ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/ForceManager.cpp
(Generate patch)

Comparing branches/development/src/brains/ForceManager.cpp (file contents):
Revision 1569 by gezelter, Thu May 26 13:55:04 2011 UTC vs.
Revision 1787 by gezelter, Wed Aug 29 18:13:11 2012 UTC

# Line 36 | Line 36
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38   * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 < * [4]  Vardeman & Gezelter, in progress (2009).                        
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
# Line 47 | Line 48
48   * @version 1.0
49   */
50  
51 +
52   #include "brains/ForceManager.hpp"
53   #include "primitives/Molecule.hpp"
54   #define __OPENMD_C
# Line 56 | Line 58
58   #include "primitives/Torsion.hpp"
59   #include "primitives/Inversion.hpp"
60   #include "nonbonded/NonBondedInteraction.hpp"
61 + #include "perturbations/ElectricField.hpp"
62   #include "parallel/ForceMatrixDecomposition.hpp"
63  
64 + #include <cstdio>
65 + #include <iostream>
66 + #include <iomanip>
67 +
68   using namespace std;
69   namespace OpenMD {
70    
71    ForceManager::ForceManager(SimInfo * info) : info_(info) {
72 <
73 < #ifdef IS_MPI
74 <    fDecomp_ = new ForceMatrixDecomposition(info_);
68 < #else
69 <    // fDecomp_ = new ForceSerialDecomposition(info);
70 < #endif
72 >    forceField_ = info_->getForceField();
73 >    interactionMan_ = new InteractionManager();
74 >    fDecomp_ = new ForceMatrixDecomposition(info_, interactionMan_);
75    }
76 +
77 +  /**
78 +   * setupCutoffs
79 +   *
80 +   * Sets the values of cutoffRadius, switchingRadius, cutoffMethod,
81 +   * and cutoffPolicy
82 +   *
83 +   * cutoffRadius : realType
84 +   *  If the cutoffRadius was explicitly set, use that value.
85 +   *  If the cutoffRadius was not explicitly set:
86 +   *      Are there electrostatic atoms?  Use 12.0 Angstroms.
87 +   *      No electrostatic atoms?  Poll the atom types present in the
88 +   *      simulation for suggested cutoff values (e.g. 2.5 * sigma).
89 +   *      Use the maximum suggested value that was found.
90 +   *
91 +   * cutoffMethod : (one of HARD, SWITCHED, SHIFTED_FORCE,
92 +   *                        or SHIFTED_POTENTIAL)
93 +   *      If cutoffMethod was explicitly set, use that choice.
94 +   *      If cutoffMethod was not explicitly set, use SHIFTED_FORCE
95 +   *
96 +   * cutoffPolicy : (one of MIX, MAX, TRADITIONAL)
97 +   *      If cutoffPolicy was explicitly set, use that choice.
98 +   *      If cutoffPolicy was not explicitly set, use TRADITIONAL
99 +   *
100 +   * switchingRadius : realType
101 +   *  If the cutoffMethod was set to SWITCHED:
102 +   *      If the switchingRadius was explicitly set, use that value
103 +   *          (but do a sanity check first).
104 +   *      If the switchingRadius was not explicitly set: use 0.85 *
105 +   *      cutoffRadius_
106 +   *  If the cutoffMethod was not set to SWITCHED:
107 +   *      Set switchingRadius equal to cutoffRadius for safety.
108 +   */
109 +  void ForceManager::setupCutoffs() {
110 +    
111 +    Globals* simParams_ = info_->getSimParams();
112 +    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
113 +    int mdFileVersion;
114 +    rCut_ = 0.0; //Needs a value for a later max() call;  
115 +    
116 +    if (simParams_->haveMDfileVersion())
117 +      mdFileVersion = simParams_->getMDfileVersion();
118 +    else
119 +      mdFileVersion = 0;
120 +  
121 +    if (simParams_->haveCutoffRadius()) {
122 +      rCut_ = simParams_->getCutoffRadius();
123 +    } else {      
124 +      if (info_->usesElectrostaticAtoms()) {
125 +        sprintf(painCave.errMsg,
126 +                "ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n"
127 +                "\tOpenMD will use a default value of 12.0 angstroms"
128 +                "\tfor the cutoffRadius.\n");
129 +        painCave.isFatal = 0;
130 +        painCave.severity = OPENMD_INFO;
131 +        simError();
132 +        rCut_ = 12.0;
133 +      } else {
134 +        RealType thisCut;
135 +        set<AtomType*>::iterator i;
136 +        set<AtomType*> atomTypes;
137 +        atomTypes = info_->getSimulatedAtomTypes();        
138 +        for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
139 +          thisCut = interactionMan_->getSuggestedCutoffRadius((*i));
140 +          rCut_ = max(thisCut, rCut_);
141 +        }
142 +        sprintf(painCave.errMsg,
143 +                "ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n"
144 +                "\tOpenMD will use %lf angstroms.\n",
145 +                rCut_);
146 +        painCave.isFatal = 0;
147 +        painCave.severity = OPENMD_INFO;
148 +        simError();
149 +      }
150 +    }
151 +
152 +    fDecomp_->setUserCutoff(rCut_);
153 +    interactionMan_->setCutoffRadius(rCut_);
154 +
155 +    map<string, CutoffMethod> stringToCutoffMethod;
156 +    stringToCutoffMethod["HARD"] = HARD;
157 +    stringToCutoffMethod["SWITCHED"] = SWITCHED;
158 +    stringToCutoffMethod["SHIFTED_POTENTIAL"] = SHIFTED_POTENTIAL;    
159 +    stringToCutoffMethod["SHIFTED_FORCE"] = SHIFTED_FORCE;
160    
161 <  void ForceManager::calcForces() {
161 >    if (simParams_->haveCutoffMethod()) {
162 >      string cutMeth = toUpperCopy(simParams_->getCutoffMethod());
163 >      map<string, CutoffMethod>::iterator i;
164 >      i = stringToCutoffMethod.find(cutMeth);
165 >      if (i == stringToCutoffMethod.end()) {
166 >        sprintf(painCave.errMsg,
167 >                "ForceManager::setupCutoffs: Could not find chosen cutoffMethod %s\n"
168 >                "\tShould be one of: "
169 >                "HARD, SWITCHED, SHIFTED_POTENTIAL, or SHIFTED_FORCE\n",
170 >                cutMeth.c_str());
171 >        painCave.isFatal = 1;
172 >        painCave.severity = OPENMD_ERROR;
173 >        simError();
174 >      } else {
175 >        cutoffMethod_ = i->second;
176 >      }
177 >    } else {
178 >      if (mdFileVersion > 1) {
179 >        sprintf(painCave.errMsg,
180 >                "ForceManager::setupCutoffs: No value was set for the cutoffMethod.\n"
181 >                "\tOpenMD will use SHIFTED_FORCE.\n");
182 >        painCave.isFatal = 0;
183 >        painCave.severity = OPENMD_INFO;
184 >        simError();
185 >        cutoffMethod_ = SHIFTED_FORCE;        
186 >      } else {
187 >        // handle the case where the old file version was in play
188 >        // (there should be no cutoffMethod, so we have to deduce it
189 >        // from other data).        
190 >
191 >        sprintf(painCave.errMsg,
192 >                "ForceManager::setupCutoffs : DEPRECATED FILE FORMAT!\n"
193 >                "\tOpenMD found a file which does not set a cutoffMethod.\n"
194 >                "\tOpenMD will attempt to deduce a cutoffMethod using the\n"
195 >                "\tbehavior of the older (version 1) code.  To remove this\n"
196 >                "\twarning, add an explicit cutoffMethod and change the top\n"
197 >                "\tof the file so that it begins with <OpenMD version=2>\n");
198 >        painCave.isFatal = 0;
199 >        painCave.severity = OPENMD_WARNING;
200 >        simError();            
201 >                
202 >        // The old file version tethered the shifting behavior to the
203 >        // electrostaticSummationMethod keyword.
204 >        
205 >        if (simParams_->haveElectrostaticSummationMethod()) {
206 >          string myMethod = simParams_->getElectrostaticSummationMethod();
207 >          toUpper(myMethod);
208 >        
209 >          if (myMethod == "SHIFTED_POTENTIAL") {
210 >            cutoffMethod_ = SHIFTED_POTENTIAL;
211 >          } else if (myMethod == "SHIFTED_FORCE") {
212 >            cutoffMethod_ = SHIFTED_FORCE;
213 >          }
214 >        
215 >          if (simParams_->haveSwitchingRadius())
216 >            rSwitch_ = simParams_->getSwitchingRadius();
217 >
218 >          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
219 >            if (simParams_->haveSwitchingRadius()){
220 >              sprintf(painCave.errMsg,
221 >                      "ForceManager::setupCutoffs : DEPRECATED ERROR MESSAGE\n"
222 >                      "\tA value was set for the switchingRadius\n"
223 >                      "\teven though the electrostaticSummationMethod was\n"
224 >                      "\tset to %s\n", myMethod.c_str());
225 >              painCave.severity = OPENMD_WARNING;
226 >              painCave.isFatal = 1;
227 >              simError();            
228 >            }
229 >          }
230 >          if (abs(rCut_ - rSwitch_) < 0.0001) {
231 >            if (cutoffMethod_ == SHIFTED_FORCE) {              
232 >              sprintf(painCave.errMsg,
233 >                      "ForceManager::setupCutoffs : DEPRECATED BEHAVIOR\n"
234 >                      "\tcutoffRadius and switchingRadius are set to the\n"
235 >                      "\tsame value.  OpenMD will use shifted force\n"
236 >                      "\tpotentials instead of switching functions.\n");
237 >              painCave.isFatal = 0;
238 >              painCave.severity = OPENMD_WARNING;
239 >              simError();            
240 >            } else {
241 >              cutoffMethod_ = SHIFTED_POTENTIAL;
242 >              sprintf(painCave.errMsg,
243 >                      "ForceManager::setupCutoffs : DEPRECATED BEHAVIOR\n"
244 >                      "\tcutoffRadius and switchingRadius are set to the\n"
245 >                      "\tsame value.  OpenMD will use shifted potentials\n"
246 >                      "\tinstead of switching functions.\n");
247 >              painCave.isFatal = 0;
248 >              painCave.severity = OPENMD_WARNING;
249 >              simError();            
250 >            }
251 >          }
252 >        }
253 >      }
254 >    }
255 >
256 >    map<string, CutoffPolicy> stringToCutoffPolicy;
257 >    stringToCutoffPolicy["MIX"] = MIX;
258 >    stringToCutoffPolicy["MAX"] = MAX;
259 >    stringToCutoffPolicy["TRADITIONAL"] = TRADITIONAL;    
260 >
261 >    string cutPolicy;
262 >    if (forceFieldOptions_.haveCutoffPolicy()){
263 >      cutPolicy = forceFieldOptions_.getCutoffPolicy();
264 >    }else if (simParams_->haveCutoffPolicy()) {
265 >      cutPolicy = simParams_->getCutoffPolicy();
266 >    }
267 >
268 >    if (!cutPolicy.empty()){
269 >      toUpper(cutPolicy);
270 >      map<string, CutoffPolicy>::iterator i;
271 >      i = stringToCutoffPolicy.find(cutPolicy);
272 >
273 >      if (i == stringToCutoffPolicy.end()) {
274 >        sprintf(painCave.errMsg,
275 >                "ForceManager::setupCutoffs: Could not find chosen cutoffPolicy %s\n"
276 >                "\tShould be one of: "
277 >                "MIX, MAX, or TRADITIONAL\n",
278 >                cutPolicy.c_str());
279 >        painCave.isFatal = 1;
280 >        painCave.severity = OPENMD_ERROR;
281 >        simError();
282 >      } else {
283 >        cutoffPolicy_ = i->second;
284 >      }
285 >    } else {
286 >      sprintf(painCave.errMsg,
287 >              "ForceManager::setupCutoffs: No value was set for the cutoffPolicy.\n"
288 >              "\tOpenMD will use TRADITIONAL.\n");
289 >      painCave.isFatal = 0;
290 >      painCave.severity = OPENMD_INFO;
291 >      simError();
292 >      cutoffPolicy_ = TRADITIONAL;        
293 >    }
294 >
295 >    fDecomp_->setCutoffPolicy(cutoffPolicy_);
296 >        
297 >    // create the switching function object:
298 >
299 >    switcher_ = new SwitchingFunction();
300 >  
301 >    if (cutoffMethod_ == SWITCHED) {
302 >      if (simParams_->haveSwitchingRadius()) {
303 >        rSwitch_ = simParams_->getSwitchingRadius();
304 >        if (rSwitch_ > rCut_) {        
305 >          sprintf(painCave.errMsg,
306 >                  "ForceManager::setupCutoffs: switchingRadius (%f) is larger "
307 >                  "than the cutoffRadius(%f)\n", rSwitch_, rCut_);
308 >          painCave.isFatal = 1;
309 >          painCave.severity = OPENMD_ERROR;
310 >          simError();
311 >        }
312 >      } else {      
313 >        rSwitch_ = 0.85 * rCut_;
314 >        sprintf(painCave.errMsg,
315 >                "ForceManager::setupCutoffs: No value was set for the switchingRadius.\n"
316 >                "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n"
317 >                "\tswitchingRadius = %f. for this simulation\n", rSwitch_);
318 >        painCave.isFatal = 0;
319 >        painCave.severity = OPENMD_WARNING;
320 >        simError();
321 >      }
322 >    } else {
323 >      if (mdFileVersion > 1) {
324 >        // throw an error if we define a switching radius and don't need one.
325 >        // older file versions should not do this.
326 >        if (simParams_->haveSwitchingRadius()) {
327 >          map<string, CutoffMethod>::const_iterator it;
328 >          string theMeth;
329 >          for (it = stringToCutoffMethod.begin();
330 >               it != stringToCutoffMethod.end(); ++it) {
331 >            if (it->second == cutoffMethod_) {
332 >              theMeth = it->first;
333 >              break;
334 >            }
335 >          }
336 >          sprintf(painCave.errMsg,
337 >                  "ForceManager::setupCutoffs: the cutoffMethod (%s)\n"
338 >                  "\tis not set to SWITCHED, so switchingRadius value\n"
339 >                  "\twill be ignored for this simulation\n", theMeth.c_str());
340 >          painCave.isFatal = 0;
341 >          painCave.severity = OPENMD_WARNING;
342 >          simError();
343 >        }
344 >      }
345 >      rSwitch_ = rCut_;
346 >    }
347      
348 +    // Default to cubic switching function.
