ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/ForceManager.cpp
(Generate patch)

Comparing:
trunk/src/brains/ForceManager.cpp (file contents), Revision 665 by tim, Thu Oct 13 22:26:47 2005 UTC vs.
branches/development/src/brains/ForceManager.cpp (file contents), Revision 1723 by gezelter, Thu May 24 20:59:54 2012 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
# Line 47 | Line 48
48   * @version 1.0
49   */
50  
51 +
52   #include "brains/ForceManager.hpp"
53   #include "primitives/Molecule.hpp"
54 < #include "UseTheForce/doForces_interface.h"
53 < #define __C
54 < #include "UseTheForce/DarkSide/fInteractionMap.h"
54 > #define __OPENMD_C
55   #include "utils/simError.h"
56 < namespace oopse {
56 > #include "primitives/Bond.hpp"
57 > #include "primitives/Bend.hpp"
58 > #include "primitives/Torsion.hpp"
59 > #include "primitives/Inversion.hpp"
60 > #include "nonbonded/NonBondedInteraction.hpp"
61 > #include "parallel/ForceMatrixDecomposition.hpp"
62  
63 <  void ForceManager::calcForces(bool needPotential, bool needStress) {
63 > #include <cstdio>
64 > #include <iostream>
65 > #include <iomanip>
66  
67 <    if (!info_->isFortranInitialized()) {
68 <      info_->update();
69 <    }
67 > using namespace std;
68 > namespace OpenMD {
69 >  
70 >  ForceManager::ForceManager(SimInfo * info) : info_(info) {
71 >    forceField_ = info_->getForceField();
72 >    interactionMan_ = new InteractionManager();
73 >    fDecomp_ = new ForceMatrixDecomposition(info_, interactionMan_);
74 >  }
75  
76 <    preCalculation();
76 >  /**
77 >   * setupCutoffs
78 >   *
79 >   * Sets the values of cutoffRadius, switchingRadius, cutoffMethod,
80 >   * and cutoffPolicy
81 >   *
82 >   * cutoffRadius : realType
83 >   *  If the cutoffRadius was explicitly set, use that value.
84 >   *  If the cutoffRadius was not explicitly set:
85 >   *      Are there electrostatic atoms?  Use 12.0 Angstroms.
86 >   *      No electrostatic atoms?  Poll the atom types present in the
87 >   *      simulation for suggested cutoff values (e.g. 2.5 * sigma).
88 >   *      Use the maximum suggested value that was found.
89 >   *
90 >   * cutoffMethod : (one of HARD, SWITCHED, SHIFTED_FORCE,
91 >   *                        or SHIFTED_POTENTIAL)
92 >   *      If cutoffMethod was explicitly set, use that choice.
93 >   *      If cutoffMethod was not explicitly set, use SHIFTED_FORCE
94 >   *
95 >   * cutoffPolicy : (one of MIX, MAX, TRADITIONAL)
96 >   *      If cutoffPolicy was explicitly set, use that choice.
97 >   *      If cutoffPolicy was not explicitly set, use TRADITIONAL
98 >   *
99 >   * switchingRadius : realType
100 >   *  If the cutoffMethod was set to SWITCHED:
101 >   *      If the switchingRadius was explicitly set, use that value
102 >   *          (but do a sanity check first).
103 >   *      If the switchingRadius was not explicitly set: use 0.85 *
104 >   *      cutoffRadius_
105 >   *  If the cutoffMethod was not set to SWITCHED:
106 >   *      Set switchingRadius equal to cutoffRadius for safety.
107 >   */
108 >  void ForceManager::setupCutoffs() {
109      
110 <    calcShortRangeInteraction();
110 >    Globals* simParams_ = info_->getSimParams();
111 >    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
112 >    int mdFileVersion;
113 >    
114 >    if (simParams_->haveMDfileVersion())
115 >      mdFileVersion = simParams_->getMDfileVersion();
116 >    else
117 >      mdFileVersion = 0;
118 >  
119 >    if (simParams_->haveCutoffRadius()) {
120 >      rCut_ = simParams_->getCutoffRadius();
121 >    } else {      
122 >      if (info_->usesElectrostaticAtoms()) {
123 >        sprintf(painCave.errMsg,
124 >                "ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n"
125 >                "\tOpenMD will use a default value of 12.0 angstroms"
126 >                "\tfor the cutoffRadius.\n");
127 >        painCave.isFatal = 0;
128 >        painCave.severity = OPENMD_INFO;
129 >        simError();
130 >        rCut_ = 12.0;
131 >      } else {
132 >        RealType thisCut;
133 >        set<AtomType*>::iterator i;
134 >        set<AtomType*> atomTypes;
135 >        atomTypes = info_->getSimulatedAtomTypes();        
136 >        for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
137 >          thisCut = interactionMan_->getSuggestedCutoffRadius((*i));
138 >          rCut_ = max(thisCut, rCut_);
139 >        }
140 >        sprintf(painCave.errMsg,
141 >                "ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n"
142 >                "\tOpenMD will use %lf angstroms.\n",
