6 |
|
* redistribute this software in source and binary code form, provided |
7 |
|
* that the following conditions are met: |
8 |
|
* |
9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
10 |
< |
* publication of scientific results based in part on use of the |
11 |
< |
* program. An acceptable form of acknowledgement is citation of |
12 |
< |
* the article in which the program was described (Matthew |
13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
< |
* |
18 |
< |
* 2. Redistributions of source code must retain the above copyright |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
* |
12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
* documentation and/or other materials provided with the |
15 |
|
* distribution. |
28 |
|
* arising out of the use of or inability to use software, even if the |
29 |
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
+ |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
+ |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
|
43 |
|
/** |
48 |
|
* @version 1.0 |
49 |
|
*/ |
50 |
|
|
51 |
+ |
|
52 |
|
#include "brains/ForceManager.hpp" |
53 |
|
#include "primitives/Molecule.hpp" |
54 |
< |
#include "UseTheForce/doForces_interface.h" |
53 |
< |
#define __C |
54 |
< |
#include "UseTheForce/DarkSide/fInteractionMap.h" |
54 |
> |
#define __OPENMD_C |
55 |
|
#include "utils/simError.h" |
56 |
+ |
#include "primitives/Bond.hpp" |
57 |
|
#include "primitives/Bend.hpp" |
58 |
< |
#include "primitives/Bend.hpp" |
59 |
< |
namespace oopse { |
58 |
> |
#include "primitives/Torsion.hpp" |
59 |
> |
#include "primitives/Inversion.hpp" |
60 |
> |
#include "nonbonded/NonBondedInteraction.hpp" |
61 |
> |
#include "parallel/ForceMatrixDecomposition.hpp" |
62 |
|
|
63 |
< |
/* |
64 |
< |
struct BendOrderStruct { |
65 |
< |
Bend* bend; |
63 |
< |
BendDataSet dataSet; |
64 |
< |
}; |
65 |
< |
struct TorsionOrderStruct { |
66 |
< |
Torsion* torsion; |
67 |
< |
TorsionDataSet dataSet; |
68 |
< |
}; |
63 |
> |
#include <cstdio> |
64 |
> |
#include <iostream> |
65 |
> |
#include <iomanip> |
66 |
|
|
67 |
< |
bool BendSortFunctor(const BendOrderStruct& b1, const BendOrderStruct& b2) { |
68 |
< |
return b1.dataSet.deltaV < b2.dataSet.deltaV; |
67 |
> |
using namespace std; |
68 |
> |
namespace OpenMD { |
69 |
> |
|
70 |
> |
ForceManager::ForceManager(SimInfo * info) : info_(info) { |
71 |
> |
forceField_ = info_->getForceField(); |
72 |
> |
interactionMan_ = new InteractionManager(); |
73 |
> |
fDecomp_ = new ForceMatrixDecomposition(info_, interactionMan_); |
74 |
|
} |
75 |
|
|
76 |
< |
bool TorsionSortFunctor(const TorsionOrderStruct& t1, const TorsionOrderStruct& t2) { |
77 |
< |
return t1.dataSet.deltaV < t2.dataSet.deltaV; |
78 |
< |
} |
79 |
< |
*/ |
80 |
< |
void ForceManager::calcForces(bool needPotential, bool needStress) { |
76 |
> |
/** |
77 |
> |
* setupCutoffs |
78 |
> |
* |
79 |
> |
* Sets the values of cutoffRadius, switchingRadius, cutoffMethod, |
80 |
> |
* and cutoffPolicy |
81 |
> |
* |
82 |
> |
* cutoffRadius : realType |
83 |
> |
* If the cutoffRadius was explicitly set, use that value. |
84 |
> |
* If the cutoffRadius was not explicitly set: |
85 |
> |
* Are there electrostatic atoms? Use 12.0 Angstroms. |
86 |
> |
* No electrostatic atoms? Poll the atom types present in the |
87 |
> |
* simulation for suggested cutoff values (e.g. 2.5 * sigma). |
88 |
> |
* Use the maximum suggested value that was found. |
89 |
> |
* |
90 |
> |
* cutoffMethod : (one of HARD, SWITCHED, SHIFTED_FORCE, |
91 |
> |
* or SHIFTED_POTENTIAL) |
92 |
> |
* If cutoffMethod was explicitly set, use that choice. |
93 |
> |
* If cutoffMethod was not explicitly set, use SHIFTED_FORCE |
94 |
> |
* |
95 |
> |
* cutoffPolicy : (one of MIX, MAX, TRADITIONAL) |
96 |
> |
* If cutoffPolicy was explicitly set, use that choice. |
97 |
> |
* If cutoffPolicy was not explicitly set, use TRADITIONAL |
98 |
> |
* |
99 |
> |
* switchingRadius : realType |
100 |
> |
* If the cutoffMethod was set to SWITCHED: |
101 |
> |
* If the switchingRadius was explicitly set, use that value |
102 |
> |
* (but do a sanity check first). |
103 |
> |
* If the switchingRadius was not explicitly set: use 0.85 * |
104 |
> |
* cutoffRadius_ |
105 |
> |
* If the cutoffMethod was not set to SWITCHED: |
106 |
> |
* Set switchingRadius equal to cutoffRadius for safety. |
107 |
> |
*/ |
108 |
> |
void ForceManager::setupCutoffs() { |
109 |
> |
|
110 |
> |
Globals* simParams_ = info_->getSimParams(); |
111 |
> |
ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions(); |
112 |
> |
int mdFileVersion; |
113 |
> |
rCut_ = 0.0; //Needs a value for a later max() call; |
114 |
> |
|
115 |
> |
if (simParams_->haveMDfileVersion()) |
116 |
> |
mdFileVersion = simParams_->getMDfileVersion(); |
117 |
> |
else |
118 |
> |
mdFileVersion = 0; |
119 |
> |
|
120 |
> |
if (simParams_->haveCutoffRadius()) { |
121 |
> |
rCut_ = simParams_->getCutoffRadius(); |
122 |
> |
} else { |
123 |
> |
if (info_->usesElectrostaticAtoms()) { |
124 |
> |
sprintf(painCave.errMsg, |
125 |
> |
"ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n" |
126 |
> |
"\tOpenMD will use a default value of 12.0 angstroms" |
127 |
> |
"\tfor the cutoffRadius.\n"); |
128 |
> |
painCave.isFatal = 0; |
129 |
> |
painCave.severity = OPENMD_INFO; |
130 |
> |
simError(); |
131 |
> |
rCut_ = 12.0; |
132 |
> |
} else { |
133 |
> |
RealType thisCut; |
134 |
> |
set<AtomType*>::iterator i; |
135 |
> |
set<AtomType*> atomTypes; |
136 |
> |
atomTypes = info_->getSimulatedAtomTypes(); |
137 |
> |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
138 |
> |
thisCut = interactionMan_->getSuggestedCutoffRadius((*i)); |
139 |
