< |
inversion->calcForce(angle); |
591 |
> |
inversion->calcForce(angle, doParticlePot_); |
592 |
|
RealType currInversionPot = inversion->getPotential(); |
593 |
|
inversionPotential += inversion->getPotential(); |
594 |
|
map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion); |
608 |
|
} |
609 |
|
} |
610 |
|
} |
611 |
< |
|
612 |
< |
RealType shortRangePotential = bondPotential + bendPotential + |
613 |
< |
torsionPotential + inversionPotential; |
611 |
> |
|
612 |
> |
#ifdef IS_MPI |
613 |
> |
// Collect from all nodes. This should eventually be moved into a |
614 |
> |
// SystemDecomposition, but this is a better place than in |
615 |
> |
// Thermo to do the collection. |
616 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &bondPotential, 1, MPI::REALTYPE, |
617 |
> |
MPI::SUM); |
618 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &bendPotential, 1, MPI::REALTYPE, |
619 |
> |
MPI::SUM); |
620 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &torsionPotential, 1, |
621 |
> |
MPI::REALTYPE, MPI::SUM); |
622 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &inversionPotential, 1, |
623 |
> |
MPI::REALTYPE, MPI::SUM); |
624 |
> |
#endif |
625 |
> |
|
626 |
|
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
627 |
< |
curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential; |
628 |
< |
curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential; |
629 |
< |
curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential; |
630 |
< |
curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential; |
631 |
< |
curSnapshot->statData[Stats::INVERSION_POTENTIAL] = inversionPotential; |
627 |
> |
|
628 |
> |
curSnapshot->setBondPotential(bondPotential); |
629 |
> |
curSnapshot->setBendPotential(bendPotential); |
630 |
> |
curSnapshot->setTorsionPotential(torsionPotential); |
631 |
> |
curSnapshot->setInversionPotential(inversionPotential); |
632 |
> |
|
633 |
> |
// RealType shortRangePotential = bondPotential + bendPotential + |
634 |
> |
// torsionPotential + inversionPotential; |
635 |
> |
|
636 |
> |
// curSnapshot->setShortRangePotential(shortRangePotential); |
637 |
|
} |
638 |
|
|
639 |
|
void ForceManager::longRangeInteractions() { |
640 |
|
|
641 |
+ |
|
642 |
|
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
643 |
|
DataStorage* config = &(curSnapshot->atomData); |
644 |
|
DataStorage* cgConfig = &(curSnapshot->cgData); |
662 |
|
// center of mass of the group is the same as position of the atom |
663 |
|
// if cutoff group does not exist |
664 |
|
cgConfig->position = config->position; |
665 |
+ |
cgConfig->velocity = config->velocity; |
666 |
|
} |
667 |
|
|
668 |
|
fDecomp_->zeroWorkArrays(); |
669 |
|
fDecomp_->distributeData(); |
670 |
|
|
671 |
|
int cg1, cg2, atom1, atom2, topoDist; |
672 |
< |
Vector3d d_grp, dag, d; |
672 |
> |
Vector3d d_grp, dag, d, gvel2, vel2; |
673 |
|
