| 36 |
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
| 37 |
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
| 38 |
|
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
| 39 |
< |
* [4] Vardeman & Gezelter, in progress (2009). |
| 39 |
> |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
| 40 |
> |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
| 41 |
|
*/ |
| 42 |
|
|
| 43 |
|
/** |
| 201 |
|
// electrostaticSummationMethod keyword. |
| 202 |
|
|
| 203 |
|
if (simParams_->haveElectrostaticSummationMethod()) { |
| 204 |
< |
std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
| 204 |
> |
string myMethod = simParams_->getElectrostaticSummationMethod(); |
| 205 |
|
toUpper(myMethod); |
| 206 |
|
|
| 207 |
|
if (myMethod == "SHIFTED_POTENTIAL") { |
| 256 |
|
stringToCutoffPolicy["MAX"] = MAX; |
| 257 |
|
stringToCutoffPolicy["TRADITIONAL"] = TRADITIONAL; |
| 258 |
|
|
| 259 |
< |
std::string cutPolicy; |
| 259 |
> |
string cutPolicy; |
| 260 |
|
if (forceFieldOptions_.haveCutoffPolicy()){ |
| 261 |
|
cutPolicy = forceFieldOptions_.getCutoffPolicy(); |
| 262 |
|
}else if (simParams_->haveCutoffPolicy()) { |
| 318 |
|
simError(); |
| 319 |
|
} |
| 320 |
|
} else { |
| 321 |
< |
if (simParams_->haveSwitchingRadius()) { |
| 322 |
< |
map<string, CutoffMethod>::const_iterator it; |
| 323 |
< |
string theMeth; |
| 324 |
< |
for (it = stringToCutoffMethod.begin(); |
| 325 |
< |
it != stringToCutoffMethod.end(); ++it) { |
| 326 |
< |
if (it->second == cutoffMethod_) { |
| 327 |
< |
theMeth = it->first; |
| 328 |
< |
break; |
| 321 |
> |
if (mdFileVersion > 1) { |
| 322 |
> |
// throw an error if we define a switching radius and don't need one. |
| 323 |
> |
// older file versions should not do this. |
| 324 |
> |
if (simParams_->haveSwitchingRadius()) { |
| 325 |
> |
map<string, CutoffMethod>::const_iterator it; |
| 326 |
> |
string theMeth; |
| 327 |
> |
for (it = stringToCutoffMethod.begin(); |
| 328 |
> |
it != stringToCutoffMethod.end(); ++it) { |
| 329 |
> |
if (it->second == cutoffMethod_) { |
| 330 |
> |
theMeth = it->first; |
| 331 |
> |
break; |
| 332 |
> |
} |
| 333 |
|
} |
| 334 |
+ |
sprintf(painCave.errMsg, |
| 335 |
+ |
"ForceManager::setupCutoffs: the cutoffMethod (%s)\n" |
| 336 |
+ |
"\tis not set to SWITCHED, so switchingRadius value\n" |
| 337 |
+ |
"\twill be ignored for this simulation\n", theMeth.c_str()); |
| 338 |
+ |
painCave.isFatal = 0; |
| 339 |
+ |
painCave.severity = OPENMD_WARNING; |
| 340 |
+ |
simError(); |
| 341 |
|
} |
| 330 |
– |
sprintf(painCave.errMsg, |
| 331 |
– |
"ForceManager::setupCutoffs: the cutoffMethod (%s)\n" |
| 332 |
– |
"\tis not set to SWITCHED, so switchingRadius value\n" |
| 333 |
– |
"\twill be ignored for this simulation\n", theMeth.c_str()); |
| 334 |
– |
painCave.isFatal = 0; |
| 335 |
– |
painCave.severity = OPENMD_WARNING; |
| 336 |
– |
simError(); |
| 342 |
|
} |
| 338 |
– |
|
| 343 |
|
rSwitch_ = rCut_; |
| 344 |
|
} |
| 345 |
|
|
| 388 |
|
setupCutoffs(); |