> |
rCut_ = max(thisCut, rCut_); |
140 |
> |
} |
141 |
> |
sprintf(painCave.errMsg, |
142 |
> |
"ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n" |
143 |
> |
"\tOpenMD will use %lf angstroms.\n", |
144 |
> |
rCut_); |
145 |
> |
painCave.isFatal = 0; |
146 |
> |
painCave.severity = OPENMD_INFO; |
147 |
> |
simError(); |
148 |
> |
} |
149 |
> |
} |
150 |
|
|
151 |
< |
if (!info_->isFortranInitialized()) { |
152 |
< |
info_->update(); |
151 |
> |
fDecomp_->setUserCutoff(rCut_); |
152 |
> |
interactionMan_->setCutoffRadius(rCut_); |
153 |
> |
|
154 |
> |
map<string, CutoffMethod> stringToCutoffMethod; |
155 |
> |
stringToCutoffMethod["HARD"] = HARD; |
156 |
> |
stringToCutoffMethod["SWITCHED"] = SWITCHED; |
157 |
> |
stringToCutoffMethod["SHIFTED_POTENTIAL"] = SHIFTED_POTENTIAL; |
158 |
> |
stringToCutoffMethod["SHIFTED_FORCE"] = SHIFTED_FORCE; |
159 |
> |
|
160 |
> |
if (simParams_->haveCutoffMethod()) { |
161 |
> |
string cutMeth = toUpperCopy(simParams_->getCutoffMethod()); |
162 |
> |
map<string, CutoffMethod>::iterator i; |
163 |
> |
i = stringToCutoffMethod.find(cutMeth); |
164 |
> |
if (i == stringToCutoffMethod.end()) { |
165 |
> |
sprintf(painCave.errMsg, |
166 |
> |
"ForceManager::setupCutoffs: Could not find chosen cutoffMethod %s\n" |
167 |
> |
"\tShould be one of: " |
168 |
> |
"HARD, SWITCHED, SHIFTED_POTENTIAL, or SHIFTED_FORCE\n", |
169 |
> |
cutMeth.c_str()); |
170 |
> |
painCave.isFatal = 1; |
171 |
> |
painCave.severity = OPENMD_ERROR; |
172 |
> |
simError(); |
173 |
> |
} else { |
174 |
> |
cutoffMethod_ = i->second; |
175 |
> |
} |
176 |
> |
} else { |
177 |
> |
if (mdFileVersion > 1) { |
178 |
> |
sprintf(painCave.errMsg, |
179 |
> |
"ForceManager::setupCutoffs: No value was set for the cutoffMethod.\n" |
180 |
> |
"\tOpenMD will use SHIFTED_FORCE.\n"); |
181 |
> |
painCave.isFatal = 0; |
182 |
> |
painCave.severity = OPENMD_INFO; |
183 |
> |
simError(); |
184 |
> |
cutoffMethod_ = SHIFTED_FORCE; |
185 |
> |
} else { |
186 |
> |
// handle the case where the old file version was in play |
187 |
> |
// (there should be no cutoffMethod, so we have to deduce it |
188 |
> |
// from other data). |
189 |
> |
|
190 |
> |
sprintf(painCave.errMsg, |
191 |
> |
"ForceManager::setupCutoffs : DEPRECATED FILE FORMAT!\n" |
192 |
> |
"\tOpenMD found a file which does not set a cutoffMethod.\n" |
193 |
> |
"\tOpenMD will attempt to deduce a cutoffMethod using the\n" |
194 |
> |
"\tbehavior of the older (version 1) code. To remove this\n" |
195 |
> |
"\twarning, add an explicit cutoffMethod and change the top\n" |
196 |
> |
"\tof the file so that it begins with <OpenMD version=2>\n"); |
197 |
> |
painCave.isFatal = 0; |
198 |
> |
painCave.severity = OPENMD_WARNING; |
199 |
> |
simError(); |
200 |
> |
|
201 |
> |
// The old file version tethered the shifting behavior to the |
202 |
> |
// electrostaticSummationMethod keyword. |
203 |
> |
|
204 |
> |
if (simParams_->haveElectrostaticSummationMethod()) { |
205 |
> |
string myMethod = simParams_->getElectrostaticSummationMethod(); |
206 |
> |
toUpper(myMethod); |
207 |
> |
|
208 |
> |
if (myMethod == "SHIFTED_POTENTIAL") { |
209 |
> |
cutoffMethod_ = SHIFTED_POTENTIAL; |
210 |
> |
} else if (myMethod == "SHIFTED_FORCE") { |
211 |
> |
cutoffMethod_ = SHIFTED_FORCE; |
212 |
> |
} |
213 |
> |
|
214 |
> |
if (simParams_->haveSwitchingRadius()) |
215 |
> |
rSwitch_ = simParams_->getSwitchingRadius(); |
216 |
> |
|
217 |
> |
if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") { |
218 |
> |
if (simParams_->haveSwitchingRadius()){ |
219 |
> |
sprintf(painCave.errMsg, |
220 |
> |
"ForceManager::setupCutoffs : DEPRECATED ERROR MESSAGE\n" |
221 |
> |
"\tA value was set for the switchingRadius\n" |
222 |
> |
"\teven though the electrostaticSummationMethod was\n" |
223 |
> |
"\tset to %s\n", myMethod.c_str()); |
224 |
> |
painCave.severity = OPENMD_WARNING; |
225 |
> |
painCave.isFatal = 1; |
226 |
> |
simError(); |
227 |
> |
} |
228 |
> |
} |
229 |
> |
if (abs(rCut_ - rSwitch_) < 0.0001) { |
230 |
> |
if (cutoffMethod_ == SHIFTED_FORCE) { |
231 |
> |
sprintf(painCave.errMsg, |
232 |
> |
"ForceManager::setupCutoffs : DEPRECATED BEHAVIOR\n" |
233 |
> |
"\tcutoffRadius and switchingRadius are set to the\n" |
234 |
> |
"\tsame value. OpenMD will use shifted force\n" |
235 |
> |
"\tpotentials instead of switching functions.\n"); |
236 |
> |
painCave.isFatal = 0; |
237 |
> |
painCave.severity = OPENMD_WARNING; |
238 |
> |
simError(); |
239 |
> |
} else { |
240 |
> |
cutoffMethod_ = SHIFTED_POTENTIAL; |
241 |
> |
sprintf(painCave.errMsg, |
242 |
> |
"ForceManager::setupCutoffs : DEPRECATED BEHAVIOR\n" |
243 |
> |
"\tcutoffRadius and switchingRadius are set to the\n" |
244 |
> |
"\tsame value. OpenMD will use shifted potentials\n" |
245 |
> |
"\tinstead of switching functions.\n"); |
246 |
> |
painCave.isFatal = 0; |
247 |
> |
painCave.severity = OPENMD_WARNING; |
248 |
> |
simError(); |
249 |
> |
} |
250 |
> |
} |
251 |
> |
} |
252 |
> |
} |
253 |
|
} |
254 |
|
|
255 |
< |
preCalculation(); |
256 |
< |
|
257 |
< |
calcShortRangeInteraction(); |
255 |
> |
map<string, CutoffPolicy> stringToCutoffPolicy; |
256 |
> |
stringToCutoffPolicy["MIX"] = MIX; |
257 |
> |
stringToCutoffPolicy["MAX"] = MAX; |
258 |
> |
stringToCutoffPolicy["TRADITIONAL"] = TRADITIONAL; |
259 |
|
|
260 |
< |
calcLongRangeInteraction(needPotential, needStress); |
260 |
> |
string cutPolicy; |
261 |
> |
if (forceFieldOptions_.haveCutoffPolicy()){ |
262 |
> |
cutPolicy = forceFieldOptions_.getCutoffPolicy(); |
263 |
> |
}else if (simParams_->haveCutoffPolicy()) { |
264 |
> |
cutPolicy = simParams_->getCutoffPolicy(); |
265 |
> |
} |
266 |
|
|
267 |
< |
postCalculation(); |
267 |
> |
if (!cutPolicy.empty()){ |
268 |
> |
toUpper(cutPolicy); |
269 |
> |
map<string, CutoffPolicy>::iterator i; |
270 |
> |
i = stringToCutoffPolicy.find(cutPolicy); |
271 |
|
|
272 |
< |
/* |
273 |
< |
std::vector<BendOrderStruct> bendOrderStruct; |
274 |
< |
for(std::map<Bend*, BendDataSet>::iterator i = bendDataSets.begin(); i != bendDataSets.end(); ++i) { |
275 |
< |
BendOrderStruct tmp; |
276 |
< |
tmp.bend= const_cast<Bend*>(i->first); |
277 |
< |
tmp.dataSet = i->second; |
278 |
< |
bendOrderStruct.push_back(tmp); |
272 |
> |
if (i == stringToCutoffPolicy.end()) { |
273 |
> |
sprintf(painCave.errMsg, |
274 |
> |
"ForceManager::setupCutoffs: Could not find chosen cutoffPolicy %s\n" |
275 |
> |
"\tShould be one of: " |
276 |
> |
"MIX, MAX, or TRADITIONAL\n", |
277 |
> |
cutPolicy.c_str()); |
278 |
> |
painCave.isFatal = 1; |
279 |
> |
painCave.severity = OPENMD_ERROR; |
280 |
> |
simError(); |
281 |
> |
} else { |
282 |
> |
cutoffPolicy_ = i->second; |
283 |
> |
} |
284 |
> |
} else { |
285 |
> |
sprintf(painCave.errMsg, |
286 |
> |
"ForceManager::setupCutoffs: No value was set for the cutoffPolicy.\n" |
287 |
> |
"\tOpenMD will use TRADITIONAL.\n"); |
288 |
> |
painCave.isFatal = 0; |
289 |
> |
painCave.severity = OPENMD_INFO; |
290 |
> |
simError(); |
291 |
> |
cutoffPolicy_ = TRADITIONAL; |
292 |
|
} |
293 |
|
|
294 |
< |
std::vector<TorsionOrderStruct> torsionOrderStruct; |
295 |
< |
for(std::map<Torsion*, TorsionDataSet>::iterator j = torsionDataSets.begin(); j != torsionDataSets.end(); ++j) { |
296 |
< |
TorsionOrderStruct tmp; |
297 |
< |
tmp.torsion = const_cast<Torsion*>(j->first); |
298 |
< |
tmp.dataSet = j->second; |
299 |
< |
torsionOrderStruct.push_back(tmp); |
294 |
> |
fDecomp_->setCutoffPolicy(cutoffPolicy_); |
295 |
> |
|
296 |
> |
// create the switching function object: |
297 |
> |
|
298 |
> |
switcher_ = new SwitchingFunction(); |
299 |
> |
|
300 |
> |
if (cutoffMethod_ == SWITCHED) { |
301 |
> |
if (simParams_->haveSwitchingRadius()) { |
302 |
> |
rSwitch_ = simParams_->getSwitchingRadius(); |
303 |
> |
if (rSwitch_ > rCut_) { |
304 |
> |
sprintf(painCave.errMsg, |
305 |
> |
"ForceManager::setupCutoffs: switchingRadius (%f) is larger " |
306 |
> |
"than the cutoffRadius(%f)\n", rSwitch_, rCut_); |
307 |
> |
painCave.isFatal = 1; |
308 |
> |
painCave.severity = OPENMD_ERROR; |
309 |
> |
simError(); |
310 |
> |
} |
311 |
> |
} else { |
312 |
> |
rSwitch_ = 0.85 * rCut_; |
313 |
> |
sprintf(painCave.errMsg, |
314 |
> |
"ForceManager::setupCutoffs: No value was set for the switchingRadius.\n" |
315 |
> |
"\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n" |
316 |
> |
"\tswitchingRadius = %f. for this simulation\n", rSwitch_); |
317 |
> |
painCave.isFatal = 0; |
318 |
> |
painCave.severity = OPENMD_WARNING; |
319 |
> |
simError(); |
320 |
> |
} |
321 |
> |
} else { |
322 |
> |
if (mdFileVersion > 1) { |
323 |
> |
// throw an error if we define a switching radius and don't need one. |
324 |
> |
// older file versions should not do this. |
325 |
> |
if (simParams_->haveSwitchingRadius()) { |
326 |
> |
map<string, CutoffMethod>::const_iterator it; |
327 |
> |
string theMeth; |
328 |
> |
for (it = stringToCutoffMethod.begin(); |
329 |
> |
it != stringToCutoffMethod.end(); ++it) { |
330 |
> |
if (it->second == cutoffMethod_) { |
331 |
> |
theMeth = it->first; |
332 |
> |
break; |
333 |
> |
} |
334 |
> |
} |
335 |
> |
sprintf(painCave.errMsg, |
336 |
> |
"ForceManager::setupCutoffs: the cutoffMethod (%s)\n" |
337 |
> |
"\tis not set to SWITCHED, so switchingRadius value\n" |
338 |
> |
"\twill be ignored for this simulation\n", theMeth.c_str()); |
339 |
> |
painCave.isFatal = 0; |
340 |
> |
painCave.severity = OPENMD_WARNING; |
341 |
> |
simError(); |
342 |
> |
} |
343 |
> |
} |
344 |
> |
rSwitch_ = rCut_; |
345 |
|
} |
346 |
|
|
347 |
< |
std::sort(bendOrderStruct.begin(), bendOrderStruct.end(), std::ptr_fun(BendSortFunctor)); |
348 |
< |
std::sort(torsionOrderStruct.begin(), torsionOrderStruct.end(), std::ptr_fun(TorsionSortFunctor)); |
349 |
< |
std::cout << "bend" << std::endl; |
350 |
< |
for (std::vector<BendOrderStruct>::iterator k = bendOrderStruct.begin(); k != bendOrderStruct.end(); ++k) { |
351 |
< |
Bend* bend = k->bend; |
352 |
< |
std::cout << "atom1=" <<bend->getAtomA()->getGlobalIndex() << ",atom2 = "<< bend->getAtomB()->getGlobalIndex() << ",atom3="<<bend->getAtomC()->getGlobalIndex() << " "; |
353 |
< |
std::cout << "deltaV=" << k->dataSet.deltaV << ",p_theta=" << k->dataSet.prev.angle <<",p_pot=" << k->dataSet.prev.potential<< ",c_theta=" << k->dataSet.curr.angle << ", c_pot = " << k->dataSet.curr.potential <<std::endl; |
347 |
> |
// Default to cubic switching function. |
348 |
> |
sft_ = cubic; |
349 |
> |
if (simParams_->haveSwitchingFunctionType()) { |
350 |
> |
string funcType = simParams_->getSwitchingFunctionType(); |
351 |
> |
toUpper(funcType); |
352 |
> |
if (funcType == "CUBIC") { |
353 |
> |
sft_ = cubic; |
354 |
> |
} else { |
355 |
> |
if (funcType == "FIFTH_ORDER_POLYNOMIAL") { |
356 |
> |
sft_ = fifth_order_poly; |
357 |
> |
} else { |
358 |
> |
// throw error |
359 |
> |
sprintf( painCave.errMsg, |
360 |
> |
"ForceManager::setupSwitching : Unknown switchingFunctionType. (Input file specified %s .)\n" |
361 |
> |
"\tswitchingFunctionType must be one of: " |
362 |
> |
"\"cubic\" or \"fifth_order_polynomial\".", |
363 |
> |
funcType.c_str() ); |
364 |
> |
painCave.isFatal = 1; |
365 |
> |
painCave.severity = OPENMD_ERROR; |
366 |
> |
simError(); |
367 |
> |
} |
368 |
> |
} |
369 |
|
} |
370 |
< |
std::cout << "torsio" << std::endl; |
371 |
< |
for (std::vector<TorsionOrderStruct>::iterator l = torsionOrderStruct.begin(); l != torsionOrderStruct.end(); ++l) { |
372 |
< |
Torsion* torsion = l->torsion; |
373 |
< |
std::cout << "atom1=" <<torsion->getAtomA()->getGlobalIndex() << ",atom2 = "<< torsion->getAtomB()->getGlobalIndex() << ",atom3="<<torsion->getAtomC()->getGlobalIndex() << ",atom4="<<torsion->getAtomD()->getGlobalIndex()<< " "; |
374 |
< |
std::cout << "deltaV=" << l->dataSet.deltaV << ",p_theta=" << l->dataSet.prev.angle <<",p_pot=" << l->dataSet.prev.potential<< ",c_theta=" << l->dataSet.curr.angle << ", c_pot = " << l->dataSet.curr.potential <<std::endl; |
370 |
> |
switcher_->setSwitchType(sft_); |
371 |
> |
switcher_->setSwitch(rSwitch_, rCut_); |
372 |
> |
interactionMan_->setSwitchingRadius(rSwitch_); |
373 |
> |
} |
374 |
> |
|
375 |
> |
|
376 |
> |
|
377 |
> |
|
378 |
> |
void ForceManager::initialize() { |
379 |
> |
|
380 |
> |
if (!info_->isTopologyDone()) { |
381 |
> |
|
382 |
> |
info_->update(); |
383 |
> |
interactionMan_->setSimInfo(info_); |
384 |
> |
interactionMan_->initialize(); |
385 |
> |
|
386 |
> |
// We want to delay the cutoffs until after the interaction |
387 |
> |
// manager has set up the atom-atom interactions so that we can |
388 |
> |
// query them for suggested cutoff values |
389 |
> |
setupCutoffs(); |
390 |
> |
|
391 |
> |
info_->prepareTopology(); |
392 |
> |
|
393 |
> |
doParticlePot_ = info_->getSimParams()->getOutputParticlePotential(); |
394 |
> |
doHeatFlux_ = info_->getSimParams()->getPrintHeatFlux(); |
395 |
> |
if (doHeatFlux_) doParticlePot_ = true; |
396 |
> |
|
397 |
|
} |
398 |
< |
*/ |
398 |
> |
|
399 |
> |
ForceFieldOptions& fopts = forceField_->getForceFieldOptions(); |
400 |
> |
|
401 |
> |
// Force fields can set options on how to scale van der Waals and |
402 |
> |
// electrostatic interactions for atoms connected via bonds, bends |
403 |
> |
// and torsions in this case the topological distance between |
404 |
> |
// atoms is: |
405 |
> |
// 0 = topologically unconnected |
406 |
> |
// 1 = bonded together |
407 |
> |
// 2 = connected via a bend |
408 |
> |
// 3 = connected via a torsion |
409 |
> |
|
410 |
> |
vdwScale_.reserve(4); |
411 |
> |
fill(vdwScale_.begin(), vdwScale_.end(), 0.0); |
412 |
> |
|
413 |
> |
electrostaticScale_.reserve(4); |
414 |
> |
fill(electrostaticScale_.begin(), electrostaticScale_.end(), 0.0); |
415 |
> |
|
416 |
> |
vdwScale_[0] = 1.0; |
417 |
> |
vdwScale_[1] = fopts.getvdw12scale(); |
418 |
> |
vdwScale_[2] = fopts.getvdw13scale(); |
419 |
> |
vdwScale_[3] = fopts.getvdw14scale(); |
420 |
> |
|
421 |
> |
electrostaticScale_[0] = 1.0; |
422 |
> |
electrostaticScale_[1] = fopts.getelectrostatic12scale(); |
423 |
> |
electrostaticScale_[2] = fopts.getelectrostatic13scale(); |
424 |
> |
electrostaticScale_[3] = fopts.getelectrostatic14scale(); |
425 |
> |
|
426 |
> |
fDecomp_->distributeInitialData(); |
427 |
> |
|
428 |
> |
initialized_ = true; |
429 |
> |
|
430 |
|
} |
431 |
|
|
432 |
+ |
void ForceManager::calcForces() { |
433 |
+ |
|
434 |
+ |
if (!initialized_) initialize(); |
435 |
+ |
|
436 |
+ |
preCalculation(); |
437 |
+ |
shortRangeInteractions(); |
438 |
+ |
longRangeInteractions(); |
439 |
+ |
postCalculation(); |
440 |
+ |
} |
441 |
+ |
|
442 |
|
void ForceManager::preCalculation() { |
443 |
|
SimInfo::MoleculeIterator mi; |
444 |
|
Molecule* mol; |
446 |
|
Atom* atom; |
447 |
|
Molecule::RigidBodyIterator rbIter; |
448 |
|
RigidBody* rb; |
449 |
+ |
Molecule::CutoffGroupIterator ci; |
450 |
+ |
CutoffGroup* cg; |
451 |
|
|
452 |
< |
// forces are zeroed here, before any are accumulated. |
453 |
< |
// NOTE: do not rezero the forces in Fortran. |
454 |
< |
for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) { |
455 |
< |
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
452 |
> |
// forces and potentials are zeroed here, before any are |
453 |
> |
// accumulated. |
454 |
> |
|
455 |
> |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
456 |
> |
|
457 |
> |
snap->setBondPotential(0.0); |
458 |
> |
snap->setBendPotential(0.0); |
459 |
> |
snap->setTorsionPotential(0.0); |
460 |
> |
snap->setInversionPotential(0.0); |
461 |
> |
|
462 |
> |
potVec zeroPot(0.0); |
463 |
> |
snap->setLongRangePotential(zeroPot); |
464 |
> |
snap->setExcludedPotentials(zeroPot); |
465 |
> |
|
466 |
> |
snap->setRestraintPotential(0.0); |
467 |
> |
snap->setRawPotential(0.0); |
468 |
> |
|
469 |
> |
for (mol = info_->beginMolecule(mi); mol != NULL; |
470 |
> |
mol = info_->nextMolecule(mi)) { |
471 |
> |
for(atom = mol->beginAtom(ai); atom != NULL; |
472 |
> |
atom = mol->nextAtom(ai)) { |
473 |
|
atom->zeroForcesAndTorques(); |
474 |
|
} |
475 |
< |
|
475 |
> |
|
476 |
|
//change the positions of atoms which belong to the rigidbodies |
477 |
< |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
477 |
> |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
478 |
> |
rb = mol->nextRigidBody(rbIter)) { |
479 |
|
rb->zeroForcesAndTorques(); |
480 |
|
} |
481 |
+ |
|
482 |
+ |
if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){ |
483 |
+ |
for(cg = mol->beginCutoffGroup(ci); cg != NULL; |
484 |
+ |
cg = mol->nextCutoffGroup(ci)) { |
485 |
+ |
//calculate the center of mass of cutoff group |
486 |
+ |
cg->updateCOM(); |
487 |
+ |
} |
488 |
+ |
} |
489 |
|
} |
490 |
|
|
491 |
+ |
// Zero out the stress tensor |
492 |
+ |
stressTensor *= 0.0; |
493 |
+ |
// Zero out the heatFlux |
494 |
+ |
fDecomp_->setHeatFlux( Vector3d(0.0) ); |
495 |
|
} |
496 |
< |
|
497 |
< |
void ForceManager::calcShortRangeInteraction() { |
496 |
> |
|
497 |
> |
void ForceManager::shortRangeInteractions() { |
498 |
|
Molecule* mol; |
499 |
|
RigidBody* rb; |
500 |
|
Bond* bond; |
501 |
|
Bend* bend; |
502 |
|
Torsion* torsion; |
503 |
+ |
Inversion* inversion; |
504 |
|
SimInfo::MoleculeIterator mi; |
505 |
|
Molecule::RigidBodyIterator rbIter; |
506 |
|
Molecule::BondIterator bondIter;; |
507 |
|
Molecule::BendIterator bendIter; |
508 |
|
Molecule::TorsionIterator torsionIter; |
509 |
< |
double bondPotential = 0.0; |
510 |
< |
double bendPotential = 0.0; |
511 |
< |
double torsionPotential = 0.0; |
509 |
> |
Molecule::InversionIterator inversionIter; |
510 |
> |
RealType bondPotential = 0.0; |
511 |
> |
RealType bendPotential = 0.0; |
512 |
> |
RealType torsionPotential = 0.0; |
513 |
> |
RealType inversionPotential = 0.0; |
514 |
|
|
515 |
|
//calculate short range interactions |
516 |
< |
for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) { |
516 |
> |
for (mol = info_->beginMolecule(mi); mol != NULL; |
517 |
> |
mol = info_->nextMolecule(mi)) { |
518 |
|
|
519 |
|
//change the positions of atoms which belong to the rigidbodies |
520 |
< |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
521 |
< |
rb->updateAtoms(); |
520 |
> |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
521 |
> |
rb = mol->nextRigidBody(rbIter)) { |
522 |
> |
rb->updateAtoms(); |
523 |
|
} |
524 |
|
|
525 |
< |
for (bond = mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) { |
526 |
< |
bond->calcForce(); |
525 |
> |
for (bond = mol->beginBond(bondIter); bond != NULL; |
526 |
> |
bond = mol->nextBond(bondIter)) { |
527 |
> |
bond->calcForce(doParticlePot_); |
528 |
|
bondPotential += bond->getPotential(); |
529 |
|
} |
530 |
|
|
531 |
< |
|
532 |
< |
for (bend = mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) { |
533 |
< |
|
534 |
< |
double angle; |
535 |
< |
bend->calcForce(angle); |
536 |
< |
double currBendPot = bend->getPotential(); |
537 |
< |
bendPotential += bend->getPotential(); |
538 |
< |
std::map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend); |
539 |
< |
if (i == bendDataSets.end()) { |
540 |
< |
BendDataSet dataSet; |
541 |
< |
dataSet.prev.angle = dataSet.curr.angle = angle; |
542 |
< |
dataSet.prev.potential = dataSet.curr.potential = currBendPot; |
543 |
< |
dataSet.deltaV = 0.0; |
544 |
< |
bendDataSets.insert(std::map<Bend*, BendDataSet>::value_type(bend, dataSet)); |
545 |
< |
}else { |
546 |
< |
i->second.prev.angle = i->second.curr.angle; |
547 |
< |
i->second.prev.potential = i->second.curr.potential; |
548 |
< |
i->second.curr.angle = angle; |
549 |
< |
i->second.curr.potential = currBendPot; |
550 |
< |
i->second.deltaV = fabs(i->second.curr.potential - i->second.prev.potential); |
551 |
< |
} |
531 |
> |
for (bend = mol->beginBend(bendIter); bend != NULL; |
532 |
> |
bend = mol->nextBend(bendIter)) { |
533 |
> |
|
534 |
> |
RealType angle; |
535 |
> |
bend->calcForce(angle, doParticlePot_); |
536 |
> |
RealType currBendPot = bend->getPotential(); |
537 |
> |
|
538 |
> |
bendPotential += bend->getPotential(); |
539 |
> |
map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend); |
540 |
> |
if (i == bendDataSets.end()) { |
541 |
> |
BendDataSet dataSet; |
542 |
> |
dataSet.prev.angle = dataSet.curr.angle = angle; |
543 |
> |
dataSet.prev.potential = dataSet.curr.potential = currBendPot; |
544 |
> |
dataSet.deltaV = 0.0; |
545 |
> |
bendDataSets.insert(map<Bend*, BendDataSet>::value_type(bend, |
546 |
> |
dataSet)); |
547 |
> |
}else { |
548 |
> |
i->second.prev.angle = i->second.curr.angle; |
549 |
> |
i->second.prev.potential = i->second.curr.potential; |
550 |
> |
i->second.curr.angle = angle; |
551 |
> |
i->second.curr.potential = currBendPot; |
552 |
> |
i->second.deltaV = fabs(i->second.curr.potential - |
553 |
> |
i->second.prev.potential); |
554 |
> |
} |
555 |
|
} |
556 |
+ |
|
557 |
+ |
for (torsion = mol->beginTorsion(torsionIter); torsion != NULL; |
558 |
+ |
torsion = mol->nextTorsion(torsionIter)) { |
559 |
+ |
RealType angle; |
560 |
+ |
torsion->calcForce(angle, doParticlePot_); |
561 |
+ |
RealType currTorsionPot = torsion->getPotential(); |
562 |
+ |
torsionPotential += torsion->getPotential(); |
563 |
+ |
map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion); |
564 |
+ |
if (i == torsionDataSets.end()) { |
565 |
+ |
TorsionDataSet dataSet; |
566 |
+ |
dataSet.prev.angle = dataSet.curr.angle = angle; |
567 |
+ |
dataSet.prev.potential = dataSet.curr.potential = currTorsionPot; |
568 |
+ |
dataSet.deltaV = 0.0; |
569 |
+ |
torsionDataSets.insert(map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet)); |
570 |
+ |
}else { |
571 |
+ |
i->second.prev.angle = i->second.curr.angle; |
572 |
+ |
i->second.prev.potential = i->second.curr.potential; |
573 |
+ |
i->second.curr.angle = angle; |
574 |
+ |
i->second.curr.potential = currTorsionPot; |
575 |
+ |
i->second.deltaV = fabs(i->second.curr.potential - |
576 |
+ |
i->second.prev.potential); |
577 |
+ |
} |
578 |
+ |
} |
579 |
+ |
|
580 |
+ |
for (inversion = mol->beginInversion(inversionIter); |
581 |
+ |
inversion != NULL; |
582 |
+ |
inversion = mol->nextInversion(inversionIter)) { |
583 |
+ |
RealType angle; |
584 |
+ |
inversion->calcForce(angle, doParticlePot_); |
585 |
+ |
RealType currInversionPot = inversion->getPotential(); |
586 |
+ |
inversionPotential += inversion->getPotential(); |
587 |
+ |
map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion); |
588 |
+ |
if (i == inversionDataSets.end()) { |
589 |
+ |
InversionDataSet dataSet; |
590 |
+ |
dataSet.prev.angle = dataSet.curr.angle = angle; |
591 |
+ |
dataSet.prev.potential = dataSet.curr.potential = currInversionPot; |
592 |
+ |
dataSet.deltaV = 0.0; |
593 |
+ |
inversionDataSets.insert(map<Inversion*, InversionDataSet>::value_type(inversion, dataSet)); |
594 |
+ |
}else { |
595 |
+ |
i->second.prev.angle = i->second.curr.angle; |
596 |
+ |
i->second.prev.potential = i->second.curr.potential; |
597 |
+ |
i->second.curr.angle = angle; |
598 |
+ |
i->second.curr.potential = currInversionPot; |
599 |
+ |
i->second.deltaV = fabs(i->second.curr.potential - |
600 |
+ |
i->second.prev.potential); |
601 |
+ |
} |
602 |
+ |
} |
603 |
+ |
} |
604 |
|
|
605 |
< |
for (torsion = mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) { |
606 |
< |
double angle; |
607 |
< |
torsion->calcForce(angle); |
608 |
< |
double currTorsionPot = torsion->getPotential(); |
609 |
< |
torsionPotential += torsion->getPotential(); |
610 |
< |
std::map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion); |
611 |
< |
if (i == torsionDataSets.end()) { |
612 |
< |
TorsionDataSet dataSet; |
613 |
< |
dataSet.prev.angle = dataSet.curr.angle = angle; |
614 |
< |
dataSet.prev.potential = dataSet.curr.potential = currTorsionPot; |
615 |
< |
dataSet.deltaV = 0.0; |
616 |
< |
torsionDataSets.insert(std::map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet)); |
617 |
< |
}else { |
213 |
< |
i->second.prev.angle = i->second.curr.angle; |
214 |
< |
i->second.prev.potential = i->second.curr.potential; |
215 |
< |
i->second.curr.angle = angle; |
216 |
< |
i->second.curr.potential = currTorsionPot; |
217 |
< |
i->second.deltaV = fabs(i->second.curr.potential - i->second.prev.potential); |
218 |
< |
} |
219 |
< |
} |
605 |
> |
#ifdef IS_MPI |
606 |
> |
// Collect from all nodes. This should eventually be moved into a |
607 |
> |
// SystemDecomposition, but this is a better place than in |
608 |
> |
// Thermo to do the collection. |
609 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &bondPotential, 1, MPI::REALTYPE, |
610 |
> |
MPI::SUM); |
611 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &bendPotential, 1, MPI::REALTYPE, |
612 |
> |
MPI::SUM); |
613 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &torsionPotential, 1, |
614 |
> |
MPI::REALTYPE, MPI::SUM); |
615 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &inversionPotential, 1, |
616 |
> |
MPI::REALTYPE, MPI::SUM); |
617 |
> |
#endif |
618 |
|
|
221 |
– |
} |
222 |
– |
|
223 |
– |
double shortRangePotential = bondPotential + bendPotential + torsionPotential; |
619 |
|
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
620 |
< |
curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential; |
621 |
< |
curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential; |
622 |
< |
curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential; |
623 |
< |
curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential; |
620 |
> |
|
621 |
> |
curSnapshot->setBondPotential(bondPotential); |
622 |
> |
curSnapshot->setBendPotential(bendPotential); |
623 |
> |
curSnapshot->setTorsionPotential(torsionPotential); |
624 |
> |
curSnapshot->setInversionPotential(inversionPotential); |
625 |
|
|
626 |
+ |
// RealType shortRangePotential = bondPotential + bendPotential + |
627 |
+ |
// torsionPotential + inversionPotential; |
628 |
+ |
|
629 |
+ |
// curSnapshot->setShortRangePotential(shortRangePotential); |
630 |
|
} |
631 |
+ |
|
632 |
+ |
void ForceManager::longRangeInteractions() { |
633 |
|
|
232 |
– |
void ForceManager::calcLongRangeInteraction(bool needPotential, bool needStress) { |
233 |
– |
Snapshot* curSnapshot; |
234 |
– |
DataStorage* config; |
235 |
– |
double* frc; |
236 |
– |
double* pos; |
237 |
– |
double* trq; |
238 |
– |
double* A; |
239 |
– |
double* electroFrame; |
240 |
– |
double* rc; |
241 |
– |
|
242 |
– |
//get current snapshot from SimInfo |
243 |
– |
curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
634 |
|
|
635 |
< |
//get array pointers |
636 |
< |
config = &(curSnapshot->atomData); |
637 |
< |
frc = config->getArrayPointer(DataStorage::dslForce); |
248 |
< |
pos = config->getArrayPointer(DataStorage::dslPosition); |
249 |
< |
trq = config->getArrayPointer(DataStorage::dslTorque); |
250 |
< |
A = config->getArrayPointer(DataStorage::dslAmat); |
251 |
< |
electroFrame = config->getArrayPointer(DataStorage::dslElectroFrame); |
635 |
> |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
636 |
> |
DataStorage* config = &(curSnapshot->atomData); |
637 |
> |
DataStorage* cgConfig = &(curSnapshot->cgData); |
638 |
|
|
639 |
|
//calculate the center of mass of cutoff group |
640 |
+ |
|
641 |
|
SimInfo::MoleculeIterator mi; |
642 |
|
Molecule* mol; |
643 |
|
Molecule::CutoffGroupIterator ci; |
644 |
|
CutoffGroup* cg; |
258 |
– |
Vector3d com; |
259 |
– |
std::vector<Vector3d> rcGroup; |
645 |
|
|
646 |
< |
if(info_->getNCutoffGroups() > 0){ |
647 |
< |
|
648 |
< |
for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) { |
649 |
< |
for(cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { |
650 |
< |
cg->getCOM(com); |
651 |
< |
rcGroup.push_back(com); |
646 |
> |
if(info_->getNCutoffGroups() > 0){ |
647 |
> |
for (mol = info_->beginMolecule(mi); mol != NULL; |
648 |
> |
mol = info_->nextMolecule(mi)) { |
649 |
> |
for(cg = mol->beginCutoffGroup(ci); cg != NULL; |
650 |
> |
cg = mol->nextCutoffGroup(ci)) { |
651 |
> |
cg->updateCOM(); |
652 |
|
} |
653 |
< |
}// end for (mol) |
269 |
< |
|
270 |
< |
rc = rcGroup[0].getArrayPointer(); |
653 |
> |
} |
654 |
|
} else { |
655 |
< |
// center of mass of the group is the same as position of the atom if cutoff group does not exist |
656 |
< |
rc = pos; |
655 |
> |
// center of mass of the group is the same as position of the atom |
656 |
> |
// if cutoff group does not exist |
657 |
> |
cgConfig->position = config->position; |
658 |
> |
cgConfig->velocity = config->velocity; |
659 |
|
} |
660 |
< |
|
661 |
< |
//initialize data before passing to fortran |
662 |
< |
double longRangePotential[LR_POT_TYPES]; |
278 |
< |
double lrPot = 0.0; |
660 |
> |
|
661 |
> |
fDecomp_->zeroWorkArrays(); |
662 |
> |
fDecomp_->distributeData(); |
663 |
|
|
664 |
< |
Mat3x3d tau; |
665 |
< |
short int passedCalcPot = needPotential; |
666 |
< |
short int passedCalcStress = needStress; |
667 |
< |
int isError = 0; |
664 |
> |
int cg1, cg2, atom1, atom2, topoDist; |
665 |
> |
Vector3d d_grp, dag, d, gvel2, vel2; |
666 |
> |
RealType rgrpsq, rgrp, r2, r; |
667 |
> |
RealType electroMult, vdwMult; |
668 |
> |
RealType vij; |
669 |
> |
Vector3d fij, fg, f1; |
670 |
> |
tuple3<RealType, RealType, RealType> cuts; |
671 |
> |
RealType rCutSq; |
672 |
> |
bool in_switching_region; |
673 |
> |
RealType sw, dswdr, swderiv; |
674 |
> |
vector<int> atomListColumn, atomListRow, atomListLocal; |
675 |
> |
InteractionData idat; |
676 |
> |
SelfData sdat; |
677 |
> |
RealType mf; |
678 |
> |
RealType vpair; |
679 |
> |
RealType dVdFQ1(0.0); |
680 |
> |
RealType dVdFQ2(0.0); |
681 |
> |
potVec longRangePotential(0.0); |
682 |
> |
potVec workPot(0.0); |
683 |
> |
potVec exPot(0.0); |
684 |
> |
vector<int>::iterator ia, jb; |
685 |
|
|
686 |
< |
for (int i=0; i<LR_POT_TYPES;i++){ |
286 |
< |
longRangePotential[i]=0.0; //Initialize array |
287 |
< |
} |
686 |
> |
int loopStart, loopEnd; |
687 |
|
|
688 |
< |
doForceLoop( pos, |
689 |
< |
rc, |
690 |
< |
A, |
691 |
< |
electroFrame, |
692 |
< |
frc, |
693 |
< |
trq, |
694 |
< |
tau.getArrayPointer(), |
695 |
< |
longRangePotential, |
696 |
< |
&passedCalcPot, |
697 |
< |
&passedCalcStress, |
698 |
< |
&isError ); |
699 |
< |
|
700 |
< |
if( isError ){ |
701 |
< |
sprintf( painCave.errMsg, |
702 |
< |
"Error returned from the fortran force calculation.\n" ); |
703 |
< |
painCave.isFatal = 1; |
704 |
< |
simError(); |
688 |
> |
idat.vdwMult = &vdwMult; |
689 |
> |
idat.electroMult = &electroMult; |
690 |
> |
idat.pot = &workPot; |
691 |
> |
idat.excludedPot = &exPot; |
692 |
> |
sdat.pot = fDecomp_->getEmbeddingPotential(); |
693 |
> |
sdat.excludedPot = fDecomp_->getExcludedSelfPotential(); |
694 |
> |
idat.vpair = &vpair; |
695 |
> |
idat.dVdFQ1 = &dVdFQ1; |
696 |
> |
idat.dVdFQ2 = &dVdFQ2; |
697 |
> |
idat.f1 = &f1; |
698 |
> |
idat.sw = &sw; |
699 |
> |
idat.shiftedPot = (cutoffMethod_ == SHIFTED_POTENTIAL) ? true : false; |
700 |
> |
idat.shiftedForce = (cutoffMethod_ == SHIFTED_FORCE) ? true : false; |
701 |
> |
idat.doParticlePot = doParticlePot_; |
702 |
> |
sdat.doParticlePot = doParticlePot_; |
703 |
> |
|
704 |
> |
loopEnd = PAIR_LOOP; |
705 |
> |
if (info_->requiresPrepair() ) { |
706 |
> |
loopStart = PREPAIR_LOOP; |
707 |
> |
} else { |
708 |
> |
loopStart = PAIR_LOOP; |
709 |
|
} |
710 |
< |
for (int i=0; i<LR_POT_TYPES;i++){ |
711 |
< |
lrPot += longRangePotential[i]; //Quick hack |
710 |
> |
for (int iLoop = loopStart; iLoop <= loopEnd; iLoop++) { |
711 |
> |
|
712 |
> |
if (iLoop == loopStart) { |
713 |
> |
bool update_nlist = fDecomp_->checkNeighborList(); |
714 |
> |
if (update_nlist) |
715 |
> |
neighborList = fDecomp_->buildNeighborList(); |
716 |
> |
} |
717 |
> |
|
718 |
> |
for (vector<pair<int, int> >::iterator it = neighborList.begin(); |
719 |
> |
it != neighborList.end(); ++it) { |
720 |
> |
|
721 |
> |
cg1 = (*it).first; |
722 |
> |
cg2 = (*it).second; |
723 |
> |
|
724 |
> |
cuts = fDecomp_->getGroupCutoffs(cg1, cg2); |
725 |
> |
|
726 |
> |
d_grp = fDecomp_->getIntergroupVector(cg1, cg2); |
727 |
> |
|
728 |
> |
curSnapshot->wrapVector(d_grp); |
729 |
> |
rgrpsq = d_grp.lengthSquare(); |
730 |
> |
rCutSq = cuts.second; |
731 |
> |
|
732 |
> |
if (rgrpsq < rCutSq) { |
733 |
> |
idat.rcut = &cuts.first; |
734 |
> |
if (iLoop == PAIR_LOOP) { |
735 |
> |
vij = 0.0; |
736 |
> |
fij = V3Zero; |
737 |
> |
} |
738 |
> |
|
739 |
> |
in_switching_region = switcher_->getSwitch(rgrpsq, sw, dswdr, |
740 |
> |
rgrp); |
741 |
> |
|
742 |
> |
atomListRow = fDecomp_->getAtomsInGroupRow(cg1); |
743 |
> |
atomListColumn = fDecomp_->getAtomsInGroupColumn(cg2); |
744 |
> |
|
745 |
> |
if (doHeatFlux_) |
746 |
> |
gvel2 = fDecomp_->getGroupVelocityColumn(cg2); |
747 |
> |
|
748 |
> |
for (ia = atomListRow.begin(); |
749 |
> |
ia != atomListRow.end(); ++ia) { |
750 |
> |
atom1 = (*ia); |
751 |
> |
|
752 |
> |
for (jb = atomListColumn.begin(); |
753 |
> |
jb != atomListColumn.end(); ++jb) { |
754 |
> |
atom2 = (*jb); |
755 |
> |
|
756 |
> |
if (!fDecomp_->skipAtomPair(atom1, atom2, cg1, cg2)) { |
757 |
> |
|
758 |
> |
vpair = 0.0; |
759 |
> |
workPot = 0.0; |
760 |
> |
exPot = 0.0; |
761 |
> |
f1 = V3Zero; |
762 |
> |
dVdFQ1 = 0.0; |
763 |
> |
dVdFQ2 = 0.0; |
764 |
> |
|
765 |
> |
fDecomp_->fillInteractionData(idat, atom1, atom2); |
766 |
> |
|
767 |
> |
topoDist = fDecomp_->getTopologicalDistance(atom1, atom2); |
768 |
> |
vdwMult = vdwScale_[topoDist]; |
769 |
> |
electroMult = electrostaticScale_[topoDist]; |
770 |
> |
|
771 |
> |
if (atomListRow.size() == 1 && atomListColumn.size() == 1) { |
772 |
> |
idat.d = &d_grp; |
773 |
> |
idat.r2 = &rgrpsq; |
774 |
> |
if (doHeatFlux_) |
775 |
> |
vel2 = gvel2; |
776 |
> |
} else { |
777 |
> |
d = fDecomp_->getInteratomicVector(atom1, atom2); |
778 |
> |
curSnapshot->wrapVector( d ); |
779 |
> |
r2 = d.lengthSquare(); |
780 |
> |
idat.d = &d; |
781 |
> |
idat.r2 = &r2; |
782 |
> |
if (doHeatFlux_) |
783 |
> |
vel2 = fDecomp_->getAtomVelocityColumn(atom2); |
784 |
> |
} |
785 |
> |
|
786 |
> |
r = sqrt( *(idat.r2) ); |
787 |
> |
idat.rij = &r; |
788 |
> |
|
789 |
> |
if (iLoop == PREPAIR_LOOP) { |
790 |
> |
interactionMan_->doPrePair(idat); |
791 |
> |
} else { |
792 |
> |
interactionMan_->doPair(idat); |
793 |
> |
fDecomp_->unpackInteractionData(idat, atom1, atom2); |
794 |
> |
vij += vpair; |
795 |
> |
fij += f1; |
796 |
> |
stressTensor -= outProduct( *(idat.d), f1); |
797 |
> |
if (doHeatFlux_) |
798 |
> |
fDecomp_->addToHeatFlux(*(idat.d) * dot(f1, vel2)); |
799 |
> |
} |
800 |
> |
} |
801 |
> |
} |
802 |
> |
} |
803 |
> |
|
804 |
> |
if (iLoop == PAIR_LOOP) { |
805 |
> |
if (in_switching_region) { |
806 |
> |
swderiv = vij * dswdr / rgrp; |
807 |
> |
fg = swderiv * d_grp; |
808 |
> |
fij += fg; |
809 |
> |
|
810 |
> |
if (atomListRow.size() == 1 && atomListColumn.size() == 1) { |
811 |
> |
stressTensor -= outProduct( *(idat.d), fg); |
812 |
> |
if (doHeatFlux_) |
813 |
> |
fDecomp_->addToHeatFlux(*(idat.d) * dot(fg, vel2)); |
814 |
> |
|
815 |
> |
} |
816 |
> |
|
817 |
> |
for (ia = atomListRow.begin(); |
818 |
> |
ia != atomListRow.end(); ++ia) { |
819 |
> |
atom1 = (*ia); |
820 |
> |
mf = fDecomp_->getMassFactorRow(atom1); |
821 |
> |
// fg is the force on atom ia due to cutoff group's |
822 |
> |
// presence in switching region |
823 |
> |
fg = swderiv * d_grp * mf; |
824 |
> |
fDecomp_->addForceToAtomRow(atom1, fg); |
825 |
> |
if (atomListRow.size() > 1) { |
826 |
> |
if (info_->usesAtomicVirial()) { |
827 |
> |
// find the distance between the atom |
828 |
> |
// and the center of the cutoff group: |
829 |
> |
dag = fDecomp_->getAtomToGroupVectorRow(atom1, cg1); |
830 |
> |
stressTensor -= outProduct(dag, fg); |
831 |
> |
if (doHeatFlux_) |
832 |
> |
fDecomp_->addToHeatFlux( dag * dot(fg, vel2)); |
833 |
> |
} |
834 |
> |
} |
835 |
> |
} |
836 |
> |
for (jb = atomListColumn.begin(); |
837 |
> |
jb != atomListColumn.end(); ++jb) { |
838 |
> |
atom2 = (*jb); |
839 |
> |
mf = fDecomp_->getMassFactorColumn(atom2); |
840 |
> |
// fg is the force on atom jb due to cutoff group's |
841 |
> |
// presence in switching region |
842 |
> |
fg = -swderiv * d_grp * mf; |
843 |
> |
fDecomp_->addForceToAtomColumn(atom2, fg); |
844 |
> |
|
845 |
> |
if (atomListColumn.size() > 1) { |
846 |
> |
if (info_->usesAtomicVirial()) { |
847 |
> |
// find the distance between the atom |
848 |
> |
// and the center of the cutoff group: |
849 |
> |
dag = fDecomp_->getAtomToGroupVectorColumn(atom2, cg2); |
850 |
> |
stressTensor -= outProduct(dag, fg); |
851 |
> |
if (doHeatFlux_) |
852 |
> |
fDecomp_->addToHeatFlux( dag * dot(fg, vel2)); |
853 |
> |
} |
854 |
> |
} |
855 |
> |
} |
856 |
> |
} |
857 |
> |
//if (!info_->usesAtomicVirial()) { |
858 |
> |
// stressTensor -= outProduct(d_grp, fij); |
859 |
> |
// if (doHeatFlux_) |
860 |
> |
// fDecomp_->addToHeatFlux( d_grp * dot(fij, vel2)); |
861 |
> |
//} |
862 |
> |
} |
863 |
> |
} |
864 |
> |
} |
865 |
> |
|
866 |
> |
if (iLoop == PREPAIR_LOOP) { |
867 |
> |
if (info_->requiresPrepair()) { |
868 |
> |
|
869 |
> |
fDecomp_->collectIntermediateData(); |
870 |
> |
|
871 |
> |
for (unsigned int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) { |
872 |
> |
fDecomp_->fillSelfData(sdat, atom1); |
873 |
> |
interactionMan_->doPreForce(sdat); |
874 |
> |
} |
875 |
> |
|
876 |
> |
fDecomp_->distributeIntermediateData(); |
877 |
> |
|
878 |
> |
} |
879 |
> |
} |
880 |
|
} |
881 |
+ |
|
882 |
+ |
// collects pairwise information |
883 |
+ |
fDecomp_->collectData(); |
884 |
+ |
|
885 |
+ |
if (info_->requiresSelfCorrection()) { |
886 |
+ |
for (unsigned int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) { |
887 |
+ |
fDecomp_->fillSelfData(sdat, atom1); |
888 |
+ |
interactionMan_->doSelfCorrection(sdat); |
889 |
+ |
} |
890 |
+ |
} |
891 |
|
|
892 |
< |
//store the tau and long range potential |
893 |
< |
curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot; |
313 |
< |
curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VDW_POT]; |
314 |
< |
curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_POT]; |
892 |
> |
// collects single-atom information |
893 |
> |
fDecomp_->collectSelfData(); |
894 |
|
|
895 |
< |
curSnapshot->statData.setTau(tau); |
896 |
< |
} |
895 |
> |
longRangePotential = *(fDecomp_->getEmbeddingPotential()) + |
896 |
> |
*(fDecomp_->getPairwisePotential()); |
897 |
|
|
898 |
+ |
curSnapshot->setLongRangePotential(longRangePotential); |
899 |
+ |
|
900 |
+ |
curSnapshot->setExcludedPotentials(*(fDecomp_->getExcludedSelfPotential()) + |
901 |
+ |
*(fDecomp_->getExcludedPotential())); |
902 |
|
|
903 |
+ |
} |
904 |
+ |
|
905 |
+ |
|
906 |
|
void ForceManager::postCalculation() { |
907 |
|
SimInfo::MoleculeIterator mi; |
908 |
|
Molecule* mol; |
909 |
|
Molecule::RigidBodyIterator rbIter; |
910 |
|
RigidBody* rb; |
911 |
< |
|
911 |
> |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
912 |
> |
|
913 |
|
// collect the atomic forces onto rigid bodies |
914 |
< |
for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) { |
915 |
< |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
916 |
< |
rb->calcForcesAndTorques(); |
914 |
> |
|
915 |
> |
for (mol = info_->beginMolecule(mi); mol != NULL; |
916 |
> |
mol = info_->nextMolecule(mi)) { |
917 |
> |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
918 |
> |
rb = mol->nextRigidBody(rbIter)) { |
919 |
> |
Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial(); |
920 |
> |
stressTensor += rbTau; |
921 |
|
} |
922 |
|
} |
923 |
< |
|
923 |
> |
|
924 |
> |
#ifdef IS_MPI |
925 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, stressTensor.getArrayPointer(), 9, |
926 |
> |
MPI::REALTYPE, MPI::SUM); |
927 |
> |
#endif |
928 |
> |
curSnapshot->setStressTensor(stressTensor); |
929 |
> |
|
930 |
|
} |
931 |
|
|
932 |
< |
} //end namespace oopse |
932 |
> |
} //end namespace OpenMD |