388 |
|
setupCutoffs(); |
389 |
|
|
390 |
|
info_->prepareTopology(); |
391 |
+ |
|
392 |
+ |
doParticlePot_ = info_->getSimParams()->getOutputParticlePotential(); |
393 |
+ |
doHeatFlux_ = info_->getSimParams()->getPrintHeatFlux(); |
394 |
+ |
if (doHeatFlux_) doParticlePot_ = true; |
395 |
+ |
|
396 |
|
} |
397 |
|
|
398 |
|
ForceFieldOptions& fopts = forceField_->getForceFieldOptions(); |
473 |
|
} |
474 |
|
|
475 |
|
// Zero out the stress tensor |
476 |
< |
tau *= 0.0; |
477 |
< |
|
476 |
> |
stressTensor *= 0.0; |
477 |
> |
// Zero out the heatFlux |
478 |
> |
fDecomp_->setHeatFlux( V3Zero ); |
479 |
|
} |
480 |
|
|
481 |
|
void ForceManager::shortRangeInteractions() { |
508 |
|
|
509 |
|
for (bond = mol->beginBond(bondIter); bond != NULL; |
510 |
|
bond = mol->nextBond(bondIter)) { |
511 |
< |
bond->calcForce(); |
511 |
> |
bond->calcForce(doParticlePot_); |
512 |
|
bondPotential += bond->getPotential(); |
513 |
|
} |
514 |
|
|
516 |
|
bend = mol->nextBend(bendIter)) { |
517 |
|
|
518 |
|
RealType angle; |
519 |
< |
bend->calcForce(angle); |
519 |
> |
bend->calcForce(angle, doParticlePot_); |
520 |
|
RealType currBendPot = bend->getPotential(); |
521 |
|
|
522 |
|
bendPotential += bend->getPotential(); |
541 |
|
for (torsion = mol->beginTorsion(torsionIter); torsion != NULL; |
542 |
|
torsion = mol->nextTorsion(torsionIter)) { |
543 |
|
RealType angle; |
544 |
< |
torsion->calcForce(angle); |
544 |
> |
torsion->calcForce(angle, doParticlePot_); |
545 |
|
RealType currTorsionPot = torsion->getPotential(); |
546 |
|
torsionPotential += torsion->getPotential(); |
547 |
|
map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion); |
565 |
|
inversion != NULL; |
566 |
|
inversion = mol->nextInversion(inversionIter)) { |
567 |
|
RealType angle; |
568 |
< |
inversion->calcForce(angle); |
568 |
> |
inversion->calcForce(angle, doParticlePot_); |
569 |
|
RealType currInversionPot = inversion->getPotential(); |
570 |
|
inversionPotential += inversion->getPotential(); |
571 |
|
map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion); |
597 |
|
} |
598 |
|
|
599 |
|
void ForceManager::longRangeInteractions() { |
600 |
+ |
|
601 |
|
|
602 |
|
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
603 |
|
DataStorage* config = &(curSnapshot->atomData); |
622 |
|
// center of mass of the group is the same as position of the atom |
623 |
|
// if cutoff group does not exist |
624 |
|
cgConfig->position = config->position; |
625 |
+ |
cgConfig->velocity = config->velocity; |
626 |
|
} |
627 |
|
|
628 |
|
fDecomp_->zeroWorkArrays(); |
629 |
|
fDecomp_->distributeData(); |
630 |
|
|
631 |
|
int cg1, cg2, atom1, atom2, topoDist; |
632 |
< |
Vector3d d_grp, dag, d; |
632 |
> |
Vector3d d_grp, dag, d, gvel2, vel2; |
633 |
|
RealType rgrpsq, rgrp, r2, r; |
634 |
|
RealType electroMult, vdwMult; |
635 |
|
RealType vij; |
646 |
|
RealType vpair; |
647 |
|
potVec longRangePotential(0.0); |
648 |
|
potVec workPot(0.0); |
649 |
+ |
vector<int>::iterator ia, jb; |
650 |
|
|
651 |
|
int loopStart, loopEnd; |
652 |
|
|
659 |
|
idat.sw = &sw; |
660 |
|
idat.shiftedPot = (cutoffMethod_ == SHIFTED_POTENTIAL) ? true : false; |
661 |
|
idat.shiftedForce = (cutoffMethod_ == SHIFTED_FORCE) ? true : false; |
662 |
+ |
idat.doParticlePot = doParticlePot_; |
663 |
+ |
sdat.doParticlePot = doParticlePot_; |
664 |
|
|
665 |
|
loopEnd = PAIR_LOOP; |
666 |
|
if (info_->requiresPrepair() ) { |
704 |
|
atomListRow = fDecomp_->getAtomsInGroupRow(cg1); |
705 |
|
atomListColumn = fDecomp_->getAtomsInGroupColumn(cg2); |
706 |
|
|
707 |
< |
for (vector<int>::iterator ia = atomListRow.begin(); |
707 |
> |
if (doHeatFlux_) |
708 |
> |
gvel2 = fDecomp_->getGroupVelocityColumn(cg2); |
709 |
> |
|
710 |
> |
for (ia = atomListRow.begin(); |
711 |
|
ia != atomListRow.end(); ++ia) { |
712 |
|
atom1 = (*ia); |
713 |
|
|
714 |
< |
for (vector<int>::iterator jb = atomListColumn.begin(); |
714 |
> |
for (jb = atomListColumn.begin(); |
715 |
|