| 389 |
|
|
| 390 |
|
info_->prepareTopology(); |
| 391 |
+ |
|
| 392 |
+ |
doParticlePot_ = info_->getSimParams()->getOutputParticlePotential(); |
| 393 |
+ |
doHeatFlux_ = info_->getSimParams()->getPrintHeatFlux(); |
| 394 |
+ |
if (doHeatFlux_) doParticlePot_ = true; |
| 395 |
+ |
|
| 396 |
|
} |
| 397 |
|
|
| 398 |
|
ForceFieldOptions& fopts = forceField_->getForceFieldOptions(); |
| 473 |
|
} |
| 474 |
|
|
| 475 |
|
// Zero out the stress tensor |
| 476 |
< |
tau *= 0.0; |
| 477 |
< |
|
| 476 |
> |
stressTensor *= 0.0; |
| 477 |
> |
// Zero out the heatFlux |
| 478 |
> |
fDecomp_->setHeatFlux( V3Zero ); |
| 479 |
|
} |
| 480 |
|
|
| 481 |
|
void ForceManager::shortRangeInteractions() { |
| 508 |
|
|
| 509 |
|
for (bond = mol->beginBond(bondIter); bond != NULL; |
| 510 |
|
bond = mol->nextBond(bondIter)) { |
| 511 |
< |
bond->calcForce(); |
| 511 |
> |
bond->calcForce(doParticlePot_); |
| 512 |
|
bondPotential += bond->getPotential(); |
| 513 |
|
} |
| 514 |
|
|
| 516 |
|
bend = mol->nextBend(bendIter)) { |
| 517 |
|
|
| 518 |
|
RealType angle; |
| 519 |
< |
bend->calcForce(angle); |
| 519 |
> |
bend->calcForce(angle, doParticlePot_); |
| 520 |
|
RealType currBendPot = bend->getPotential(); |
| 521 |
|
|
| 522 |
|
bendPotential += bend->getPotential(); |
| 541 |
|
for (torsion = mol->beginTorsion(torsionIter); torsion != NULL; |
| 542 |
|
torsion = mol->nextTorsion(torsionIter)) { |
| 543 |
|
RealType angle; |
| 544 |
< |
torsion->calcForce(angle); |
| 544 |
> |
torsion->calcForce(angle, doParticlePot_); |
| 545 |
|
RealType currTorsionPot = torsion->getPotential(); |
| 546 |
|
torsionPotential += torsion->getPotential(); |
| 547 |
|
map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion); |
| 565 |
|
inversion != NULL; |
| 566 |
|
inversion = mol->nextInversion(inversionIter)) { |
| 567 |
|
RealType angle; |
| 568 |
< |
inversion->calcForce(angle); |
| 568 |
> |
inversion->calcForce(angle, doParticlePot_); |
| 569 |
|
RealType currInversionPot = inversion->getPotential(); |
| 570 |
|
inversionPotential += inversion->getPotential(); |
| 571 |
|
map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion); |
| 598 |
|
|
| 599 |
|
void ForceManager::longRangeInteractions() { |
| 600 |
|
|
| 601 |
+ |
|
| 602 |
|
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
| 603 |
|
DataStorage* config = &(curSnapshot->atomData); |
| 604 |
|
DataStorage* cgConfig = &(curSnapshot->cgData); |
| 622 |
|
// center of mass of the group is the same as position of the atom |
| 623 |
|
// if cutoff group does not exist |
| 624 |
|
cgConfig->position = config->position; |
| 625 |
+ |
cgConfig->velocity = config->velocity; |
| 626 |
|
} |
| 627 |
|
|
| 628 |
|
fDecomp_->zeroWorkArrays(); |
| 629 |
|
fDecomp_->distributeData(); |
| 630 |
|
|
| 631 |
|
int cg1, cg2, atom1, atom2, topoDist; |
| 632 |
< |
Vector3d d_grp, dag, d; |
| 632 |
> |
Vector3d d_grp, dag, d, gvel2, vel2; |
| 633 |
|
RealType rgrpsq, rgrp, r2, r; |
| 634 |
|