RealType rgrpsq, rgrp, r2, r; |
674 |
|
RealType electroMult, vdwMult; |
675 |
|
RealType vij; |
682 |
|
InteractionData idat; |
683 |
|
SelfData sdat; |
684 |
|
RealType mf; |
637 |
– |
RealType lrPot; |
685 |
|
RealType vpair; |
686 |
+ |
RealType dVdFQ1(0.0); |
687 |
+ |
RealType dVdFQ2(0.0); |
688 |
|
potVec longRangePotential(0.0); |
689 |
|
potVec workPot(0.0); |
690 |
+ |
potVec exPot(0.0); |
691 |
+ |
Vector3d eField1(0.0); |
692 |
+ |
Vector3d eField2(0.0); |
693 |
+ |
vector<int>::iterator ia, jb; |
694 |
|
|
695 |
|
int loopStart, loopEnd; |
696 |
|
|
697 |
|
idat.vdwMult = &vdwMult; |
698 |
|
idat.electroMult = &electroMult; |
699 |
|
idat.pot = &workPot; |
700 |
+ |
idat.excludedPot = &exPot; |
701 |
|
sdat.pot = fDecomp_->getEmbeddingPotential(); |
702 |
+ |
sdat.excludedPot = fDecomp_->getExcludedSelfPotential(); |
703 |
|
idat.vpair = &vpair; |
704 |
+ |
idat.dVdFQ1 = &dVdFQ1; |
705 |
+ |
idat.dVdFQ2 = &dVdFQ2; |
706 |
+ |
idat.eField1 = &eField1; |
707 |
+ |
idat.eField2 = &eField2; |
708 |
|
idat.f1 = &f1; |
709 |
|
idat.sw = &sw; |
710 |
|
idat.shiftedPot = (cutoffMethod_ == SHIFTED_POTENTIAL) ? true : false; |
711 |
|
idat.shiftedForce = (cutoffMethod_ == SHIFTED_FORCE) ? true : false; |
712 |
+ |
idat.doParticlePot = doParticlePot_; |
713 |
+ |
idat.doElectricField = doElectricField_; |
714 |
+ |
sdat.doParticlePot = doParticlePot_; |
715 |
|
|
716 |
|
loopEnd = PAIR_LOOP; |
717 |
|
if (info_->requiresPrepair() ) { |
719 |
|
} else { |
720 |
|
loopStart = PAIR_LOOP; |
721 |
|
} |
660 |
– |
|
722 |
|
for (int iLoop = loopStart; iLoop <= loopEnd; iLoop++) { |
723 |
|
|
724 |
|
if (iLoop == loopStart) { |
750 |
|
|
751 |
|
in_switching_region = switcher_->getSwitch(rgrpsq, sw, dswdr, |
752 |
|
rgrp); |
753 |
< |
|
753 |
> |
|
754 |
|
atomListRow = fDecomp_->getAtomsInGroupRow(cg1); |
755 |
|
atomListColumn = fDecomp_->getAtomsInGroupColumn(cg2); |
756 |
|
|
757 |
< |
for (vector<int>::iterator ia = atomListRow.begin(); |
757 |
> |
if (doHeatFlux_) |
758 |
> |
gvel2 = fDecomp_->getGroupVelocityColumn(cg2); |
759 |
> |
|
760 |
> |
for (ia = atomListRow.begin(); |
761 |
|
ia != atomListRow.end(); ++ia) { |
762 |
|
atom1 = (*ia); |
763 |
< |
|
764 |
< |
for (vector<int>::iterator jb = atomListColumn.begin(); |
763 |
> |
|
764 |
> |
for (jb = atomListColumn.begin(); |
765 |
|
jb != atomListColumn.end(); ++jb) { |
766 |
|
atom2 = (*jb); |
767 |
|
|
768 |
< |
if (!fDecomp_->skipAtomPair(atom1, atom2)) { |
768 |
> |
if (!fDecomp_->skipAtomPair(atom1, atom2, cg1, cg2)) { |
769 |
> |
|
770 |
|
vpair = 0.0; |
771 |
|
workPot = 0.0; |
772 |
+ |
exPot = 0.0; |
773 |
|
f1 = V3Zero; |
774 |
+ |
dVdFQ1 = 0.0; |
775 |
+ |
dVdFQ2 = 0.0; |
776 |
|
|
777 |
|
fDecomp_->fillInteractionData(idat, atom1, atom2); |
778 |
< |
|
778 |
> |
|
779 |
|
topoDist = fDecomp_->getTopologicalDistance(atom1, atom2); |
780 |
|
vdwMult = vdwScale_[topoDist]; |
781 |
|
electroMult = electrostaticScale_[topoDist]; |
783 |
|
if (atomListRow.size() == 1 && atomListColumn.size() == 1) { |
784 |
|
idat.d = &d_grp; |
785 |
|
idat.r2 = &rgrpsq; |
786 |
+ |
if (doHeatFlux_) |
787 |
+ |
vel2 = gvel2; |
788 |
|
} else { |
789 |
|
d = fDecomp_->getInteratomicVector(atom1, atom2); |
790 |
|
curSnapshot->wrapVector( d ); |
791 |
|
r2 = d.lengthSquare(); |
792 |
|
idat.d = &d; |
793 |
|
idat.r2 = &r2; |
794 |
+ |
if (doHeatFlux_) |
795 |
+ |
vel2 = fDecomp_->getAtomVelocityColumn(atom2); |
796 |
|
} |
797 |
|
|
798 |
|
r = sqrt( *(idat.r2) ); |
805 |
|
fDecomp_->unpackInteractionData(idat, atom1, atom2); |
806 |
|
vij += vpair; |
807 |
|
fij += f1; |
808 |
< |
tau -= outProduct( *(idat.d), f1); |
808 |
> |
stressTensor -= outProduct( *(idat.d), f1); |
809 |
> |
if (doHeatFlux_) |
810 |
> |
fDecomp_->addToHeatFlux(*(idat.d) * dot(f1, vel2)); |
811 |
|
} |
812 |
|
} |
813 |
|
} |
820 |
|
fij += fg; |
821 |
|
|
822 |
|
if (atomListRow.size() == 1 && atomListColumn.size() == 1) { |
823 |
< |
tau -= outProduct( *(idat.d), fg); |
823 |
> |
stressTensor -= outProduct( *(idat.d), fg); |
824 |
> |
if (doHeatFlux_) |
825 |
> |
fDecomp_->addToHeatFlux(*(idat.d) * dot(fg, vel2)); |
826 |
> |
|
827 |
|
} |
828 |
|
|
829 |
< |
for (vector<int>::iterator ia = atomListRow.begin(); |
829 |
> |
for (ia = atomListRow.begin(); |
830 |
|
ia != atomListRow.end(); ++ia) { |
831 |
|
atom1 = (*ia); |
832 |
|
mf = fDecomp_->getMassFactorRow(atom1); |
839 |
|
// find the distance between the atom |
840 |
|
// and the center of the cutoff group: |
841 |
|
dag = fDecomp_->getAtomToGroupVectorRow(atom1, cg1); |
842 |
< |
tau -= outProduct(dag, fg); |
842 |
> |
stressTensor -= outProduct(dag, fg); |
843 |
> |
if (doHeatFlux_) |
844 |
> |
fDecomp_->addToHeatFlux( dag * dot(fg, vel2)); |
845 |
|
} |
846 |
|
} |
847 |
|
} |
848 |
< |
for (vector<int>::iterator jb = atomListColumn.begin(); |
848 |
> |
for (jb = atomListColumn.begin(); |
849 |
|
jb != atomListColumn.end(); ++jb) { |
850 |
|
atom2 = (*jb); |
851 |
|
mf = fDecomp_->getMassFactorColumn(atom2); |
859 |
|
// find the distance between the atom |
860 |
|
// and the center of the cutoff group: |
861 |
|
dag = fDecomp_->getAtomToGroupVectorColumn(atom2, cg2); |
862 |
< |
tau -= outProduct(dag, fg); |
862 |
> |
stressTensor -= outProduct(dag, fg); |
863 |
> |
if (doHeatFlux_) |
864 |
> |
fDecomp_->addToHeatFlux( dag * dot(fg, vel2)); |
865 |
|
} |
866 |
|
} |
867 |
|
} |
868 |
|
} |
869 |
|
//if (!info_->usesAtomicVirial()) { |
870 |
< |
// tau -= outProduct(d_grp, fij); |
870 |
> |
// stressTensor -= outProduct(d_grp, fij); |
871 |
> |
// if (doHeatFlux_) |
872 |
> |
// fDecomp_->addToHeatFlux( d_grp * dot(fij, vel2)); |
873 |
|
//} |
874 |
|
} |
875 |
|
} |
880 |
|
|
881 |
|
fDecomp_->collectIntermediateData(); |
882 |
|
|
883 |
< |
for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) { |
883 |
> |
for (unsigned int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) { |
884 |
|
fDecomp_->fillSelfData(sdat, atom1); |
885 |
|
interactionMan_->doPreForce(sdat); |
886 |
|
} |
891 |
|
} |
892 |
|
} |
893 |
|
|
894 |
+ |
// collects pairwise information |
895 |
|
fDecomp_->collectData(); |
896 |
|
|
897 |
|
if (info_->requiresSelfCorrection()) { |
898 |
< |
|
815 |
< |
for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) { |
898 |
> |
for (unsigned int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) { |
899 |
|
fDecomp_->fillSelfData(sdat, atom1); |
900 |
|
interactionMan_->doSelfCorrection(sdat); |
901 |
|
} |
819 |
– |
|
902 |
|
} |
903 |
|
|
904 |
+ |
// collects single-atom information |
905 |
+ |
fDecomp_->collectSelfData(); |
906 |
+ |
|
907 |
|
longRangePotential = *(fDecomp_->getEmbeddingPotential()) + |
908 |
|
*(fDecomp_->getPairwisePotential()); |
909 |
|
|
910 |
< |
lrPot = longRangePotential.sum(); |
910 |
> |
curSnapshot->setLongRangePotential(longRangePotential); |
911 |
> |
|
912 |
> |
curSnapshot->setExcludedPotentials(*(fDecomp_->getExcludedSelfPotential()) + |
913 |
> |
*(fDecomp_->getExcludedPotential())); |
914 |
|
|
827 |
– |
//store the tau and long range potential |
828 |
– |
curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot; |
829 |
– |
curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VANDERWAALS_FAMILY]; |
830 |
– |
curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_FAMILY]; |
915 |
|
} |
916 |
|
|
917 |
|
|
918 |
|
void ForceManager::postCalculation() { |
919 |
+ |
|
920 |
+ |
vector<Perturbation*>::iterator pi; |
921 |
+ |
for (pi = perturbations_.begin(); pi != perturbations_.end(); ++pi) { |
922 |
+ |
(*pi)->applyPerturbation(); |
923 |
+ |
} |
924 |
+ |
|
925 |
|
SimInfo::MoleculeIterator mi; |
926 |
|
Molecule* mol; |
927 |
|
Molecule::RigidBodyIterator rbIter; |
928 |
|
RigidBody* rb; |
929 |
|
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
930 |
< |
|
930 |
> |
|
931 |
|
// collect the atomic forces onto rigid bodies |
932 |
|
|
933 |
|
for (mol = info_->beginMolecule(mi); mol != NULL; |
935 |
|
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
936 |
|
rb = mol->nextRigidBody(rbIter)) { |
937 |
|
Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial(); |
938 |
< |
tau += rbTau; |
938 |
> |
stressTensor += rbTau; |
939 |
|
} |
940 |
|
} |
941 |
|
|
942 |
|
#ifdef IS_MPI |
943 |
< |
Mat3x3d tmpTau(tau); |
944 |
< |
MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(), |
855 |
< |
9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
943 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, stressTensor.getArrayPointer(), 9, |
944 |
> |
MPI::REALTYPE, MPI::SUM); |
945 |
|
#endif |
946 |
< |
curSnapshot->setTau(tau); |
946 |
> |
curSnapshot->setStressTensor(stressTensor); |
947 |
> |
|
948 |
|
} |
859 |
– |
|
949 |
|
} //end namespace OpenMD |