jb != atomListColumn.end(); ++jb) { |
716 |
|
atom2 = (*jb); |
717 |
|
|
729 |
|
if (atomListRow.size() == 1 && atomListColumn.size() == 1) { |
730 |
|
idat.d = &d_grp; |
731 |
|
idat.r2 = &rgrpsq; |
732 |
+ |
if (doHeatFlux_) |
733 |
+ |
vel2 = gvel2; |
734 |
|
} else { |
735 |
|
d = fDecomp_->getInteratomicVector(atom1, atom2); |
736 |
|
curSnapshot->wrapVector( d ); |
737 |
|
r2 = d.lengthSquare(); |
738 |
|
idat.d = &d; |
739 |
|
idat.r2 = &r2; |
740 |
+ |
if (doHeatFlux_) |
741 |
+ |
vel2 = fDecomp_->getAtomVelocityColumn(atom2); |
742 |
|
} |
743 |
|
|
744 |
|
r = sqrt( *(idat.r2) ); |
751 |
|
fDecomp_->unpackInteractionData(idat, atom1, atom2); |
752 |
|
vij += vpair; |
753 |
|
fij += f1; |
754 |
< |
tau -= outProduct( *(idat.d), f1); |
754 |
> |
stressTensor -= outProduct( *(idat.d), f1); |
755 |
> |
if (doHeatFlux_) |
756 |
> |
fDecomp_->addToHeatFlux(*(idat.d) * dot(f1, vel2)); |
757 |
|
} |
758 |
|
} |
759 |
|
} |
766 |
|
fij += fg; |
767 |
|
|
768 |
|
if (atomListRow.size() == 1 && atomListColumn.size() == 1) { |
769 |
< |
tau -= outProduct( *(idat.d), fg); |
769 |
> |
stressTensor -= outProduct( *(idat.d), fg); |
770 |
> |
if (doHeatFlux_) |
771 |
> |
fDecomp_->addToHeatFlux(*(idat.d) * dot(fg, vel2)); |
772 |
> |
|
773 |
|
} |
774 |
|
|
775 |
< |
for (vector<int>::iterator ia = atomListRow.begin(); |
775 |
> |
for (ia = atomListRow.begin(); |
776 |
|
ia != atomListRow.end(); ++ia) { |
777 |
|
atom1 = (*ia); |
778 |
|
mf = fDecomp_->getMassFactorRow(atom1); |
785 |
|
// find the distance between the atom |
786 |
|
// and the center of the cutoff group: |
787 |
|
dag = fDecomp_->getAtomToGroupVectorRow(atom1, cg1); |
788 |
< |
tau -= outProduct(dag, fg); |
788 |
> |
stressTensor -= outProduct(dag, fg); |
789 |
> |
if (doHeatFlux_) |
790 |
> |
fDecomp_->addToHeatFlux( dag * dot(fg, vel2)); |
791 |
|
} |
792 |
|
} |
793 |
|
} |
794 |
< |
for (vector<int>::iterator jb = atomListColumn.begin(); |
794 |
> |
for (jb = atomListColumn.begin(); |
795 |
|
jb != atomListColumn.end(); ++jb) { |
796 |
|
atom2 = (*jb); |
797 |
|
mf = fDecomp_->getMassFactorColumn(atom2); |
805 |
|
// find the distance between the atom |
806 |
|
// and the center of the cutoff group: |
807 |
|
dag = fDecomp_->getAtomToGroupVectorColumn(atom2, cg2); |
808 |
< |
tau -= outProduct(dag, fg); |
808 |
> |
stressTensor -= outProduct(dag, fg); |
809 |
> |
if (doHeatFlux_) |
810 |
> |
fDecomp_->addToHeatFlux( dag * dot(fg, vel2)); |
811 |
|
} |
812 |
|
} |
813 |
|
} |
814 |
|
} |
815 |
|
//if (!info_->usesAtomicVirial()) { |
816 |
< |
// tau -= outProduct(d_grp, fij); |
816 |
> |
// stressTensor -= outProduct(d_grp, fij); |
817 |
> |
// if (doHeatFlux_) |
818 |
> |
// fDecomp_->addToHeatFlux( d_grp * dot(fij, vel2)); |
819 |
|
//} |
820 |
|
} |
821 |
|
} |
853 |
|
|
854 |
|
lrPot = longRangePotential.sum(); |
855 |
|
|
856 |
< |
//store the tau and long range potential |
856 |
> |
//store the stressTensor and long range potential |
857 |
|
curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot; |
858 |
|
curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VANDERWAALS_FAMILY]; |
859 |
|
curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_FAMILY]; |
874 |
|
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
875 |
|
rb = mol->nextRigidBody(rbIter)) { |
876 |
|
Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial(); |
877 |
< |
tau += rbTau; |
877 |
> |
stressTensor += rbTau; |
878 |
|
} |
879 |
|
} |
880 |
|
|
881 |
|
#ifdef IS_MPI |
882 |
< |
Mat3x3d tmpTau(tau); |
883 |
< |
MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(), |
884 |
< |
9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
882 |
> |
|
883 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, stressTensor.getArrayPointer(), 9, |
884 |
> |
MPI::REALTYPE, MPI::SUM); |
885 |
|
#endif |
886 |
< |
curSnapshot->setTau(tau); |
886 |
> |
curSnapshot->setStressTensor(stressTensor); |
887 |
> |
|
888 |
|
} |
889 |
|
|
890 |
|
} //end namespace OpenMD |