143 >                rCut_);
144 >        painCave.isFatal = 0;
145 >        painCave.severity = OPENMD_INFO;
146 >        simError();
147 >      }
148 >    }
149  
150 <    calcLongRangeInteraction(needPotential, needStress);
150 >    fDecomp_->setUserCutoff(rCut_);
151 >    interactionMan_->setCutoffRadius(rCut_);
152  
153 <    postCalculation();
153 >    map<string, CutoffMethod> stringToCutoffMethod;
154 >    stringToCutoffMethod["HARD"] = HARD;
155 >    stringToCutoffMethod["SWITCHED"] = SWITCHED;
156 >    stringToCutoffMethod["SHIFTED_POTENTIAL"] = SHIFTED_POTENTIAL;    
157 >    stringToCutoffMethod["SHIFTED_FORCE"] = SHIFTED_FORCE;
158 >  
159 >    if (simParams_->haveCutoffMethod()) {
160 >      string cutMeth = toUpperCopy(simParams_->getCutoffMethod());
161 >      map<string, CutoffMethod>::iterator i;
162 >      i = stringToCutoffMethod.find(cutMeth);
163 >      if (i == stringToCutoffMethod.end()) {
164 >        sprintf(painCave.errMsg,
165 >                "ForceManager::setupCutoffs: Could not find chosen cutoffMethod %s\n"
166 >                "\tShould be one of: "
167 >                "HARD, SWITCHED, SHIFTED_POTENTIAL, or SHIFTED_FORCE\n",
168 >                cutMeth.c_str());
169 >        painCave.isFatal = 1;
170 >        painCave.severity = OPENMD_ERROR;
171 >        simError();
172 >      } else {
173 >        cutoffMethod_ = i->second;
174 >      }
175 >    } else {
176 >      if (mdFileVersion > 1) {
177 >        sprintf(painCave.errMsg,
178 >                "ForceManager::setupCutoffs: No value was set for the cutoffMethod.\n"
179 >                "\tOpenMD will use SHIFTED_FORCE.\n");
180 >        painCave.isFatal = 0;
181 >        painCave.severity = OPENMD_INFO;
182 >        simError();
183 >        cutoffMethod_ = SHIFTED_FORCE;        
184 >      } else {
185 >        // handle the case where the old file version was in play
186 >        // (there should be no cutoffMethod, so we have to deduce it
187 >        // from other data).        
188 >
189 >        sprintf(painCave.errMsg,
190 >                "ForceManager::setupCutoffs : DEPRECATED FILE FORMAT!\n"
191 >                "\tOpenMD found a file which does not set a cutoffMethod.\n"
192 >                "\tOpenMD will attempt to deduce a cutoffMethod using the\n"
193 >                "\tbehavior of the older (version 1) code.  To remove this\n"
194 >                "\twarning, add an explicit cutoffMethod and change the top\n"
195 >                "\tof the file so that it begins with <OpenMD version=2>\n");
196 >        painCave.isFatal = 0;
197 >        painCave.severity = OPENMD_WARNING;
198 >        simError();            
199 >                
200 >        // The old file version tethered the shifting behavior to the
201 >        // electrostaticSummationMethod keyword.
202 >        
203 >        if (simParams_->haveElectrostaticSummationMethod()) {
204 >          string myMethod = simParams_->getElectrostaticSummationMethod();
205 >          toUpper(myMethod);
206 >        
207 >          if (myMethod == "SHIFTED_POTENTIAL") {
208 >            cutoffMethod_ = SHIFTED_POTENTIAL;
209 >          } else if (myMethod == "SHIFTED_FORCE") {
210 >            cutoffMethod_ = SHIFTED_FORCE;
211 >          }
212 >        
213 >          if (simParams_->haveSwitchingRadius())
214 >            rSwitch_ = simParams_->getSwitchingRadius();
215 >
216 >          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
217 >            if (simParams_->haveSwitchingRadius()){
218 >              sprintf(painCave.errMsg,
219 >                      "ForceManager::setupCutoffs : DEPRECATED ERROR MESSAGE\n"
220 >                      "\tA value was set for the switchingRadius\n"
221 >                      "\teven though the electrostaticSummationMethod was\n"
222 >                      "\tset to %s\n", myMethod.c_str());
223 >              painCave.severity = OPENMD_WARNING;
224 >              painCave.isFatal = 1;
225 >              simError();            
226 >            }
227 >          }
228 >          if (abs(rCut_ - rSwitch_) < 0.0001) {
229 >            if (cutoffMethod_ == SHIFTED_FORCE) {              
230 >              sprintf(painCave.errMsg,
231 >                      "ForceManager::setupCutoffs : DEPRECATED BEHAVIOR\n"
232 >                      "\tcutoffRadius and switchingRadius are set to the\n"
233 >                      "\tsame value.  OpenMD will use shifted force\n"
234 >                      "\tpotentials instead of switching functions.\n");
235 >              painCave.isFatal = 0;
