36 |
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
|
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
< |
* [4] Vardeman & Gezelter, in progress (2009). |
39 |
> |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
> |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
|
43 |
|
/** |
110 |
|
Globals* simParams_ = info_->getSimParams(); |
111 |
|
ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions(); |
112 |
|
int mdFileVersion; |
113 |
+ |
rCut_ = 0.0; //Needs a value for a later max() call; |
114 |
|
|
115 |
|
if (simParams_->haveMDfileVersion()) |
116 |
|
mdFileVersion = simParams_->getMDfileVersion(); |
202 |
|
// electrostaticSummationMethod keyword. |
203 |
|
|
204 |
|
if (simParams_->haveElectrostaticSummationMethod()) { |
205 |
< |
std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
205 |
> |
string myMethod = simParams_->getElectrostaticSummationMethod(); |
206 |
|
toUpper(myMethod); |
207 |
|
|
208 |
|
if (myMethod == "SHIFTED_POTENTIAL") { |
257 |
|
stringToCutoffPolicy["MAX"] = MAX; |
258 |
|
stringToCutoffPolicy["TRADITIONAL"] = TRADITIONAL; |
259 |
|
|
260 |
< |
std::string cutPolicy; |
260 |
> |
string cutPolicy; |
261 |
|
if (forceFieldOptions_.haveCutoffPolicy()){ |
262 |
|
cutPolicy = forceFieldOptions_.getCutoffPolicy(); |
263 |
|
}else if (simParams_->haveCutoffPolicy()) { |
389 |
|
setupCutoffs(); |
390 |
|
|
391 |
|
info_->prepareTopology(); |
392 |
+ |
|
393 |
+ |
doParticlePot_ = info_->getSimParams()->getOutputParticlePotential(); |
394 |
+ |
doHeatFlux_ = info_->getSimParams()->getPrintHeatFlux(); |
395 |
+ |
if (doHeatFlux_) doParticlePot_ = true; |
396 |
+ |
|
397 |
|
} |
398 |
|
|
399 |
|
ForceFieldOptions& fopts = forceField_->getForceFieldOptions(); |
474 |
|
} |
475 |
|
|
476 |
|
// Zero out the stress tensor |
477 |
< |
tau *= 0.0; |
478 |
< |
|
477 |
> |
stressTensor *= 0.0; |
478 |
> |
// Zero out the heatFlux |
479 |
> |
fDecomp_->setHeatFlux( Vector3d(0.0) ); |
480 |
|
} |
481 |
|
|
482 |
|
void ForceManager::shortRangeInteractions() { |
509 |
|
|
510 |
|
for (bond = mol->beginBond(bondIter); bond != NULL; |
511 |
|
bond = mol->nextBond(bondIter)) { |
512 |
< |
bond->calcForce(); |
512 |
> |
bond->calcForce(doParticlePot_); |
513 |
|
bondPotential += bond->getPotential(); |
514 |
|
} |
515 |
|
|
517 |
|
bend = mol->nextBend(bendIter)) { |
518 |
|
|
519 |
|
RealType angle; |
520 |
< |
bend->calcForce(angle); |
520 |
> |
bend->calcForce(angle, doParticlePot_); |
521 |
|
RealType currBendPot = bend->getPotential(); |
522 |
|
|
523 |
|
bendPotential += bend->getPotential(); |
542 |
|
for (torsion = mol->beginTorsion(torsionIter); torsion != NULL; |
543 |
|
torsion = mol->nextTorsion(torsionIter)) { |
544 |
|
RealType angle; |
545 |
< |
torsion->calcForce(angle); |
545 |
> |
torsion->calcForce(angle, doParticlePot_); |
546 |
|
RealType currTorsionPot = torsion->getPotential(); |
547 |
|
torsionPotential += torsion->getPotential(); |
548 |
|
map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion); |
566 |
|
inversion != NULL; |
567 |
|
inversion = mol->nextInversion(inversionIter)) { |
568 |
|
RealType angle; |
569 |
< |
inversion->calcForce(angle); |
569 |
> |
inversion->calcForce(angle, doParticlePot_); |
570 |
|
RealType currInversionPot = inversion->getPotential(); |
571 |
|
inversionPotential += inversion->getPotential(); |
572 |
|
map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion); |
586 |
|
} |
587 |
|
} |
588 |
|
} |
589 |
< |
|
590 |
< |
RealType shortRangePotential = bondPotential + bendPotential + |
591 |
< |
torsionPotential + inversionPotential; |
589 |
> |
|
590 |
> |
#ifdef IS_MPI |
591 |
> |
// Collect from all nodes. This should eventually be moved into a |
592 |
> |
// SystemDecomposition, but this is a better place than in |
593 |
> |
// Thermo to do the collection. |
594 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &bondPotential, 1, MPI::REALTYPE, |
595 |
> |
MPI::SUM); |
596 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &bendPotential, 1, MPI::REALTYPE, |
597 |
> |
MPI::SUM); |
598 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &torsionPotential, 1, |
599 |
> |
MPI::REALTYPE, MPI::SUM); |
600 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &inversionPotential, 1, |
601 |
> |
MPI::REALTYPE, MPI::SUM); |
602 |
> |
#endif |
603 |
> |
|
604 |
|
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
605 |
< |
curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential; |
606 |
< |
curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential; |
607 |
< |
curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential; |
608 |
< |
curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential; |
609 |
< |
curSnapshot->statData[Stats::INVERSION_POTENTIAL] = inversionPotential; |
605 |
> |
|
606 |
> |
curSnapshot->setBondPotential(bondPotential); |
607 |
> |
curSnapshot->setBendPotential(bendPotential); |
608 |
> |
curSnapshot->setTorsionPotential(torsionPotential); |
609 |
> |
curSnapshot->setInversionPotential(inversionPotential); |
610 |
> |
|
611 |
> |
RealType shortRangePotential = bondPotential + bendPotential + |
612 |
> |
torsionPotential + inversionPotential; |
613 |
> |
|
614 |
> |
curSnapshot->setShortRangePotential(shortRangePotential); |
615 |
|
} |
616 |
|
|
617 |
|
void ForceManager::longRangeInteractions() { |
618 |
|
|
619 |
+ |
|
620 |
|
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
621 |
|
DataStorage* config = &(curSnapshot->atomData); |
622 |
|
DataStorage* cgConfig = &(curSnapshot->cgData); |
640 |
|
// center of mass of the group is the same as position of the atom |
641 |
|
// if cutoff group does not exist |
642 |
|
cgConfig->position = config->position; |
643 |
+ |
cgConfig->velocity = config->velocity; |
644 |
|
} |
645 |
|
|
646 |
|
fDecomp_->zeroWorkArrays(); |
647 |
|
fDecomp_->distributeData(); |
648 |
|
|
649 |
|
int cg1, cg2, atom1, atom2, topoDist; |
650 |
< |
Vector3d d_grp, dag, d; |
650 |
> |
Vector3d d_grp, dag, d, gvel2, vel2; |
651 |
|
RealType rgrpsq, rgrp, r2, r; |
652 |
|
RealType electroMult, vdwMult; |
653 |
|
RealType vij; |
662 |
|
RealType mf; |
663 |
|
RealType lrPot; |
664 |
|
RealType vpair; |
665 |
+ |
RealType dVdFQ1(0.0); |
666 |
+ |
RealType dVdFQ2(0.0); |
667 |
|
potVec longRangePotential(0.0); |
668 |
|
potVec workPot(0.0); |
669 |
+ |
potVec exPot(0.0); |
670 |
+ |
vector<int>::iterator ia, jb; |
671 |
|
|
672 |
|
int loopStart, loopEnd; |
673 |
|
|
674 |
|
idat.vdwMult = &vdwMult; |
675 |
|
idat.electroMult = &electroMult; |
676 |
|
idat.pot = &workPot; |
677 |
+ |
idat.excludedPot = &exPot; |
678 |
|
sdat.pot = fDecomp_->getEmbeddingPotential(); |
679 |
+ |
sdat.excludedPot = fDecomp_->getExcludedSelfPotential(); |
680 |
|
idat.vpair = &vpair; |
681 |
+ |
idat.dVdFQ1 = &dVdFQ1; |
682 |
+ |
idat.dVdFQ2 = &dVdFQ2; |
683 |
|
idat.f1 = &f1; |
684 |
|
idat.sw = &sw; |
685 |
|
idat.shiftedPot = (cutoffMethod_ == SHIFTED_POTENTIAL) ? true : false; |
686 |
|
idat.shiftedForce = (cutoffMethod_ == SHIFTED_FORCE) ? true : false; |
687 |
+ |
idat.doParticlePot = doParticlePot_; |
688 |
+ |
sdat.doParticlePot = doParticlePot_; |
689 |
|
|
690 |
|
loopEnd = PAIR_LOOP; |
691 |
|
if (info_->requiresPrepair() ) { |
693 |
|
} else { |
694 |
|
loopStart = PAIR_LOOP; |
695 |
|
} |
659 |
– |
|
696 |
|
for (int iLoop = loopStart; iLoop <= loopEnd; iLoop++) { |
697 |
|
|
698 |
|
if (iLoop == loopStart) { |
724 |
|
|
725 |
|
in_switching_region = switcher_->getSwitch(rgrpsq, sw, dswdr, |
726 |
|
rgrp); |
727 |
< |
|
727 |
> |
|
728 |
|
atomListRow = fDecomp_->getAtomsInGroupRow(cg1); |
729 |
|
atomListColumn = fDecomp_->getAtomsInGroupColumn(cg2); |
730 |
|
|
731 |
< |
for (vector<int>::iterator ia = atomListRow.begin(); |
731 |
> |
if (doHeatFlux_) |
732 |
> |
gvel2 = fDecomp_->getGroupVelocityColumn(cg2); |
733 |
> |
|
734 |
> |
for (ia = atomListRow.begin(); |
735 |
|
ia != atomListRow.end(); ++ia) { |
736 |
|
atom1 = (*ia); |
737 |
< |
|
738 |
< |
for (vector<int>::iterator jb = atomListColumn.begin(); |
737 |
> |
|
738 |
> |
for (jb = atomListColumn.begin(); |
739 |
|
jb != atomListColumn.end(); ++jb) { |
740 |
|
atom2 = (*jb); |
741 |
|
|
742 |
< |
if (!fDecomp_->skipAtomPair(atom1, atom2)) { |
742 |
> |
if (!fDecomp_->skipAtomPair(atom1, atom2, cg1, cg2)) { |
743 |
> |
|
744 |
|
vpair = 0.0; |
745 |
|
workPot = 0.0; |
746 |
+ |
exPot = 0.0; |
747 |
|
f1 = V3Zero; |
748 |
+ |
dVdFQ1 = 0.0; |
749 |
+ |
dVdFQ2 = 0.0; |
750 |
|
|
751 |
|
fDecomp_->fillInteractionData(idat, atom1, atom2); |
752 |
< |
|
752 |
> |
|
753 |
|
topoDist = fDecomp_->getTopologicalDistance(atom1, atom2); |
754 |
|
vdwMult = vdwScale_[topoDist]; |
755 |
|
electroMult = electrostaticScale_[topoDist]; |
757 |
|
if (atomListRow.size() == 1 && atomListColumn.size() == 1) { |
758 |
|
idat.d = &d_grp; |
759 |
|
idat.r2 = &rgrpsq; |
760 |
+ |
if (doHeatFlux_) |
761 |
+ |
vel2 = gvel2; |
762 |
|
} else { |
763 |
|
d = fDecomp_->getInteratomicVector(atom1, atom2); |
764 |
|
curSnapshot->wrapVector( d ); |
765 |
|
r2 = d.lengthSquare(); |
766 |
|
idat.d = &d; |
767 |
|
idat.r2 = &r2; |
768 |
+ |
if (doHeatFlux_) |
769 |
+ |
vel2 = fDecomp_->getAtomVelocityColumn(atom2); |
770 |
|
} |
771 |
|
|
772 |
|
r = sqrt( *(idat.r2) ); |
779 |
|
fDecomp_->unpackInteractionData(idat, atom1, atom2); |
780 |
|
vij += vpair; |
781 |
|
fij += f1; |
782 |
< |
tau -= outProduct( *(idat.d), f1); |
782 |
> |
stressTensor -= outProduct( *(idat.d), f1); |
783 |
> |
if (doHeatFlux_) |
784 |
> |
fDecomp_->addToHeatFlux(*(idat.d) * dot(f1, vel2)); |
785 |
|
} |
786 |
|
} |
787 |
|
} |
794 |
|
fij += fg; |
795 |
|
|
796 |
|
if (atomListRow.size() == 1 && atomListColumn.size() == 1) { |
797 |
< |
tau -= outProduct( *(idat.d), fg); |
797 |
> |
stressTensor -= outProduct( *(idat.d), fg); |
798 |
> |
if (doHeatFlux_) |
799 |
> |
fDecomp_->addToHeatFlux(*(idat.d) * dot(fg, vel2)); |
800 |
> |
|
801 |
|
} |
802 |
|
|
803 |
< |
for (vector<int>::iterator ia = atomListRow.begin(); |
803 |
> |
for (ia = atomListRow.begin(); |
804 |
|
ia != atomListRow.end(); ++ia) { |
805 |
|
atom1 = (*ia); |
806 |
|
mf = fDecomp_->getMassFactorRow(atom1); |
813 |
|
// find the distance between the atom |
814 |
|
// and the center of the cutoff group: |
815 |
|
dag = fDecomp_->getAtomToGroupVectorRow(atom1, cg1); |
816 |
< |
tau -= outProduct(dag, fg); |
816 |
> |
stressTensor -= outProduct(dag, fg); |
817 |
> |
if (doHeatFlux_) |
818 |
> |
fDecomp_->addToHeatFlux( dag * dot(fg, vel2)); |
819 |
|
} |
820 |
|
} |
821 |
|
} |
822 |
< |
for (vector<int>::iterator jb = atomListColumn.begin(); |
822 |
> |
for (jb = atomListColumn.begin(); |
823 |
|
jb != atomListColumn.end(); ++jb) { |
824 |
|
atom2 = (*jb); |
825 |
|
mf = fDecomp_->getMassFactorColumn(atom2); |
833 |
|
// find the distance between the atom |
834 |
|
// and the center of the cutoff group: |
835 |
|
dag = fDecomp_->getAtomToGroupVectorColumn(atom2, cg2); |
836 |
< |
tau -= outProduct(dag, fg); |
836 |
> |
stressTensor -= outProduct(dag, fg); |
837 |
> |
if (doHeatFlux_) |
838 |
> |
fDecomp_->addToHeatFlux( dag * dot(fg, vel2)); |
839 |
|
} |
840 |
|
} |
841 |
|
} |
842 |
|
} |
843 |
|
//if (!info_->usesAtomicVirial()) { |
844 |
< |
// tau -= outProduct(d_grp, fij); |
844 |
> |
// stressTensor -= outProduct(d_grp, fij); |
845 |
> |
// if (doHeatFlux_) |
846 |
> |
// fDecomp_->addToHeatFlux( d_grp * dot(fij, vel2)); |
847 |
|
//} |
848 |
|
} |
849 |
|
} |
865 |
|
} |
866 |
|
} |
867 |
|
|
868 |
+ |
// collects pairwise information |
869 |
|
fDecomp_->collectData(); |
870 |
|
|
871 |
|
if (info_->requiresSelfCorrection()) { |
872 |
< |
|
814 |
< |
for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) { |
872 |
> |
for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) { |
873 |
|
fDecomp_->fillSelfData(sdat, atom1); |
874 |
|
interactionMan_->doSelfCorrection(sdat); |
875 |
|
} |
818 |
– |
|
876 |
|
} |
877 |
|
|
878 |
+ |
// collects single-atom information |
879 |
+ |
fDecomp_->collectSelfData(); |
880 |
+ |
|
881 |
|
longRangePotential = *(fDecomp_->getEmbeddingPotential()) + |
882 |
|
*(fDecomp_->getPairwisePotential()); |
883 |
|
|
884 |
+ |
curSnapshot->setLongRangePotentialFamilies(longRangePotential); |
885 |
+ |
|
886 |
|
lrPot = longRangePotential.sum(); |
887 |
|
|
888 |
< |
//store the tau and long range potential |
889 |
< |
curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot; |
890 |
< |
curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VANDERWAALS_FAMILY]; |
891 |
< |
curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_FAMILY]; |
888 |
> |
//store the long range potential |
889 |
> |
curSnapshot->setLongRangePotential(lrPot); |
890 |
> |
|
891 |
> |
curSnapshot->setExcludedPotentials(*(fDecomp_->getExcludedSelfPotential()) + |
892 |
> |
*(fDecomp_->getExcludedPotential())); |
893 |
> |
|
894 |
|
} |
895 |
|
|
896 |
|
|
908 |
|
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
909 |
|
rb = mol->nextRigidBody(rbIter)) { |
910 |
|
Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial(); |
911 |
< |
tau += rbTau; |
911 |
> |
stressTensor += rbTau; |
912 |
|
} |
913 |
|
} |
914 |
|
|
915 |
|
#ifdef IS_MPI |
916 |
< |
Mat3x3d tmpTau(tau); |
917 |
< |
MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(), |
854 |
< |
9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
916 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, stressTensor.getArrayPointer(), 9, |
917 |
> |
MPI::REALTYPE, MPI::SUM); |
918 |
|
#endif |
919 |
< |
curSnapshot->statData.setTau(tau); |
919 |
> |
curSnapshot->setStressTensor(stressTensor); |
920 |
> |
|
921 |
|
} |
922 |
|
|
923 |
|
} //end namespace OpenMD |