RealType electroMult, vdwMult; |
| 635 |
|
RealType vij; |
| 644 |
|
RealType mf; |
| 645 |
|
RealType lrPot; |
| 646 |
|
RealType vpair; |
| 647 |
+ |
RealType dVdFQ1(0.0); |
| 648 |
+ |
RealType dVdFQ2(0.0); |
| 649 |
|
potVec longRangePotential(0.0); |
| 650 |
|
potVec workPot(0.0); |
| 651 |
+ |
vector<int>::iterator ia, jb; |
| 652 |
|
|
| 653 |
|
int loopStart, loopEnd; |
| 654 |
|
|
| 657 |
|
idat.pot = &workPot; |
| 658 |
|
sdat.pot = fDecomp_->getEmbeddingPotential(); |
| 659 |
|
idat.vpair = &vpair; |
| 660 |
+ |
idat.dVdFQ1 = &dVdFQ1; |
| 661 |
+ |
idat.dVdFQ2 = &dVdFQ2; |
| 662 |
|
idat.f1 = &f1; |
| 663 |
|
idat.sw = &sw; |
| 664 |
|
idat.shiftedPot = (cutoffMethod_ == SHIFTED_POTENTIAL) ? true : false; |
| 665 |
|
idat.shiftedForce = (cutoffMethod_ == SHIFTED_FORCE) ? true : false; |
| 666 |
+ |
idat.doParticlePot = doParticlePot_; |
| 667 |
+ |
sdat.doParticlePot = doParticlePot_; |
| 668 |
|
|
| 669 |
|
loopEnd = PAIR_LOOP; |
| 670 |
|
if (info_->requiresPrepair() ) { |
| 708 |
|
atomListRow = fDecomp_->getAtomsInGroupRow(cg1); |
| 709 |
|
atomListColumn = fDecomp_->getAtomsInGroupColumn(cg2); |
| 710 |
|
|
| 711 |
< |
for (vector<int>::iterator ia = atomListRow.begin(); |
| 711 |
> |
if (doHeatFlux_) |
| 712 |
> |
gvel2 = fDecomp_->getGroupVelocityColumn(cg2); |
| 713 |
> |
|
| 714 |
> |
for (ia = atomListRow.begin(); |
| 715 |
|
ia != atomListRow.end(); ++ia) { |
| 716 |
|
atom1 = (*ia); |
| 717 |
|
|
| 718 |
< |
for (vector<int>::iterator jb = atomListColumn.begin(); |
| 718 |
> |
for (jb = atomListColumn.begin(); |
| 719 |
|
jb != atomListColumn.end(); ++jb) { |
| 720 |
|
atom2 = (*jb); |
| 721 |
|
|
| 723 |
|
vpair = 0.0; |
| 724 |
|
workPot = 0.0; |
| 725 |
|
f1 = V3Zero; |
| 726 |
+ |
dVdFQ1 = 0.0; |
| 727 |
+ |
dVdFQ2 = 0.0; |
| 728 |
|
|
| 729 |
|
fDecomp_->fillInteractionData(idat, atom1, atom2); |
| 730 |
|
|
| 735 |
|
if (atomListRow.size() == 1 && atomListColumn.size() == 1) { |
| 736 |
|
idat.d = &d_grp; |
| 737 |
|
idat.r2 = &rgrpsq; |
| 738 |
+ |
if (doHeatFlux_) |
| 739 |
+ |
vel2 = gvel2; |
| 740 |
|
} else { |
| 741 |
|
d = fDecomp_->getInteratomicVector(atom1, atom2); |
| 742 |
|
curSnapshot->wrapVector( d ); |
| 743 |
|
r2 = d.lengthSquare(); |
| 744 |
|
idat.d = &d; |
| 745 |
|
idat.r2 = &r2; |
| 746 |
+ |
if (doHeatFlux_) |
| 747 |
+ |
vel2 = fDecomp_->getAtomVelocityColumn(atom2); |
| 748 |
|
} |
| 749 |
|
|
| 750 |
|
r = sqrt( *(idat.r2) ); |
| 757 |
|
fDecomp_->unpackInteractionData(idat, atom1, atom2); |
| 758 |
|
vij += vpair; |
| 759 |
|
fij += f1; |
| 760 |
< |
tau -= outProduct( *(idat.d), f1); |
| 760 |
> |
stressTensor -= outProduct( *(idat.d), f1); |
| 761 |
> |
if (doHeatFlux_) |
| 762 |
> |
fDecomp_->addToHeatFlux(*(idat.d) * dot(f1, vel2)); |
| 763 |
|
} |
| 764 |
|
} |
| 765 |
|
} |
| 772 |
|
fij += fg; |
| 773 |
|
|
| 774 |
|
if (atomListRow.size() == 1 && atomListColumn.size() == 1) { |
| 775 |
< |
tau -= outProduct( *(idat.d), fg); |
| 775 |
> |
stressTensor -= outProduct( *(idat.d), fg); |
| 776 |
> |
if (doHeatFlux_) |
| 777 |
> |
fDecomp_->addToHeatFlux(*(idat.d) * dot(fg, vel2)); |
| 778 |
> |
|
| 779 |
|
} |
| 780 |
|
|
| 781 |
< |
for (vector<int>::iterator ia = atomListRow.begin(); |
| 781 |
> |
for (ia = atomListRow.begin(); |
| 782 |
|
ia != atomListRow.end(); ++ia) { |
| 783 |
|
atom1 = (*ia); |
| 784 |
|
mf = fDecomp_->getMassFactorRow(atom1); |
| 791 |
|
// find the distance between the atom |
| 792 |
|
// and the center of the cutoff group: |
| 793 |
|
dag = fDecomp_->getAtomToGroupVectorRow(atom1, cg1); |
| 794 |
< |
tau -= outProduct(dag, fg); |
| 794 |
> |
stressTensor -= outProduct(dag, fg); |
| 795 |
> |
if (doHeatFlux_) |
| 796 |
> |
fDecomp_->addToHeatFlux( dag * dot(fg, vel2)); |
| 797 |
|
} |
| 798 |
|
} |
| 799 |
|
} |
| 800 |
< |
for (vector<int>::iterator jb = atomListColumn.begin(); |
| 800 |
> |
for (jb = atomListColumn.begin(); |
| 801 |
|
jb != atomListColumn.end(); ++jb) { |
| 802 |
|
atom2 = (*jb); |
| 803 |
|
mf = fDecomp_->getMassFactorColumn(atom2); |
| 811 |
|
// find the distance between the atom |
| 812 |
|
// and the center of the cutoff group: |
| 813 |
|
dag = fDecomp_->getAtomToGroupVectorColumn(atom2, cg2); |
| 814 |
< |
tau -= outProduct(dag, fg); |
| 814 |
> |
stressTensor -= outProduct(dag, fg); |
| 815 |
> |
if (doHeatFlux_) |
| 816 |
> |
fDecomp_->addToHeatFlux( dag * dot(fg, vel2)); |
| 817 |
|
} |
| 818 |
|
} |
| 819 |
|
} |
| 820 |
|
} |
| 821 |
|
//if (!info_->usesAtomicVirial()) { |
| 822 |
< |
// tau -= outProduct(d_grp, fij); |
| 822 |
> |
// stressTensor -= outProduct(d_grp, fij); |
| 823 |
> |
// if (doHeatFlux_) |
| 824 |
> |
// fDecomp_->addToHeatFlux( d_grp * dot(fij, vel2)); |
| 825 |
|
//} |
| 826 |
|
} |
| 827 |
|
} |
| 859 |
|
|
| 860 |
|
lrPot = longRangePotential.sum(); |
| 861 |
|
|
| 862 |
< |
//store the tau and long range potential |
| 862 |
> |
//store the stressTensor and long range potential |
| 863 |
|
curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot; |
| 864 |
|
curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VANDERWAALS_FAMILY]; |
| 865 |
|
curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_FAMILY]; |
| 880 |
|
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
| 881 |
|
rb = mol->nextRigidBody(rbIter)) { |
| 882 |
|
Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial(); |
| 883 |
< |
tau += rbTau; |
| 883 |
> |
stressTensor += rbTau; |
| 884 |
|
} |
| 885 |
|
} |
| 886 |
|
|
| 887 |
|
#ifdef IS_MPI |
| 888 |
< |
Mat3x3d tmpTau(tau); |
| 889 |
< |
MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(), |
| 890 |
< |
9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
| 888 |
> |
|
| 889 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, stressTensor.getArrayPointer(), 9, |
| 890 |
> |
MPI::REALTYPE, MPI::SUM); |
| 891 |
|
#endif |
| 892 |
< |
curSnapshot->statData.setTau(tau); |
| 892 |
> |
curSnapshot->setStressTensor(stressTensor); |
| 893 |
> |
|
| 894 |
|
} |
| 895 |
|
|
| 896 |
|
} //end namespace OpenMD |