236 >              painCave.severity = OPENMD_WARNING;
237 >              simError();            
238 >            } else {
239 >              cutoffMethod_ = SHIFTED_POTENTIAL;
240 >              sprintf(painCave.errMsg,
241 >                      "ForceManager::setupCutoffs : DEPRECATED BEHAVIOR\n"
242 >                      "\tcutoffRadius and switchingRadius are set to the\n"
243 >                      "\tsame value.  OpenMD will use shifted potentials\n"
244 >                      "\tinstead of switching functions.\n");
245 >              painCave.isFatal = 0;
246 >              painCave.severity = OPENMD_WARNING;
247 >              simError();            
248 >            }
249 >          }
250 >        }
251 >      }
252 >    }
253 >
254 >    map<string, CutoffPolicy> stringToCutoffPolicy;
255 >    stringToCutoffPolicy["MIX"] = MIX;
256 >    stringToCutoffPolicy["MAX"] = MAX;
257 >    stringToCutoffPolicy["TRADITIONAL"] = TRADITIONAL;    
258 >
259 >    string cutPolicy;
260 >    if (forceFieldOptions_.haveCutoffPolicy()){
261 >      cutPolicy = forceFieldOptions_.getCutoffPolicy();
262 >    }else if (simParams_->haveCutoffPolicy()) {
263 >      cutPolicy = simParams_->getCutoffPolicy();
264 >    }
265 >
266 >    if (!cutPolicy.empty()){
267 >      toUpper(cutPolicy);
268 >      map<string, CutoffPolicy>::iterator i;
269 >      i = stringToCutoffPolicy.find(cutPolicy);
270 >
271 >      if (i == stringToCutoffPolicy.end()) {
272 >        sprintf(painCave.errMsg,
273 >                "ForceManager::setupCutoffs: Could not find chosen cutoffPolicy %s\n"
274 >                "\tShould be one of: "
275 >                "MIX, MAX, or TRADITIONAL\n",
276 >                cutPolicy.c_str());
277 >        painCave.isFatal = 1;
278 >        painCave.severity = OPENMD_ERROR;
279 >        simError();
280 >      } else {
281 >        cutoffPolicy_ = i->second;
282 >      }
283 >    } else {
284 >      sprintf(painCave.errMsg,
285 >              "ForceManager::setupCutoffs: No value was set for the cutoffPolicy.\n"
286 >              "\tOpenMD will use TRADITIONAL.\n");
287 >      painCave.isFatal = 0;
288 >      painCave.severity = OPENMD_INFO;
289 >      simError();
290 >      cutoffPolicy_ = TRADITIONAL;        
291 >    }
292 >
293 >    fDecomp_->setCutoffPolicy(cutoffPolicy_);
294          
295 +    // create the switching function object:
296 +
297 +    switcher_ = new SwitchingFunction();
298 +  
299 +    if (cutoffMethod_ == SWITCHED) {
300 +      if (simParams_->haveSwitchingRadius()) {
301 +        rSwitch_ = simParams_->getSwitchingRadius();
302 +        if (rSwitch_ > rCut_) {        
303 +          sprintf(painCave.errMsg,
304 +                  "ForceManager::setupCutoffs: switchingRadius (%f) is larger "
305 +                  "than the cutoffRadius(%f)\n", rSwitch_, rCut_);
306 +          painCave.isFatal = 1;
307 +          painCave.severity = OPENMD_ERROR;
308 +          simError();
309 +        }
310 +      } else {      
311 +        rSwitch_ = 0.85 * rCut_;
312 +        sprintf(painCave.errMsg,
313 +                "ForceManager::setupCutoffs: No value was set for the switchingRadius.\n"
314 +                "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n"
315 +                "\tswitchingRadius = %f. for this simulation\n", rSwitch_);
316 +        painCave.isFatal = 0;
317 +        painCave.severity = OPENMD_WARNING;
318 +        simError();
319 +      }
320 +    } else {
321 +      if (mdFileVersion > 1) {
322 +        // throw an error if we define a switching radius and don't need one.
323 +        // older file versions should not do this.
324 +        if (simParams_->haveSwitchingRadius()) {
325 +          map<string, CutoffMethod>::const_iterator it;
326 +          string theMeth;
327 +          for (it = stringToCutoffMethod.begin();
328 +               it != stringToCutoffMethod.end(); ++it) {
329 +            if (it->second == cutoffMethod_) {
330 +              theMeth = it->first;
331 +              break;
332 +            }
333 +          }
334 +          sprintf(painCave.errMsg,
335 +                  "ForceManager::setupCutoffs: the cutoffMethod (%s)\n"
336 +                  "\tis not set to SWITCHED, so switchingRadius value\n"
337 +                  "\twill be ignored for this simulation\n", theMeth.c_str());
338 +          painCave.isFatal = 0;
339 +          painCave.severity = OPENMD_WARNING;
340 +          simError();
341 +        }
342 +      }
343 +      rSwitch_ = rCut_;
344 +    }
345 +    
346 +    // Default to cubic switching function.
347 +    sft_ = cubic;
348 +    if (simParams_->haveSwitchingFunctionType()) {
349 +      string funcType = simParams_->getSwitchingFunctionType();
350 +      toUpper(funcType);
351 +      if (funcType == "CUBIC") {
352 +        sft_ = cubic;
353 +      } else {
354 +        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
355 +          sft_ = fifth_order_poly;
356 +        } else {
357 +          // throw error        
358 +          sprintf( painCave.errMsg,
359 +                   "ForceManager::setupSwitching : Unknown switchingFunctionType. (Input file specified %s .)\n"
360 +                   "\tswitchingFunctionType must be one of: "
361 +                   "\"cubic\" or \"fifth_order_polynomial\".",
362 +                   funcType.c_str() );
363 +          painCave.isFatal = 1;
364 +          painCave.severity = OPENMD_ERROR;
365 +          simError();
366 +        }          
367 +      }
368 +    }
369 +    switcher_->setSwitchType(sft_);
370 +    switcher_->setSwitch(rSwitch_, rCut_);
371 +    interactionMan_->setSwitchingRadius(rSwitch_);
372    }
373  
374 +
375 +
376 +  
377 +  void ForceManager::initialize() {
378 +
379 +    if (!info_->isTopologyDone()) {
380 +
381 +      info_->update();
382 +      interactionMan_->setSimInfo(info_);
383 +      interactionMan_->initialize();
384 +
385 +      // We want to delay the cutoffs until after the interaction
386 +      // manager has set up the atom-atom interactions so that we can
387 +      // query them for suggested cutoff values
388 +      setupCutoffs();
389 +
390 +      info_->prepareTopology();      
391 +
392 +      doParticlePot_ = info_->getSimParams()->getOutputParticlePotential();
393 +      doHeatFlux_ = info_->getSimParams()->getPrintHeatFlux();
394 +      if (doHeatFlux_) doParticlePot_ = true;
395 +  
396 +    }
397 +
398 +    ForceFieldOptions& fopts = forceField_->getForceFieldOptions();
399 +    
400 +    // Force fields can set options on how to scale van der Waals and
401 +    // electrostatic interactions for atoms connected via bonds, bends
402 +    // and torsions in this case the topological distance between
403 +    // atoms is:
404 +    // 0 = topologically unconnected
405 +    // 1 = bonded together
406 +    // 2 = connected via a bend
407 +    // 3 = connected via a torsion
408 +    
409 +    vdwScale_.reserve(4);
410 +    fill(vdwScale_.begin(), vdwScale_.end(), 0.0);
411 +
412 +    electrostaticScale_.reserve(4);
413 +    fill(electrostaticScale_.begin(), electrostaticScale_.end(), 0.0);
414 +
415 +    vdwScale_[0] = 1.0;
416 +    vdwScale_[1] = fopts.getvdw12scale();
417 +    vdwScale_[2] = fopts.getvdw13scale();
418 +    vdwScale_[3] = fopts.getvdw14scale();
419 +    
420 +    electrostaticScale_[0] = 1.0;
421 +    electrostaticScale_[1] = fopts.getelectrostatic12scale();
422 +    electrostaticScale_[2] = fopts.getelectrostatic13scale();
423 +    electrostaticScale_[3] = fopts.getelectrostatic14scale();    
424 +    
425 +    fDecomp_->distributeInitialData();
426 +
427 +    initialized_ = true;
428 +
429 +  }
430 +
431 +  void ForceManager::calcForces() {
432 +    
433 +    if (!initialized_) initialize();
434 +
435 +    preCalculation();  
436 +    shortRangeInteractions();
437 +    longRangeInteractions();
438 +    postCalculation();    
439 +  }
440 +  
441    void ForceManager::preCalculation() {
442      SimInfo::MoleculeIterator mi;
443      Molecule* mol;
# Line 78 | Line 445 | namespace oopse {
445      Atom* atom;
446      Molecule::RigidBodyIterator rbIter;
447      RigidBody* rb;
448 +    Molecule::CutoffGroupIterator ci;
449 +    CutoffGroup* cg;
450      
451      // forces are zeroed here, before any are accumulated.
452 <    // NOTE: do not rezero the forces in Fortran.
453 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
454 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
452 >    
453 >    for (mol = info_->beginMolecule(mi); mol != NULL;
454 >         mol = info_->nextMolecule(mi)) {
455 >      for(atom = mol->beginAtom(ai); atom != NULL;
456 >          atom = mol->nextAtom(ai)) {
457          atom->zeroForcesAndTorques();
458        }
459 <        
459 >      
460        //change the positions of atoms which belong to the rigidbodies
461 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
461 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
462 >           rb = mol->nextRigidBody(rbIter)) {
463          rb->zeroForcesAndTorques();
464        }        
465 +      
466 +      if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){
467 +        for(cg = mol->beginCutoffGroup(ci); cg != NULL;
468 +            cg = mol->nextCutoffGroup(ci)) {
469 +          //calculate the center of mass of cutoff group
470 +          cg->updateCOM();
471 +        }
472 +      }      
473      }
474      
475 +    // Zero out the stress tensor
476 +    stressTensor *= 0.0;
477 +    // Zero out the heatFlux
478 +    fDecomp_->setHeatFlux( V3Zero );    
479    }
480 <
481 <  void ForceManager::calcShortRangeInteraction() {
480 >  
481 >  void ForceManager::shortRangeInteractions() {
482      Molecule* mol;
483      RigidBody* rb;
484      Bond* bond;
485      Bend* bend;
486      Torsion* torsion;
487 +    Inversion* inversion;
488      SimInfo::MoleculeIterator mi;
489      Molecule::RigidBodyIterator rbIter;
490      Molecule::BondIterator bondIter;;
491      Molecule::BendIterator  bendIter;
492      Molecule::TorsionIterator  torsionIter;
493 +    Molecule::InversionIterator  inversionIter;
494 +    RealType bondPotential = 0.0;
495 +    RealType bendPotential = 0.0;
496 +    RealType torsionPotential = 0.0;
497 +    RealType inversionPotential = 0.0;
498  
499      //calculate short range interactions    
500 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
500 >    for (mol = info_->beginMolecule(mi); mol != NULL;
501 >         mol = info_->nextMolecule(mi)) {
502  
503        //change the positions of atoms which belong to the rigidbodies
504 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
505 <        rb->updateAtoms();
504 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
505 >           rb = mol->nextRigidBody(rbIter)) {
506 >        rb->updateAtoms();
507        }
508  
509 <      for (bond = mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
510 <        bond->calcForce();
509 >      for (bond = mol->beginBond(bondIter); bond != NULL;
510 >           bond = mol->nextBond(bondIter)) {
511 >        bond->calcForce(doParticlePot_);
512 >        bondPotential += bond->getPotential();
513        }
514  
515 <      for (bend = mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
516 <        bend->calcForce();
515 >      for (bend = mol->beginBend(bendIter); bend != NULL;
516 >           bend = mol->nextBend(bendIter)) {
517 >        
518 >        RealType angle;
519 >        bend->calcForce(angle, doParticlePot_);
520 >        RealType currBendPot = bend->getPotential();          
521 >        
522 >        bendPotential += bend->getPotential();
523 >        map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend);
524 >        if (i == bendDataSets.end()) {
525 >          BendDataSet dataSet;
526 >          dataSet.prev.angle = dataSet.curr.angle = angle;
527 >          dataSet.prev.potential = dataSet.curr.potential = currBendPot;
528 >          dataSet.deltaV = 0.0;
529 >          bendDataSets.insert(map<Bend*, BendDataSet>::value_type(bend,
530 >                                                                  dataSet));
531 >        }else {
532 >          i->second.prev.angle = i->second.curr.angle;
533 >          i->second.prev.potential = i->second.curr.potential;
534 >          i->second.curr.angle = angle;
535 >          i->second.curr.potential = currBendPot;
536 >          i->second.deltaV =  fabs(i->second.curr.potential -  
537 >                                   i->second.prev.potential);
538 >        }
539        }
540 <
541 <      for (torsion = mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
542 <        torsion->calcForce();
543 <      }
544 <
540 >      
541 >      for (torsion = mol->beginTorsion(torsionIter); torsion != NULL;
542 >           torsion = mol->nextTorsion(torsionIter)) {
543 >        RealType angle;
544 >        torsion->calcForce(angle, doParticlePot_);
545 >        RealType currTorsionPot = torsion->getPotential();
546 >        torsionPotential += torsion->getPotential();
547 >        map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion);
548 >        if (i == torsionDataSets.end()) {
549 >          TorsionDataSet dataSet;
550 >          dataSet.prev.angle = dataSet.curr.angle = angle;
551 >          dataSet.prev.potential = dataSet.curr.potential = currTorsionPot;
552 >          dataSet.deltaV = 0.0;
553 >          torsionDataSets.insert(map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet));
554 >        }else {
555 >          i->second.prev.angle = i->second.curr.angle;
556 >          i->second.prev.potential = i->second.curr.potential;
557 >          i->second.curr.angle = angle;
558 >          i->second.curr.potential = currTorsionPot;
559 >          i->second.deltaV =  fabs(i->second.curr.potential -  
560 >                                   i->second.prev.potential);
561 >        }      
562 >      }      
563 >      
564 >      for (inversion = mol->beginInversion(inversionIter);
565 >           inversion != NULL;
566 >           inversion = mol->nextInversion(inversionIter)) {
567 >        RealType angle;
568 >        inversion->calcForce(angle, doParticlePot_);
569 >        RealType currInversionPot = inversion->getPotential();
570 >        inversionPotential += inversion->getPotential();
571 >        map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion);
572 >        if (i == inversionDataSets.end()) {
573 >          InversionDataSet dataSet;
574 >          dataSet.prev.angle = dataSet.curr.angle = angle;
575 >          dataSet.prev.potential = dataSet.curr.potential = currInversionPot;
576 >          dataSet.deltaV = 0.0;
577 >          inversionDataSets.insert(map<Inversion*, InversionDataSet>::value_type(inversion, dataSet));
578 >        }else {
579 >          i->second.prev.angle = i->second.curr.angle;
580 >          i->second.prev.potential = i->second.curr.potential;
581 >          i->second.curr.angle = angle;
582 >          i->second.curr.potential = currInversionPot;
583 >          i->second.deltaV =  fabs(i->second.curr.potential -  
584 >                                   i->second.prev.potential);
585 >        }      
586 >      }      
587      }
588      
589 <
590 <    double bondPotential = 0.0;
133 <    double bendPotential = 0.0;
134 <    double torsionPotential = 0.0;
135 <
136 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
137 <
138 <      for (bond = mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
139 <          bondPotential += bond->getPotential();
140 <      }
141 <
142 <      for (bend = mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
143 <          bendPotential += bend->getPotential();
144 <      }
145 <
146 <      for (torsion = mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
147 <          torsionPotential += torsion->getPotential();
148 <      }
149 <
150 <    }    
151 <
152 <    double  shortRangePotential = bondPotential + bendPotential + torsionPotential;    
589 >    RealType  shortRangePotential = bondPotential + bendPotential +
590 >      torsionPotential +  inversionPotential;    
591      Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
592      curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential;
593      curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential;
594      curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential;
595      curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential;
596 <    
596 >    curSnapshot->statData[Stats::INVERSION_POTENTIAL] = inversionPotential;    
597    }
598 +  
599 +  void ForceManager::longRangeInteractions() {
600  
161  void ForceManager::calcLongRangeInteraction(bool needPotential, bool needStress) {
162    Snapshot* curSnapshot;
163    DataStorage* config;
164    double* frc;
165    double* pos;
166    double* trq;
167    double* A;
168    double* electroFrame;
169    double* rc;
170    
171    //get current snapshot from SimInfo
172    curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
601  
602 <    //get array pointers
603 <    config = &(curSnapshot->atomData);
604 <    frc = config->getArrayPointer(DataStorage::dslForce);
177 <    pos = config->getArrayPointer(DataStorage::dslPosition);
178 <    trq = config->getArrayPointer(DataStorage::dslTorque);
179 <    A   = config->getArrayPointer(DataStorage::dslAmat);
180 <    electroFrame = config->getArrayPointer(DataStorage::dslElectroFrame);
602 >    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
603 >    DataStorage* config = &(curSnapshot->atomData);
604 >    DataStorage* cgConfig = &(curSnapshot->cgData);
605  
606      //calculate the center of mass of cutoff group
607 +
608      SimInfo::MoleculeIterator mi;
609      Molecule* mol;
610      Molecule::CutoffGroupIterator ci;
611      CutoffGroup* cg;
187    Vector3d com;
188    std::vector<Vector3d> rcGroup;
612  
613 <    if(info_->getNCutoffGroups() > 0){
614 <
615 <      for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
616 <        for(cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
617 <          cg->getCOM(com);
618 <          rcGroup.push_back(com);
613 >    if(info_->getNCutoffGroups() > 0){      
614 >      for (mol = info_->beginMolecule(mi); mol != NULL;
615 >           mol = info_->nextMolecule(mi)) {
616 >        for(cg = mol->beginCutoffGroup(ci); cg != NULL;
617 >            cg = mol->nextCutoffGroup(ci)) {
618 >          cg->updateCOM();
619          }
620 <      }// end for (mol)
198 <      
199 <      rc = rcGroup[0].getArrayPointer();
620 >      }      
621      } else {
622 <      // center of mass of the group is the same as position of the atom  if cutoff group does not exist
623 <      rc = pos;
622 >      // center of mass of the group is the same as position of the atom  
623 >      // if cutoff group does not exist
624 >      cgConfig->position = config->position;
625 >      cgConfig->velocity = config->velocity;
626      }
627 <  
628 <    //initialize data before passing to fortran
629 <    double longRangePotential[LR_POT_TYPES];
207 <    double lrPot = 0.0;
627 >
628 >    fDecomp_->zeroWorkArrays();
629 >    fDecomp_->distributeData();
630      
631 <    Mat3x3d tau;
632 <    short int passedCalcPot = needPotential;
633 <    short int passedCalcStress = needStress;
634 <    int isError = 0;
631 >    int cg1, cg2, atom1, atom2, topoDist;
632 >    Vector3d d_grp, dag, d, gvel2, vel2;
633 >    RealType rgrpsq, rgrp, r2, r;
634 >    RealType electroMult, vdwMult;
635 >    RealType vij;
636 >    Vector3d fij, fg, f1;
637 >    tuple3<RealType, RealType, RealType> cuts;
638 >    RealType rCutSq;
639 >    bool in_switching_region;
640 >    RealType sw, dswdr, swderiv;
641 >    vector<int> atomListColumn, atomListRow, atomListLocal;
642 >    InteractionData idat;
643 >    SelfData sdat;
644 >    RealType mf;
645 >    RealType lrPot;
646 >    RealType vpair;
647 >    potVec longRangePotential(0.0);
648 >    potVec workPot(0.0);
649 >    vector<int>::iterator ia, jb;
650  
651 <    for (int i=0; i<LR_POT_TYPES;i++){
652 <      longRangePotential[i]=0.0; //Initialize array
651 >    int loopStart, loopEnd;
652 >
653 >    idat.vdwMult = &vdwMult;
654 >    idat.electroMult = &electroMult;
655 >    idat.pot = &workPot;
656 >    sdat.pot = fDecomp_->getEmbeddingPotential();
657 >    idat.vpair = &vpair;
658 >    idat.f1 = &f1;
659 >    idat.sw = &sw;
660 >    idat.shiftedPot = (cutoffMethod_ == SHIFTED_POTENTIAL) ? true : false;
661 >    idat.shiftedForce = (cutoffMethod_ == SHIFTED_FORCE) ? true : false;
662 >    idat.doParticlePot = doParticlePot_;
663 >    sdat.doParticlePot = doParticlePot_;
664 >    
665 >    loopEnd = PAIR_LOOP;
666 >    if (info_->requiresPrepair() ) {
667 >      loopStart = PREPAIR_LOOP;
668 >    } else {
669 >      loopStart = PAIR_LOOP;
670      }
671 +  
672 +    for (int iLoop = loopStart; iLoop <= loopEnd; iLoop++) {
673 +    
674 +      if (iLoop == loopStart) {
675 +        bool update_nlist = fDecomp_->checkNeighborList();
676 +        if (update_nlist)
677 +          neighborList = fDecomp_->buildNeighborList();
678 +      }            
679  
680 +      for (vector<pair<int, int> >::iterator it = neighborList.begin();
681 +             it != neighborList.end(); ++it) {
682 +                
683 +        cg1 = (*it).first;
684 +        cg2 = (*it).second;
685 +        
686 +        cuts = fDecomp_->getGroupCutoffs(cg1, cg2);
687  
688 +        d_grp  = fDecomp_->getIntergroupVector(cg1, cg2);
689  
690 <    doForceLoop( pos,
691 <                 rc,
692 <                 A,
223 <                 electroFrame,
224 <                 frc,
225 <                 trq,
226 <                 tau.getArrayPointer(),
227 <                 longRangePotential,
228 <                 &passedCalcPot,
229 <                 &passedCalcStress,
230 <                 &isError );
690 >        curSnapshot->wrapVector(d_grp);        
691 >        rgrpsq = d_grp.lengthSquare();
692 >        rCutSq = cuts.second;
693  
694 <    if( isError ){
695 <      sprintf( painCave.errMsg,
696 <               "Error returned from the fortran force calculation.\n" );
697 <      painCave.isFatal = 1;
698 <      simError();
694 >        if (rgrpsq < rCutSq) {
695 >          idat.rcut = &cuts.first;
696 >          if (iLoop == PAIR_LOOP) {
697 >            vij = 0.0;
698 >            fij = V3Zero;
699 >          }
700 >          
701 >          in_switching_region = switcher_->getSwitch(rgrpsq, sw, dswdr,
702 >                                                     rgrp);
703 >          
704 >          atomListRow = fDecomp_->getAtomsInGroupRow(cg1);
705 >          atomListColumn = fDecomp_->getAtomsInGroupColumn(cg2);
706 >
707 >          if (doHeatFlux_)
708 >            gvel2 = fDecomp_->getGroupVelocityColumn(cg2);
709 >        
710 >          for (ia = atomListRow.begin();
711 >               ia != atomListRow.end(); ++ia) {            
712 >            atom1 = (*ia);
713 >            
714 >            for (jb = atomListColumn.begin();
715 >                 jb != atomListColumn.end(); ++jb) {              
716 >              atom2 = (*jb);
717 >
718 >              if (!fDecomp_->skipAtomPair(atom1, atom2)) {
719 >                vpair = 0.0;
720 >                workPot = 0.0;
721 >                f1 = V3Zero;
722 >
723 >                fDecomp_->fillInteractionData(idat, atom1, atom2);
724 >                
725 >                topoDist = fDecomp_->getTopologicalDistance(atom1, atom2);
726 >                vdwMult = vdwScale_[topoDist];
727 >                electroMult = electrostaticScale_[topoDist];
728 >
729 >                if (atomListRow.size() == 1 && atomListColumn.size() == 1) {
730 >                  idat.d = &d_grp;
731 >                  idat.r2 = &rgrpsq;
732 >                  if (doHeatFlux_)
733 >                    vel2 = gvel2;
734 >                } else {
735 >                  d = fDecomp_->getInteratomicVector(atom1, atom2);
736 >                  curSnapshot->wrapVector( d );
737 >                  r2 = d.lengthSquare();
738 >                  idat.d = &d;
739 >                  idat.r2 = &r2;
740 >                  if (doHeatFlux_)
741 >                    vel2 = fDecomp_->getAtomVelocityColumn(atom2);
742 >                }
743 >              
744 >                r = sqrt( *(idat.r2) );
745 >                idat.rij = &r;
746 >              
747 >                if (iLoop == PREPAIR_LOOP) {
748 >                  interactionMan_->doPrePair(idat);
749 >                } else {
750 >                  interactionMan_->doPair(idat);
751 >                  fDecomp_->unpackInteractionData(idat, atom1, atom2);
752 >                  vij += vpair;
753 >                  fij += f1;
754 >                  stressTensor -= outProduct( *(idat.d), f1);
755 >                  if (doHeatFlux_)
756 >                    fDecomp_->addToHeatFlux(*(idat.d) * dot(f1, vel2));
757 >                }
758 >              }
759 >            }
760 >          }
761 >
762 >          if (iLoop == PAIR_LOOP) {
763 >            if (in_switching_region) {
764 >              swderiv = vij * dswdr / rgrp;
765 >              fg = swderiv * d_grp;
766 >              fij += fg;
767 >
768 >              if (atomListRow.size() == 1 && atomListColumn.size() == 1) {
769 >                stressTensor -= outProduct( *(idat.d), fg);
770 >                if (doHeatFlux_)
771 >                  fDecomp_->addToHeatFlux(*(idat.d) * dot(fg, vel2));
772 >                
773 >              }
774 >          
775 >              for (ia = atomListRow.begin();
776 >                   ia != atomListRow.end(); ++ia) {            
777 >                atom1 = (*ia);                
778 >                mf = fDecomp_->getMassFactorRow(atom1);
779 >                // fg is the force on atom ia due to cutoff group's
780 >                // presence in switching region
781 >                fg = swderiv * d_grp * mf;
782 >                fDecomp_->addForceToAtomRow(atom1, fg);
783 >                if (atomListRow.size() > 1) {
784 >                  if (info_->usesAtomicVirial()) {
785 >                    // find the distance between the atom
786 >                    // and the center of the cutoff group:
787 >                    dag = fDecomp_->getAtomToGroupVectorRow(atom1, cg1);
788 >                    stressTensor -= outProduct(dag, fg);
789 >                    if (doHeatFlux_)
790 >                      fDecomp_->addToHeatFlux( dag * dot(fg, vel2));
791 >                  }
792 >                }
793 >              }
794 >              for (jb = atomListColumn.begin();
795 >                   jb != atomListColumn.end(); ++jb) {              
796 >                atom2 = (*jb);
797 >                mf = fDecomp_->getMassFactorColumn(atom2);
798 >                // fg is the force on atom jb due to cutoff group's
799 >                // presence in switching region
800 >                fg = -swderiv * d_grp * mf;
801 >                fDecomp_->addForceToAtomColumn(atom2, fg);
802 >
803 >                if (atomListColumn.size() > 1) {
804 >                  if (info_->usesAtomicVirial()) {
805 >                    // find the distance between the atom
806 >                    // and the center of the cutoff group:
807 >                    dag = fDecomp_->getAtomToGroupVectorColumn(atom2, cg2);
808 >                    stressTensor -= outProduct(dag, fg);
809 >                    if (doHeatFlux_)
810 >                      fDecomp_->addToHeatFlux( dag * dot(fg, vel2));
811 >                  }
812 >                }
813 >              }
814 >            }
815 >            //if (!info_->usesAtomicVirial()) {
816 >            //  stressTensor -= outProduct(d_grp, fij);
817 >            //  if (doHeatFlux_)
818 >            //     fDecomp_->addToHeatFlux( d_grp * dot(fij, vel2));
819 >            //}
820 >          }
821 >        }
822 >      }
823 >
824 >      if (iLoop == PREPAIR_LOOP) {
825 >        if (info_->requiresPrepair()) {
826 >
827 >          fDecomp_->collectIntermediateData();
828 >
829 >          for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) {
830 >            fDecomp_->fillSelfData(sdat, atom1);
831 >            interactionMan_->doPreForce(sdat);
832 >          }
833 >
834 >          fDecomp_->distributeIntermediateData();
835 >
836 >        }
837 >      }
838      }
839 <    for (int i=0; i<LR_POT_TYPES;i++){
840 <      lrPot += longRangePotential[i]; //Quick hack
839 >    
840 >    fDecomp_->collectData();
841 >        
842 >    if (info_->requiresSelfCorrection()) {
843 >
844 >      for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) {          
845 >        fDecomp_->fillSelfData(sdat, atom1);
846 >        interactionMan_->doSelfCorrection(sdat);
847 >      }
848 >
849      }
850  
851 <    //store the tau and long range potential    
851 >    longRangePotential = *(fDecomp_->getEmbeddingPotential()) +
852 >      *(fDecomp_->getPairwisePotential());
853 >
854 >    lrPot = longRangePotential.sum();
855 >
856 >    //store the stressTensor and long range potential    
857      curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot;
858 <    //  curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = longRangePotential;
859 <    curSnapshot->statData.setTau(tau);
858 >    curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VANDERWAALS_FAMILY];
859 >    curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_FAMILY];
860    }
861  
862 <
862 >  
863    void ForceManager::postCalculation() {
864      SimInfo::MoleculeIterator mi;
865      Molecule* mol;
866      Molecule::RigidBodyIterator rbIter;
867      RigidBody* rb;
868 +    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
869      
870      // collect the atomic forces onto rigid bodies
871 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
872 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
873 <        rb->calcForcesAndTorques();
871 >    
872 >    for (mol = info_->beginMolecule(mi); mol != NULL;
873 >         mol = info_->nextMolecule(mi)) {
874 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
875 >           rb = mol->nextRigidBody(rbIter)) {
876 >        Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial();
877 >        stressTensor += rbTau;
878        }
879      }
880 +    
881 + #ifdef IS_MPI
882  
883 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, stressTensor.getArrayPointer(), 9,
884 +                              MPI::REALTYPE, MPI::SUM);
885 + #endif
886 +    curSnapshot->setStressTensor(stressTensor);
887 +    
888    }
889  
890 < } //end namespace oopse
890 > } //end namespace OpenMD

Comparing:
trunk/src/brains/ForceManager.cpp (property svn:keywords), Revision 665 by tim, Thu Oct 13 22:26:47 2005 UTC vs.
branches/development/src/brains/ForceManager.cpp (property svn:keywords), Revision 1723 by gezelter, Thu May 24 20:59:54 2012 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines