44 |
|
* @file ForceManager.cpp |
45 |
|
* @author tlin |
46 |
|
* @date 11/09/2004 |
47 |
– |
* @time 10:39am |
47 |
|
* @version 1.0 |
48 |
|
*/ |
49 |
|
|
57 |
|
#include "primitives/Torsion.hpp" |
58 |
|
#include "primitives/Inversion.hpp" |
59 |
|
#include "nonbonded/NonBondedInteraction.hpp" |
60 |
+ |
#include "perturbations/ElectricField.hpp" |
61 |
|
#include "parallel/ForceMatrixDecomposition.hpp" |
62 |
|
|
63 |
|
#include <cstdio> |
110 |
|
Globals* simParams_ = info_->getSimParams(); |
111 |
|
ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions(); |
112 |
|
int mdFileVersion; |
113 |
+ |
rCut_ = 0.0; //Needs a value for a later max() call; |
114 |
|
|
115 |
|
if (simParams_->haveMDfileVersion()) |
116 |
|
mdFileVersion = simParams_->getMDfileVersion(); |
117 |
|
else |
118 |
|
mdFileVersion = 0; |
119 |
|
|
120 |
+ |
// We need the list of simulated atom types to figure out cutoffs |
121 |
+ |
// as well as long range corrections. |
122 |
+ |
|
123 |
+ |
set<AtomType*>::iterator i; |
124 |
+ |
set<AtomType*> atomTypes_; |
125 |
+ |
atomTypes_ = info_->getSimulatedAtomTypes(); |
126 |
+ |
|
127 |
|
if (simParams_->haveCutoffRadius()) { |
128 |
|
rCut_ = simParams_->getCutoffRadius(); |
129 |
|
} else { |
138 |
|
rCut_ = 12.0; |
139 |
|
} else { |
140 |
|
RealType thisCut; |
141 |
< |
set<AtomType*>::iterator i; |
134 |
< |
set<AtomType*> atomTypes; |
135 |
< |
atomTypes = info_->getSimulatedAtomTypes(); |
136 |
< |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
141 |
> |
for (i = atomTypes_.begin(); i != atomTypes_.end(); ++i) { |
142 |
|
thisCut = interactionMan_->getSuggestedCutoffRadius((*i)); |
143 |
|
rCut_ = max(thisCut, rCut_); |
144 |
|
} |
373 |
|
} |
374 |
|
switcher_->setSwitchType(sft_); |
375 |
|
switcher_->setSwitch(rSwitch_, rCut_); |
371 |
– |
interactionMan_->setSwitchingRadius(rSwitch_); |
376 |
|
} |
377 |
|
|
378 |
|
|
396 |
|
doParticlePot_ = info_->getSimParams()->getOutputParticlePotential(); |
397 |
|
doHeatFlux_ = info_->getSimParams()->getPrintHeatFlux(); |
398 |
|
if (doHeatFlux_) doParticlePot_ = true; |
399 |
+ |
|
400 |
+ |
doElectricField_ = info_->getSimParams()->getOutputElectricField(); |
401 |
|
|
402 |
|
} |
403 |
|
|
428 |
|
electrostaticScale_[2] = fopts.getelectrostatic13scale(); |
429 |
|
electrostaticScale_[3] = fopts.getelectrostatic14scale(); |
430 |
|
|
431 |
+ |
if (info_->getSimParams()->haveElectricField()) { |
432 |
+ |
ElectricField* eField = new ElectricField(info_); |
433 |
+ |
perturbations_.push_back(eField); |
434 |
+ |
} |
435 |
+ |
|
436 |
|
fDecomp_->distributeInitialData(); |
437 |
|
|
438 |
|
initialized_ = true; |
459 |
|
Molecule::CutoffGroupIterator ci; |
460 |
|
CutoffGroup* cg; |
461 |
|
|
462 |
< |
// forces are zeroed here, before any are accumulated. |
462 |
> |
// forces and potentials are zeroed here, before any are |
463 |
> |
// accumulated. |
464 |
|
|
465 |
+ |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
466 |
+ |
|
467 |
+ |
snap->setBondPotential(0.0); |
468 |
+ |
snap->setBendPotential(0.0); |
469 |
+ |
snap->setTorsionPotential(0.0); |
470 |
+ |
snap->setInversionPotential(0.0); |
471 |
+ |
|
472 |
+ |
potVec zeroPot(0.0); |
473 |
+ |
snap->setLongRangePotential(zeroPot); |
474 |
+ |
snap->setExcludedPotentials(zeroPot); |
475 |
+ |
|
476 |
+ |
snap->setRestraintPotential(0.0); |
477 |
+ |
snap->setRawPotential(0.0); |
478 |
+ |
|
479 |
|
for (mol = info_->beginMolecule(mi); mol != NULL; |
480 |
|
mol = info_->nextMolecule(mi)) { |
481 |
|
for(atom = mol->beginAtom(ai); atom != NULL; |
611 |
|
} |
612 |
|
} |
613 |
|
} |
614 |
< |
|
615 |
< |
RealType shortRangePotential = bondPotential + bendPotential + |
616 |
< |
torsionPotential + inversionPotential; |
614 |
> |
|
615 |
> |
#ifdef IS_MPI |
616 |
> |
// Collect from all nodes. This should eventually be moved into a |
617 |
> |
// SystemDecomposition, but this is a better place than in |
618 |
> |
// Thermo to do the collection. |
619 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &bondPotential, 1, MPI::REALTYPE, |
620 |
> |
MPI::SUM); |
621 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &bendPotential, 1, MPI::REALTYPE, |
622 |
> |
MPI::SUM); |
623 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &torsionPotential, 1, |
624 |
> |
MPI::REALTYPE, MPI::SUM); |
625 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &inversionPotential, 1, |
626 |
> |
MPI::REALTYPE, MPI::SUM); |
627 |
> |
#endif |
628 |
> |
|
629 |
|
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
630 |
< |
curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential; |
631 |
< |
curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential; |
632 |
< |
curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential; |
633 |
< |
curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential; |
634 |
< |
curSnapshot->statData[Stats::INVERSION_POTENTIAL] = inversionPotential; |
630 |
> |
|
631 |
> |
curSnapshot->setBondPotential(bondPotential); |
632 |
> |
curSnapshot->setBendPotential(bendPotential); |
633 |
> |
curSnapshot->setTorsionPotential(torsionPotential); |
634 |
> |
curSnapshot->setInversionPotential(inversionPotential); |
635 |
> |
|
636 |
> |
// RealType shortRangePotential = bondPotential + bendPotential + |
637 |
> |
// torsionPotential + inversionPotential; |
638 |
> |
|
639 |
> |
// curSnapshot->setShortRangePotential(shortRangePotential); |
640 |
|
} |
641 |
|
|
642 |
|
void ForceManager::longRangeInteractions() { |
685 |
|
InteractionData idat; |
686 |
|
SelfData sdat; |
687 |
|
RealType mf; |
645 |
– |
RealType lrPot; |
688 |
|
RealType vpair; |
689 |
|
RealType dVdFQ1(0.0); |
690 |
|
RealType dVdFQ2(0.0); |
691 |
|
potVec longRangePotential(0.0); |
692 |
|
potVec workPot(0.0); |
693 |
+ |
potVec exPot(0.0); |
694 |
+ |
Vector3d eField1(0.0); |
695 |
+ |
Vector3d eField2(0.0); |
696 |
|
vector<int>::iterator ia, jb; |
697 |
|
|
698 |
|
int loopStart, loopEnd; |
700 |
|
idat.vdwMult = &vdwMult; |
701 |
|
idat.electroMult = &electroMult; |
702 |
|
idat.pot = &workPot; |
703 |
+ |
idat.excludedPot = &exPot; |
704 |
|
sdat.pot = fDecomp_->getEmbeddingPotential(); |
705 |
+ |
sdat.excludedPot = fDecomp_->getExcludedSelfPotential(); |
706 |
|
idat.vpair = &vpair; |
707 |
|
idat.dVdFQ1 = &dVdFQ1; |
708 |
|
idat.dVdFQ2 = &dVdFQ2; |
709 |
+ |
idat.eField1 = &eField1; |
710 |
+ |
idat.eField2 = &eField2; |
711 |
|
idat.f1 = &f1; |
712 |
|
idat.sw = &sw; |
713 |
|
idat.shiftedPot = (cutoffMethod_ == SHIFTED_POTENTIAL) ? true : false; |
714 |
|
idat.shiftedForce = (cutoffMethod_ == SHIFTED_FORCE) ? true : false; |
715 |
|
idat.doParticlePot = doParticlePot_; |
716 |
+ |
idat.doElectricField = doElectricField_; |
717 |
|
sdat.doParticlePot = doParticlePot_; |
718 |
|
|
719 |
|
loopEnd = PAIR_LOOP; |
749 |
|
if (iLoop == PAIR_LOOP) { |
750 |
|
vij = 0.0; |
751 |
|
fij = V3Zero; |
752 |
+ |
eField1 = V3Zero; |
753 |
+ |
eField2 = V3Zero; |
754 |
|
} |
755 |
|
|
756 |
|
in_switching_region = switcher_->getSwitch(rgrpsq, sw, dswdr, |
757 |
|
rgrp); |
758 |
+ |
|
759 |
|
atomListRow = fDecomp_->getAtomsInGroupRow(cg1); |
760 |
|
atomListColumn = fDecomp_->getAtomsInGroupColumn(cg2); |
761 |
|
|
770 |
|
jb != atomListColumn.end(); ++jb) { |
771 |
|
atom2 = (*jb); |
772 |
|
|
773 |
< |
if (!fDecomp_->skipAtomPair(atom1, atom2)) { |
773 |
> |
if (!fDecomp_->skipAtomPair(atom1, atom2, cg1, cg2)) { |
774 |
> |
|
775 |
|
vpair = 0.0; |
776 |
|
workPot = 0.0; |
777 |
+ |
exPot = 0.0; |
778 |
|
f1 = V3Zero; |
779 |
|
dVdFQ1 = 0.0; |
780 |
|
dVdFQ2 = 0.0; |
825 |
|
fij += fg; |
826 |
|
|
827 |
|
if (atomListRow.size() == 1 && atomListColumn.size() == 1) { |
828 |
< |
stressTensor -= outProduct( *(idat.d), fg); |
829 |
< |
if (doHeatFlux_) |
830 |
< |
fDecomp_->addToHeatFlux(*(idat.d) * dot(fg, vel2)); |
831 |
< |
|
828 |
> |
if (!fDecomp_->skipAtomPair(atomListRow[0], |
829 |
> |
atomListColumn[0], |
830 |
> |
cg1, cg2)) { |
831 |
> |
stressTensor -= outProduct( *(idat.d), fg); |
832 |
> |
if (doHeatFlux_) |
833 |
> |
fDecomp_->addToHeatFlux(*(idat.d) * dot(fg, vel2)); |
834 |
> |
} |
835 |
|
} |
836 |
|
|
837 |
|
for (ia = atomListRow.begin(); |
888 |
|
|
889 |
|
fDecomp_->collectIntermediateData(); |
890 |
|
|
891 |
< |
for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) { |
891 |
> |
for (unsigned int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) { |
892 |
|
fDecomp_->fillSelfData(sdat, atom1); |
893 |
|
interactionMan_->doPreForce(sdat); |
894 |
|
} |
899 |
|
} |
900 |
|
} |
901 |
|
|
902 |
+ |
// collects pairwise information |
903 |
|
fDecomp_->collectData(); |
904 |
|
|
905 |
|
if (info_->requiresSelfCorrection()) { |
906 |
< |
|
848 |
< |
for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) { |
906 |
> |
for (unsigned int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) { |
907 |
|
fDecomp_->fillSelfData(sdat, atom1); |
908 |
|
interactionMan_->doSelfCorrection(sdat); |
909 |
|
} |
852 |
– |
|
910 |
|
} |
911 |
|
|
912 |
+ |
// collects single-atom information |
913 |
+ |
fDecomp_->collectSelfData(); |
914 |
+ |
|
915 |
|
longRangePotential = *(fDecomp_->getEmbeddingPotential()) + |
916 |
|
*(fDecomp_->getPairwisePotential()); |
917 |
|
|
918 |
< |
lrPot = longRangePotential.sum(); |
918 |
> |
curSnapshot->setLongRangePotential(longRangePotential); |
919 |
> |
|
920 |
> |
curSnapshot->setExcludedPotentials(*(fDecomp_->getExcludedSelfPotential()) + |
921 |
> |
*(fDecomp_->getExcludedPotential())); |
922 |
|
|
860 |
– |
//store the stressTensor and long range potential |
861 |
– |
curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot; |
862 |
– |
curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VANDERWAALS_FAMILY]; |
863 |
– |
curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_FAMILY]; |
923 |
|
} |
924 |
|
|
925 |
|
|
926 |
|
void ForceManager::postCalculation() { |
927 |
+ |
|
928 |
+ |
vector<Perturbation*>::iterator pi; |
929 |
+ |
for (pi = perturbations_.begin(); pi != perturbations_.end(); ++pi) { |
930 |
+ |
(*pi)->applyPerturbation(); |
931 |
+ |
} |
932 |
+ |
|
933 |
|
SimInfo::MoleculeIterator mi; |
934 |
|
Molecule* mol; |
935 |
|
Molecule::RigidBodyIterator rbIter; |
936 |
|
RigidBody* rb; |
937 |
|
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
938 |
< |
|
938 |
> |
|
939 |
|
// collect the atomic forces onto rigid bodies |
940 |
|
|
941 |
|
for (mol = info_->beginMolecule(mi); mol != NULL; |
948 |
|
} |
949 |
|
|
950 |
|
#ifdef IS_MPI |
886 |
– |
|
951 |
|
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, stressTensor.getArrayPointer(), 9, |
952 |
|
MPI::REALTYPE, MPI::SUM); |
953 |
|
#endif |
954 |
|
curSnapshot->setStressTensor(stressTensor); |
955 |
|
|
956 |
< |
} |
956 |
> |
if (info_->getSimParams()->getUseLongRangeCorrections()) { |
957 |
> |
/* |
958 |
> |
RealType vol = curSnapshot->getVolume(); |
959 |
> |
RealType Elrc(0.0); |
960 |
> |
RealType Wlrc(0.0); |
961 |
|
|
962 |
< |
} //end namespace OpenMD |
962 |
> |
set<AtomType*>::iterator i; |
963 |
> |
set<AtomType*>::iterator j; |
964 |
> |
|
965 |
> |
RealType n_i, n_j; |
966 |
> |
RealType rho_i, rho_j; |
967 |
> |
pair<RealType, RealType> LRI; |
968 |
> |
|
969 |
> |
for (i = atomTypes_.begin(); i != atomTypes_.end(); ++i) { |
970 |
> |
n_i = RealType(info_->getGlobalCountOfType(*i)); |
971 |
> |
rho_i = n_i / vol; |
972 |
> |
for (j = atomTypes_.begin(); j != atomTypes_.end(); ++j) { |
973 |
> |
n_j = RealType(info_->getGlobalCountOfType(*j)); |
974 |
> |
rho_j = n_j / vol; |
975 |
> |
|
976 |
> |
LRI = interactionMan_->getLongRangeIntegrals( (*i), (*j) ); |
977 |
> |
|
978 |
> |
Elrc += n_i * rho_j * LRI.first; |
979 |
> |
Wlrc -= rho_i * rho_j * LRI.second; |
980 |
> |
} |
981 |
> |
} |
982 |
> |
Elrc *= 2.0 * NumericConstant::PI; |
983 |
> |
Wlrc *= 2.0 * NumericConstant::PI; |
984 |
> |
|
985 |
> |
RealType lrp = curSnapshot->getLongRangePotential(); |
986 |
> |
curSnapshot->setLongRangePotential(lrp + Elrc); |
987 |
> |
stressTensor += Wlrc * SquareMatrix3<RealType>::identity(); |
988 |
> |
curSnapshot->setStressTensor(stressTensor); |
989 |
> |
*/ |
990 |
> |
|
991 |
> |
} |
992 |
> |
} |
993 |
> |
} |