349 +    sft_ = cubic;
350 +    if (simParams_->haveSwitchingFunctionType()) {
351 +      string funcType = simParams_->getSwitchingFunctionType();
352 +      toUpper(funcType);
353 +      if (funcType == "CUBIC") {
354 +        sft_ = cubic;
355 +      } else {
356 +        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
357 +          sft_ = fifth_order_poly;
358 +        } else {
359 +          // throw error        
360 +          sprintf( painCave.errMsg,
361 +                   "ForceManager::setupSwitching : Unknown switchingFunctionType. (Input file specified %s .)\n"
362 +                   "\tswitchingFunctionType must be one of: "
363 +                   "\"cubic\" or \"fifth_order_polynomial\".",
364 +                   funcType.c_str() );
365 +          painCave.isFatal = 1;
366 +          painCave.severity = OPENMD_ERROR;
367 +          simError();
368 +        }          
369 +      }
370 +    }
371 +    switcher_->setSwitchType(sft_);
372 +    switcher_->setSwitch(rSwitch_, rCut_);
373 +  }
374 +
375 +
376 +
377 +  
378 +  void ForceManager::initialize() {
379 +
380      if (!info_->isTopologyDone()) {
381 +
382        info_->update();
383        interactionMan_->setSimInfo(info_);
384        interactionMan_->initialize();
385 <      swfun_ = interactionMan_->getSwitchingFunction();
386 <      fDecomp_->distributeInitialData();
387 <      info_->prepareTopology();
385 >
386 >      // We want to delay the cutoffs until after the interaction
387 >      // manager has set up the atom-atom interactions so that we can
388 >      // query them for suggested cutoff values
389 >      setupCutoffs();
390 >
391 >      info_->prepareTopology();      
392 >
393 >      doParticlePot_ = info_->getSimParams()->getOutputParticlePotential();
394 >      doHeatFlux_ = info_->getSimParams()->getPrintHeatFlux();
395 >      if (doHeatFlux_) doParticlePot_ = true;
396 >
397 >      doElectricField_ = info_->getSimParams()->getOutputElectricField();
398 >  
399      }
400 +
401 +    ForceFieldOptions& fopts = forceField_->getForceFieldOptions();
402      
403 +    // Force fields can set options on how to scale van der Waals and
404 +    // electrostatic interactions for atoms connected via bonds, bends
405 +    // and torsions in this case the topological distance between
406 +    // atoms is:
407 +    // 0 = topologically unconnected
408 +    // 1 = bonded together
409 +    // 2 = connected via a bend
410 +    // 3 = connected via a torsion
411 +    
412 +    vdwScale_.reserve(4);
413 +    fill(vdwScale_.begin(), vdwScale_.end(), 0.0);
414 +
415 +    electrostaticScale_.reserve(4);
416 +    fill(electrostaticScale_.begin(), electrostaticScale_.end(), 0.0);
417 +
418 +    vdwScale_[0] = 1.0;
419 +    vdwScale_[1] = fopts.getvdw12scale();
420 +    vdwScale_[2] = fopts.getvdw13scale();
421 +    vdwScale_[3] = fopts.getvdw14scale();
422 +    
423 +    electrostaticScale_[0] = 1.0;
424 +    electrostaticScale_[1] = fopts.getelectrostatic12scale();
425 +    electrostaticScale_[2] = fopts.getelectrostatic13scale();
426 +    electrostaticScale_[3] = fopts.getelectrostatic14scale();    
427 +    
428 +    if (info_->getSimParams()->haveElectricField()) {
429 +      ElectricField* eField = new ElectricField(info_);
430 +      perturbations_.push_back(eField);
431 +    }
432 +
433 +    fDecomp_->distributeInitialData();
434 +
435 +    initialized_ = true;
436 +
437 +  }
438 +
439 +  void ForceManager::calcForces() {
440 +    
441 +    if (!initialized_) initialize();
442 +
443      preCalculation();  
444      shortRangeInteractions();
445      longRangeInteractions();
446 <    postCalculation();
88 <    
446 >    postCalculation();    
447    }
448    
449    void ForceManager::preCalculation() {
# Line 98 | Line 456 | namespace OpenMD {
456      Molecule::CutoffGroupIterator ci;
457      CutoffGroup* cg;
458      
459 <    // forces are zeroed here, before any are accumulated.
459 >    // forces and potentials are zeroed here, before any are
460 >    // accumulated.
461      
462 +    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
463 +
464 +    snap->setBondPotential(0.0);
465 +    snap->setBendPotential(0.0);
466 +    snap->setTorsionPotential(0.0);
467 +    snap->setInversionPotential(0.0);
468 +
469 +    potVec zeroPot(0.0);
470 +    snap->setLongRangePotential(zeroPot);
471 +    snap->setExcludedPotentials(zeroPot);
472 +
473 +    snap->setRestraintPotential(0.0);
474 +    snap->setRawPotential(0.0);
475 +
476      for (mol = info_->beginMolecule(mi); mol != NULL;
477           mol = info_->nextMolecule(mi)) {
478 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
478 >      for(atom = mol->beginAtom(ai); atom != NULL;
479 >          atom = mol->nextAtom(ai)) {
480          atom->zeroForcesAndTorques();
481        }
482 <          
482 >      
483        //change the positions of atoms which belong to the rigidbodies
484        for (rb = mol->beginRigidBody(rbIter); rb != NULL;
485             rb = mol->nextRigidBody(rbIter)) {
486          rb->zeroForcesAndTorques();
487        }        
488 <
488 >      
489        if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){
490          for(cg = mol->beginCutoffGroup(ci); cg != NULL;
491              cg = mol->nextCutoffGroup(ci)) {
# Line 120 | Line 494 | namespace OpenMD {
494          }
495        }      
496      }
123  
124    // Zero out the stress tensor
125    tau *= 0.0;
497      
498 +    // Zero out the stress tensor
499 +    stressTensor *= 0.0;
500 +    // Zero out the heatFlux
501 +    fDecomp_->setHeatFlux( Vector3d(0.0) );    
502    }
503    
504    void ForceManager::shortRangeInteractions() {
# Line 156 | Line 531 | namespace OpenMD {
531  
532        for (bond = mol->beginBond(bondIter); bond != NULL;
533             bond = mol->nextBond(bondIter)) {
534 <        bond->calcForce();
534 >        bond->calcForce(doParticlePot_);
535          bondPotential += bond->getPotential();
536        }
537  
# Line 164 | Line 539 | namespace OpenMD {
539             bend = mol->nextBend(bendIter)) {
540          
541          RealType angle;
542 <        bend->calcForce(angle);
542 >        bend->calcForce(angle, doParticlePot_);
543          RealType currBendPot = bend->getPotential();          
544          
545          bendPotential += bend->getPotential();
# Line 174 | Line 549 | namespace OpenMD {
549            dataSet.prev.angle = dataSet.curr.angle = angle;
550            dataSet.prev.potential = dataSet.curr.potential = currBendPot;
551            dataSet.deltaV = 0.0;
552 <          bendDataSets.insert(map<Bend*, BendDataSet>::value_type(bend, dataSet));
552 >          bendDataSets.insert(map<Bend*, BendDataSet>::value_type(bend,
553 >                                                                  dataSet));
554          }else {
555            i->second.prev.angle = i->second.curr.angle;
556            i->second.prev.potential = i->second.curr.potential;
# Line 188 | Line 564 | namespace OpenMD {
564        for (torsion = mol->beginTorsion(torsionIter); torsion != NULL;
565             torsion = mol->nextTorsion(torsionIter)) {
566          RealType angle;
567 <        torsion->calcForce(angle);
567 >        torsion->calcForce(angle, doParticlePot_);
568          RealType currTorsionPot = torsion->getPotential();
569          torsionPotential += torsion->getPotential();
570          map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion);
# Line 212 | Line 588 | namespace OpenMD {
588             inversion != NULL;
589             inversion = mol->nextInversion(inversionIter)) {
590          RealType angle;
591 <        inversion->calcForce(angle);
591 >        inversion->calcForce(angle, doParticlePot_);
592          RealType currInversionPot = inversion->getPotential();
593          inversionPotential += inversion->getPotential();
594          map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion);
# Line 232 | Line 608 | namespace OpenMD {
608          }      
609        }      
610      }
611 <    
612 <    RealType  shortRangePotential = bondPotential + bendPotential +
613 <      torsionPotential +  inversionPotential;    
611 >
612 > #ifdef IS_MPI
613 >    // Collect from all nodes.  This should eventually be moved into a
614 >    // SystemDecomposition, but this is a better place than in
615 >    // Thermo to do the collection.
616 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &bondPotential, 1, MPI::REALTYPE,
617 >                              MPI::SUM);
618 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &bendPotential, 1, MPI::REALTYPE,
619 >                              MPI::SUM);
620 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &torsionPotential, 1,
621 >                              MPI::REALTYPE, MPI::SUM);
622 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &inversionPotential, 1,
623 >                              MPI::REALTYPE, MPI::SUM);
624 > #endif
625 >
626      Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
627 <    curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential;
628 <    curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential;
629 <    curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential;
630 <    curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential;
631 <    curSnapshot->statData[Stats::INVERSION_POTENTIAL] = inversionPotential;    
627 >
628 >    curSnapshot->setBondPotential(bondPotential);
629 >    curSnapshot->setBendPotential(bendPotential);
630 >    curSnapshot->setTorsionPotential(torsionPotential);
631 >    curSnapshot->setInversionPotential(inversionPotential);
632 >    
633 >    // RealType shortRangePotential = bondPotential + bendPotential +
634 >    //   torsionPotential +  inversionPotential;    
635 >
636 >    // curSnapshot->setShortRangePotential(shortRangePotential);
637    }
638    
639    void ForceManager::longRangeInteractions() {
640  
641 <    // some of this initial stuff will go away:
641 >
642      Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
643      DataStorage* config = &(curSnapshot->atomData);
644      DataStorage* cgConfig = &(curSnapshot->cgData);
252    RealType* frc = config->getArrayPointer(DataStorage::dslForce);
253    RealType* pos = config->getArrayPointer(DataStorage::dslPosition);
254    RealType* trq = config->getArrayPointer(DataStorage::dslTorque);
255    RealType* A = config->getArrayPointer(DataStorage::dslAmat);
256    RealType* electroFrame = config->getArrayPointer(DataStorage::dslElectroFrame);
257    RealType* particlePot = config->getArrayPointer(DataStorage::dslParticlePot);
258    RealType* rc;    
645  
646 <    if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){
647 <      rc = cgConfig->getArrayPointer(DataStorage::dslPosition);
646 >    //calculate the center of mass of cutoff group
647 >
648 >    SimInfo::MoleculeIterator mi;
649 >    Molecule* mol;
650 >    Molecule::CutoffGroupIterator ci;
651 >    CutoffGroup* cg;
652 >
653 >    if(info_->getNCutoffGroups() > 0){      
654 >      for (mol = info_->beginMolecule(mi); mol != NULL;
655 >           mol = info_->nextMolecule(mi)) {
656 >        for(cg = mol->beginCutoffGroup(ci); cg != NULL;
657 >            cg = mol->nextCutoffGroup(ci)) {
658 >          cg->updateCOM();
659 >        }
660 >      }      
661      } else {
662        // center of mass of the group is the same as position of the atom  
663        // if cutoff group does not exist
664 <      rc = pos;
664 >      cgConfig->position = config->position;
665 >      cgConfig->velocity = config->velocity;
666      }
267    
268    //initialize data before passing to fortran
269    RealType longRangePotential[N_INTERACTION_FAMILIES];
270    RealType lrPot = 0.0;
271    int isError = 0;
667  
668 <    // dangerous to iterate over enums, but we'll live on the edge:
274 <    for (int i = NO_FAMILY; i != N_INTERACTION_FAMILIES; ++i){
275 <      longRangePotential[i]=0.0; //Initialize array
276 <    }
277 <
278 <    // new stuff starts here:
279 <
668 >    fDecomp_->zeroWorkArrays();
669      fDecomp_->distributeData();
670 <
671 <    int cg1, cg2, atom1, atom2;
672 <    Vector3d d_grp, dag;
673 <    RealType rgrpsq, rgrp;
670 >    
671 >    int cg1, cg2, atom1, atom2, topoDist;
672 >    Vector3d d_grp, dag, d, gvel2, vel2;
673 >    RealType rgrpsq, rgrp, r2, r;
674 >    RealType electroMult, vdwMult;
675      RealType vij;
676 <    Vector3d fij, fg;
677 <    pair<int, int> gtypes;
676 >    Vector3d fij, fg, f1;
677 >    tuple3<RealType, RealType, RealType> cuts;
678      RealType rCutSq;
679      bool in_switching_region;
680      RealType sw, dswdr, swderiv;
# Line 292 | Line 682 | namespace OpenMD {
682      InteractionData idat;
683      SelfData sdat;
684      RealType mf;
685 +    RealType vpair;
686 +    RealType dVdFQ1(0.0);
687 +    RealType dVdFQ2(0.0);
688 +    potVec longRangePotential(0.0);
689 +    potVec workPot(0.0);
690 +    potVec exPot(0.0);
691 +    Vector3d eField1(0.0);
692 +    Vector3d eField2(0.0);
693 +    vector<int>::iterator ia, jb;
694  
695      int loopStart, loopEnd;
696  
697 +    idat.vdwMult = &vdwMult;
698 +    idat.electroMult = &electroMult;
699 +    idat.pot = &workPot;
700 +    idat.excludedPot = &exPot;
701 +    sdat.pot = fDecomp_->getEmbeddingPotential();
702 +    sdat.excludedPot = fDecomp_->getExcludedSelfPotential();
703 +    idat.vpair = &vpair;
704 +    idat.dVdFQ1 = &dVdFQ1;
705 +    idat.dVdFQ2 = &dVdFQ2;
706 +    idat.eField1 = &eField1;
707 +    idat.eField2 = &eField2;  
708 +    idat.f1 = &f1;
709 +    idat.sw = &sw;
710 +    idat.shiftedPot = (cutoffMethod_ == SHIFTED_POTENTIAL) ? true : false;
711 +    idat.shiftedForce = (cutoffMethod_ == SHIFTED_FORCE) ? true : false;
712 +    idat.doParticlePot = doParticlePot_;
713 +    idat.doElectricField = doElectricField_;
714 +    sdat.doParticlePot = doParticlePot_;
715 +    
716      loopEnd = PAIR_LOOP;
717      if (info_->requiresPrepair() ) {
718        loopStart = PREPAIR_LOOP;
719      } else {
720        loopStart = PAIR_LOOP;
721      }
722 <
723 <    for (int iLoop = loopStart; iLoop < loopEnd; iLoop++) {
306 <      
722 >    for (int iLoop = loopStart; iLoop <= loopEnd; iLoop++) {
723 >    
724        if (iLoop == loopStart) {
725          bool update_nlist = fDecomp_->checkNeighborList();
726          if (update_nlist)
727            neighborList = fDecomp_->buildNeighborList();
728 <      }
728 >      }            
729  
730        for (vector<pair<int, int> >::iterator it = neighborList.begin();
731               it != neighborList.end(); ++it) {
732 <        
732 >                
733          cg1 = (*it).first;
734          cg2 = (*it).second;
735 +        
736 +        cuts = fDecomp_->getGroupCutoffs(cg1, cg2);
737  
319        gtypes = fDecomp_->getGroupTypes(cg1, cg2);
738          d_grp  = fDecomp_->getIntergroupVector(cg1, cg2);
739 +
740          curSnapshot->wrapVector(d_grp);        
741          rgrpsq = d_grp.lengthSquare();
742 <        rCutSq = groupCutoffMap[gtypes].first;
742 >        rCutSq = cuts.second;
743  
744          if (rgrpsq < rCutSq) {
745 <          *(idat.rcut) = groupCutoffMap[gtypes].second;
745 >          idat.rcut = &cuts.first;
746            if (iLoop == PAIR_LOOP) {
747 <            vij *= 0.0;
747 >            vij = 0.0;
748              fij = V3Zero;
749            }
750            
751 <          in_switching_region = swfun_->getSwitch(rgrpsq, *(idat.sw), dswdr,
752 <                                                  rgrp);              
751 >          in_switching_region = switcher_->getSwitch(rgrpsq, sw, dswdr,
752 >                                                     rgrp);
753 >
754            atomListRow = fDecomp_->getAtomsInGroupRow(cg1);
755            atomListColumn = fDecomp_->getAtomsInGroupColumn(cg2);
756  
757 <          for (vector<int>::iterator ia = atomListRow.begin();
757 >          if (doHeatFlux_)
758 >            gvel2 = fDecomp_->getGroupVelocityColumn(cg2);
759 >
760 >          for (ia = atomListRow.begin();
761                 ia != atomListRow.end(); ++ia) {            
762              atom1 = (*ia);
763 <            
764 <            for (vector<int>::iterator jb = atomListColumn.begin();
763 >
764 >            for (jb = atomListColumn.begin();
765                   jb != atomListColumn.end(); ++jb) {              
766                atom2 = (*jb);
344              
345              if (!fDecomp_->skipAtomPair(atom1, atom2)) {
346                
347                idat = fDecomp_->fillInteractionData(atom1, atom2);
767  
768 +              if (!fDecomp_->skipAtomPair(atom1, atom2, cg1, cg2)) {
769 +
770 +                vpair = 0.0;
771 +                workPot = 0.0;
772 +                exPot = 0.0;
773 +                f1 = V3Zero;
774 +                dVdFQ1 = 0.0;
775 +                dVdFQ2 = 0.0;
776 +
777 +                fDecomp_->fillInteractionData(idat, atom1, atom2);
778 +
779 +                topoDist = fDecomp_->getTopologicalDistance(atom1, atom2);
780 +                vdwMult = vdwScale_[topoDist];
781 +                electroMult = electrostaticScale_[topoDist];
782 +
783                  if (atomListRow.size() == 1 && atomListColumn.size() == 1) {
784 <                  *(idat.d) = d_grp;
785 <                  *(idat.r2) = rgrpsq;
784 >                  idat.d = &d_grp;
785 >                  idat.r2 = &rgrpsq;
786 >                  if (doHeatFlux_)
787 >                    vel2 = gvel2;
788                  } else {
789 <                  *(idat.d) = fDecomp_->getInteratomicVector(atom1, atom2);
790 <                  curSnapshot->wrapVector( *(idat.d) );
791 <                  *(idat.r2) = idat.d->lengthSquare();
789 >                  d = fDecomp_->getInteratomicVector(atom1, atom2);
790 >                  curSnapshot->wrapVector( d );
791 >                  r2 = d.lengthSquare();
792 >                  idat.d = &d;
793 >                  idat.r2 = &r2;
794 >                  if (doHeatFlux_)
795 >                    vel2 = fDecomp_->getAtomVelocityColumn(atom2);
796                  }
357                
358                *(idat.rij) = sqrt( *(idat.r2) );
797                
798 +                r = sqrt( *(idat.r2) );
799 +                idat.rij = &r;
800 +              
801                  if (iLoop == PREPAIR_LOOP) {
802                    interactionMan_->doPrePair(idat);
803                  } else {
804                    interactionMan_->doPair(idat);
805 <                  vij += *(idat.vpair);
806 <                  fij += *(idat.f1);
807 <                  tau -= outProduct( *(idat.d), *(idat.f1));
805 >                  fDecomp_->unpackInteractionData(idat, atom1, atom2);
806 >                  vij += vpair;
807 >                  fij += f1;
808 >                  stressTensor -= outProduct( *(idat.d), f1);
809 >                  if (doHeatFlux_)
810 >                    fDecomp_->addToHeatFlux(*(idat.d) * dot(f1, vel2));
811                  }
812                }
813              }
# Line 373 | Line 817 | namespace OpenMD {
817              if (in_switching_region) {
818                swderiv = vij * dswdr / rgrp;
819                fg = swderiv * d_grp;
376
820                fij += fg;
821  
822                if (atomListRow.size() == 1 && atomListColumn.size() == 1) {
823 <                tau -= outProduct( *(idat.d), fg);
823 >                stressTensor -= outProduct( *(idat.d), fg);
824 >                if (doHeatFlux_)
825 >                  fDecomp_->addToHeatFlux(*(idat.d) * dot(fg, vel2));
826 >                
827                }
828            
829 <              for (vector<int>::iterator ia = atomListRow.begin();
829 >              for (ia = atomListRow.begin();
830                     ia != atomListRow.end(); ++ia) {            
831                  atom1 = (*ia);                
832                  mf = fDecomp_->getMassFactorRow(atom1);
# Line 388 | Line 834 | namespace OpenMD {
834                  // presence in switching region
835                  fg = swderiv * d_grp * mf;
836                  fDecomp_->addForceToAtomRow(atom1, fg);
391
837                  if (atomListRow.size() > 1) {
838                    if (info_->usesAtomicVirial()) {
839                      // find the distance between the atom
840                      // and the center of the cutoff group:
841                      dag = fDecomp_->getAtomToGroupVectorRow(atom1, cg1);
842 <                    tau -= outProduct(dag, fg);
842 >                    stressTensor -= outProduct(dag, fg);
843 >                    if (doHeatFlux_)
844 >                      fDecomp_->addToHeatFlux( dag * dot(fg, vel2));
845                    }
846                  }
847                }
848 <              for (vector<int>::iterator jb = atomListColumn.begin();
848 >              for (jb = atomListColumn.begin();
849                     jb != atomListColumn.end(); ++jb) {              
850                  atom2 = (*jb);
851                  mf = fDecomp_->getMassFactorColumn(atom2);
# Line 412 | Line 859 | namespace OpenMD {
859                      // find the distance between the atom
860                      // and the center of the cutoff group:
861                      dag = fDecomp_->getAtomToGroupVectorColumn(atom2, cg2);
862 <                    tau -= outProduct(dag, fg);
862 >                    stressTensor -= outProduct(dag, fg);
863 >                    if (doHeatFlux_)
864 >                      fDecomp_->addToHeatFlux( dag * dot(fg, vel2));
865                    }
866                  }
867                }
868              }
869 <            //if (!SIM_uses_AtomicVirial) {
870 <            //  tau -= outProduct(d_grp, fij);
869 >            //if (!info_->usesAtomicVirial()) {
870 >            //  stressTensor -= outProduct(d_grp, fij);
871 >            //  if (doHeatFlux_)
872 >            //     fDecomp_->addToHeatFlux( d_grp * dot(fij, vel2));
873              //}
874            }
875          }
876        }
877  
878        if (iLoop == PREPAIR_LOOP) {
879 <        if (info_->requiresPrepair()) {            
879 >        if (info_->requiresPrepair()) {
880 >
881            fDecomp_->collectIntermediateData();
882 <          atomListLocal = fDecomp_->getAtomList();
883 <          for (vector<int>::iterator ia = atomListLocal.begin();
884 <               ia != atomListLocal.end(); ++ia) {              
433 <            atom1 = (*ia);            
434 <            sdat = fDecomp_->fillSelfData(atom1);
882 >
883 >          for (unsigned int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) {
884 >            fDecomp_->fillSelfData(sdat, atom1);
885              interactionMan_->doPreForce(sdat);
886            }
887 <          fDecomp_->distributeIntermediateData();        
887 >
888 >          fDecomp_->distributeIntermediateData();
889 >
890          }
891        }
440
892      }
893      
894 +    // collects pairwise information
895      fDecomp_->collectData();
896 <    
897 <    if (info_->requiresSkipCorrection() || info_->requiresSelfCorrection()) {
898 <      atomListLocal = fDecomp_->getAtomList();
899 <      for (vector<int>::iterator ia = atomListLocal.begin();
900 <           ia != atomListLocal.end(); ++ia) {              
449 <        atom1 = (*ia);    
450 <
451 <        if (info_->requiresSkipCorrection()) {
452 <          vector<int> skipList = fDecomp_->getSkipsForAtom(atom1);
453 <          for (vector<int>::iterator jb = skipList.begin();
454 <               jb != skipList.end(); ++jb) {              
455 <            atom2 = (*jb);
456 <            idat = fDecomp_->fillSkipData(atom1, atom2);
457 <            interactionMan_->doSkipCorrection(idat);
458 <          }
459 <        }
460 <          
461 <        if (info_->requiresSelfCorrection()) {
462 <          sdat = fDecomp_->fillSelfData(atom1);
463 <          interactionMan_->doSelfCorrection(sdat);
464 <        }
896 >        
897 >    if (info_->requiresSelfCorrection()) {
898 >      for (unsigned int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) {
899 >        fDecomp_->fillSelfData(sdat, atom1);
900 >        interactionMan_->doSelfCorrection(sdat);
901        }
902      }
903  
904 <    // dangerous to iterate over enums, but we'll live on the edge:
905 <    for (int i = NO_FAMILY; i != N_INTERACTION_FAMILIES; ++i){
906 <      lrPot += longRangePotential[i]; //Quick hack
907 <    }
908 <        
909 <    //store the tau and long range potential    
910 <    curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot;
911 <    curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VANDERWAALS_FAMILY];
912 <    curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_FAMILY];
904 >    // collects single-atom information
905 >    fDecomp_->collectSelfData();
906 >
907 >    longRangePotential = *(fDecomp_->getEmbeddingPotential()) +
908 >      *(fDecomp_->getPairwisePotential());
909 >
910 >    curSnapshot->setLongRangePotential(longRangePotential);
911 >    
912 >    curSnapshot->setExcludedPotentials(*(fDecomp_->getExcludedSelfPotential()) +
913 >                                         *(fDecomp_->getExcludedPotential()));
914 >
915    }
916  
917    
918    void ForceManager::postCalculation() {
919 +
920 +    vector<Perturbation*>::iterator pi;
921 +    for (pi = perturbations_.begin(); pi != perturbations_.end(); ++pi) {
922 +      (*pi)->applyPerturbation();
923 +    }
924 +
925      SimInfo::MoleculeIterator mi;
926      Molecule* mol;
927      Molecule::RigidBodyIterator rbIter;
928      RigidBody* rb;
929      Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
930 <    
930 >  
931      // collect the atomic forces onto rigid bodies
932      
933      for (mol = info_->beginMolecule(mi); mol != NULL;
# Line 491 | Line 935 | namespace OpenMD {
935        for (rb = mol->beginRigidBody(rbIter); rb != NULL;
936             rb = mol->nextRigidBody(rbIter)) {
937          Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial();
938 <        tau += rbTau;
938 >        stressTensor += rbTau;
939        }
940      }
941      
942   #ifdef IS_MPI
943 <    Mat3x3d tmpTau(tau);
944 <    MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(),
501 <                  9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
943 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, stressTensor.getArrayPointer(), 9,
944 >                              MPI::REALTYPE, MPI::SUM);
945   #endif
946 <    curSnapshot->statData.setTau(tau);
946 >    curSnapshot->setStressTensor(stressTensor);
947 >    
948    }
505
949   } //end namespace OpenMD

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines