ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/ForceManager.cpp
(Generate patch)

Comparing:
trunk/src/brains/ForceManager.cpp (file contents), Revision 664 by chuckv, Wed Oct 12 21:57:16 2005 UTC vs.
branches/development/src/brains/ForceManager.cpp (file contents), Revision 1868 by gezelter, Tue Apr 30 15:56:54 2013 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
44   * @file ForceManager.cpp
45   * @author tlin
46   * @date 11/09/2004
46 * @time 10:39am
47   * @version 1.0
48   */
49  
50 +
51   #include "brains/ForceManager.hpp"
52   #include "primitives/Molecule.hpp"
53 < #include "UseTheForce/doForces_interface.h"
53 < #define __C
54 < #include "UseTheForce/DarkSide/fInteractionMap.h"
53 > #define __OPENMD_C
54   #include "utils/simError.h"
55 < namespace oopse {
55 > #include "primitives/Bond.hpp"
56 > #include "primitives/Bend.hpp"
57 > #include "primitives/Torsion.hpp"
58 > #include "primitives/Inversion.hpp"
59 > #include "nonbonded/NonBondedInteraction.hpp"
60 > #include "perturbations/ElectricField.hpp"
61 > #include "parallel/ForceMatrixDecomposition.hpp"
62  
63 <  void ForceManager::calcForces(bool needPotential, bool needStress) {
63 > #include <cstdio>
64 > #include <iostream>
65 > #include <iomanip>
66  
67 <    if (!info_->isFortranInitialized()) {
68 <      info_->update();
69 <    }
67 > using namespace std;
68 > namespace OpenMD {
69 >  
70 >  ForceManager::ForceManager(SimInfo * info) : info_(info), switcher_(NULL) {
71 >    forceField_ = info_->getForceField();
72 >    interactionMan_ = new InteractionManager();
73 >    fDecomp_ = new ForceMatrixDecomposition(info_, interactionMan_);
74 >    thermo = new Thermo(info_);
75 >  }
76  
77 <    preCalculation();
77 >  ForceManager::~ForceManager() {
78 >    perturbations_.clear();
79      
80 <    calcShortRangeInteraction();
80 >    delete switcher_;
81 >    delete interactionMan_;
82 >    delete fDecomp_;
83 >    delete thermo;
84 >  }
85 >  
86 >  /**
87 >   * setupCutoffs
88 >   *
89 >   * Sets the values of cutoffRadius, switchingRadius, cutoffMethod,
90 >   * and cutoffPolicy
91 >   *
92 >   * cutoffRadius : realType
93 >   *  If the cutoffRadius was explicitly set, use that value.
94 >   *  If the cutoffRadius was not explicitly set:
95 >   *      Are there electrostatic atoms?  Use 12.0 Angstroms.
96 >   *      No electrostatic atoms?  Poll the atom types present in the
97 >   *      simulation for suggested cutoff values (e.g. 2.5 * sigma).
98 >   *      Use the maximum suggested value that was found.
99 >   *
100 >   * cutoffMethod : (one of HARD, SWITCHED, SHIFTED_FORCE,
101 >   *                        or SHIFTED_POTENTIAL)
102 >   *      If cutoffMethod was explicitly set, use that choice.
103 >   *      If cutoffMethod was not explicitly set, use SHIFTED_FORCE
104 >   *
105 >   * cutoffPolicy : (one of MIX, MAX, TRADITIONAL)
106 >   *      If cutoffPolicy was explicitly set, use that choice.
107 >   *      If cutoffPolicy was not explicitly set, use TRADITIONAL
108 >   *
109 >   * switchingRadius : realType
110 >   *  If the cutoffMethod was set to SWITCHED:
111 >   *      If the switchingRadius was explicitly set, use that value
112 >   *          (but do a sanity check first).
113 >   *      If the switchingRadius was not explicitly set: use 0.85 *
114 >   *      cutoffRadius_
115 >   *  If the cutoffMethod was not set to SWITCHED:
116 >   *      Set switchingRadius equal to cutoffRadius for safety.
117 >   */
118 >  void ForceManager::setupCutoffs() {
119 >    
120 >    Globals* simParams_ = info_->getSimParams();
121 >    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
122 >    int mdFileVersion;
123 >    rCut_ = 0.0; //Needs a value for a later max() call;  
124 >    
125 >    if (simParams_->haveMDfileVersion())
126 >      mdFileVersion = simParams_->getMDfileVersion();
127 >    else
128 >      mdFileVersion = 0;
129 >  
130 >    // We need the list of simulated atom types to figure out cutoffs
131 >    // as well as long range corrections.
132  
133 <    calcLongRangeInteraction(needPotential, needStress);
133 >    set<AtomType*>::iterator i;
134 >    set<AtomType*> atomTypes_;
135 >    atomTypes_ = info_->getSimulatedAtomTypes();
136  
137 <    postCalculation();
137 >    if (simParams_->haveCutoffRadius()) {
138 >      rCut_ = simParams_->getCutoffRadius();
139 >    } else {      
140 >      if (info_->usesElectrostaticAtoms()) {
141 >        sprintf(painCave.errMsg,
142 >                "ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n"
143 >                "\tOpenMD will use a default value of 12.0 angstroms"
144 >                "\tfor the cutoffRadius.\n");
145 >        painCave.isFatal = 0;
146 >        painCave.severity = OPENMD_INFO;
147 >        simError();
148 >        rCut_ = 12.0;
149 >      } else {
150 >        RealType thisCut;
151 >        for (i = atomTypes_.begin(); i != atomTypes_.end(); ++i) {
152 >          thisCut = interactionMan_->getSuggestedCutoffRadius((*i));
153 >          rCut_ = max(thisCut, rCut_);
154 >        }
155 >        sprintf(painCave.errMsg,
156 >                "ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n"
157 >                "\tOpenMD will use %lf angstroms.\n",
158 >                rCut_);
159 >        painCave.isFatal = 0;
160 >        painCave.severity = OPENMD_INFO;
161 >        simError();
162 >      }
163 >    }
164 >
165 >    fDecomp_->setUserCutoff(rCut_);
166 >    interactionMan_->setCutoffRadius(rCut_);
167 >
168 >    map<string, CutoffMethod> stringToCutoffMethod;
169 >    stringToCutoffMethod["HARD"] = HARD;
170 >    stringToCutoffMethod["SWITCHED"] = SWITCHED;
171 >    stringToCutoffMethod["SHIFTED_POTENTIAL"] = SHIFTED_POTENTIAL;    
172 >    stringToCutoffMethod["SHIFTED_FORCE"] = SHIFTED_FORCE;
173 >  
174 >    if (simParams_->haveCutoffMethod()) {
175 >      string cutMeth = toUpperCopy(simParams_->getCutoffMethod());
176 >      map<string, CutoffMethod>::iterator i;
177 >      i = stringToCutoffMethod.find(cutMeth);
178 >      if (i == stringToCutoffMethod.end()) {
179 >        sprintf(painCave.errMsg,
180 >                "ForceManager::setupCutoffs: Could not find chosen cutoffMethod %s\n"
181 >                "\tShould be one of: "
182 >                "HARD, SWITCHED, SHIFTED_POTENTIAL, or SHIFTED_FORCE\n",
183 >                cutMeth.c_str());
184 >        painCave.isFatal = 1;
185 >        painCave.severity = OPENMD_ERROR;
186 >        simError();
187 >      } else {
188 >        cutoffMethod_ = i->second;
189 >      }
190 >    } else {
191 >      if (mdFileVersion > 1) {
192 >        sprintf(painCave.errMsg,
193 >                "ForceManager::setupCutoffs: No value was set for the cutoffMethod.\n"
194 >                "\tOpenMD will use SHIFTED_FORCE.\n");
195 >        painCave.isFatal = 0;
196 >        painCave.severity = OPENMD_INFO;
197 >        simError();
198 >        cutoffMethod_ = SHIFTED_FORCE;        
199 >      } else {
200 >        // handle the case where the old file version was in play
201 >        // (there should be no cutoffMethod, so we have to deduce it
202 >        // from other data).        
203 >
204 >        sprintf(painCave.errMsg,
205 >                "ForceManager::setupCutoffs : DEPRECATED FILE FORMAT!\n"
206 >                "\tOpenMD found a file which does not set a cutoffMethod.\n"
207 >                "\tOpenMD will attempt to deduce a cutoffMethod using the\n"
208 >                "\tbehavior of the older (version 1) code.  To remove this\n"
209 >                "\twarning, add an explicit cutoffMethod and change the top\n"
210 >                "\tof the file so that it begins with <OpenMD version=2>\n");
211 >        painCave.isFatal = 0;
212 >        painCave.severity = OPENMD_WARNING;
213 >        simError();            
214 >                
215 >        // The old file version tethered the shifting behavior to the
216 >        // electrostaticSummationMethod keyword.
217          
218 +        if (simParams_->haveElectrostaticSummationMethod()) {
219 +          string myMethod = simParams_->getElectrostaticSummationMethod();
220 +          toUpper(myMethod);
221 +        
222 +          if (myMethod == "SHIFTED_POTENTIAL") {
223 +            cutoffMethod_ = SHIFTED_POTENTIAL;
224 +          } else if (myMethod == "SHIFTED_FORCE") {
225 +            cutoffMethod_ = SHIFTED_FORCE;
226 +          }
227 +        
228 +          if (simParams_->haveSwitchingRadius())
229 +            rSwitch_ = simParams_->getSwitchingRadius();
230 +
231 +          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
232 +            if (simParams_->haveSwitchingRadius()){
233 +              sprintf(painCave.errMsg,
234 +                      "ForceManager::setupCutoffs : DEPRECATED ERROR MESSAGE\n"
235 +                      "\tA value was set for the switchingRadius\n"
236 +                      "\teven though the electrostaticSummationMethod was\n"
237 +                      "\tset to %s\n", myMethod.c_str());
238 +              painCave.severity = OPENMD_WARNING;
239 +              painCave.isFatal = 1;
240 +              simError();            
241 +            }
242 +          }
243 +          if (abs(rCut_ - rSwitch_) < 0.0001) {
244 +            if (cutoffMethod_ == SHIFTED_FORCE) {              
245 +              sprintf(painCave.errMsg,
246 +                      "ForceManager::setupCutoffs : DEPRECATED BEHAVIOR\n"
247 +                      "\tcutoffRadius and switchingRadius are set to the\n"
248 +                      "\tsame value.  OpenMD will use shifted force\n"
249 +                      "\tpotentials instead of switching functions.\n");
250 +              painCave.isFatal = 0;
251 +              painCave.severity = OPENMD_WARNING;
252 +              simError();            
253 +            } else {
254 +              cutoffMethod_ = SHIFTED_POTENTIAL;
255 +              sprintf(painCave.errMsg,
256 +                      "ForceManager::setupCutoffs : DEPRECATED BEHAVIOR\n"
257 +                      "\tcutoffRadius and switchingRadius are set to the\n"
258 +                      "\tsame value.  OpenMD will use shifted potentials\n"
259 +                      "\tinstead of switching functions.\n");
260 +              painCave.isFatal = 0;
261 +              painCave.severity = OPENMD_WARNING;
262 +              simError();            
263 +            }
264 +          }
265 +        }
266 +      }
267 +    }
268 +
269 +    map<string, CutoffPolicy> stringToCutoffPolicy;
270 +    stringToCutoffPolicy["MIX"] = MIX;
271 +    stringToCutoffPolicy["MAX"] = MAX;
272 +    stringToCutoffPolicy["TRADITIONAL"] = TRADITIONAL;    
273 +
274 +    string cutPolicy;
275 +    if (forceFieldOptions_.haveCutoffPolicy()){
276 +      cutPolicy = forceFieldOptions_.getCutoffPolicy();
277 +    }else if (simParams_->haveCutoffPolicy()) {
278 +      cutPolicy = simParams_->getCutoffPolicy();
279 +    }
280 +
281 +    if (!cutPolicy.empty()){
282 +      toUpper(cutPolicy);
283 +      map<string, CutoffPolicy>::iterator i;
284 +      i = stringToCutoffPolicy.find(cutPolicy);
285 +
286 +      if (i == stringToCutoffPolicy.end()) {
287 +        sprintf(painCave.errMsg,
288 +                "ForceManager::setupCutoffs: Could not find chosen cutoffPolicy %s\n"
289 +                "\tShould be one of: "
290 +                "MIX, MAX, or TRADITIONAL\n",
291 +                cutPolicy.c_str());
292 +        painCave.isFatal = 1;
293 +        painCave.severity = OPENMD_ERROR;
294 +        simError();
295 +      } else {
296 +        cutoffPolicy_ = i->second;
297 +      }
298 +    } else {
299 +      sprintf(painCave.errMsg,
300 +              "ForceManager::setupCutoffs: No value was set for the cutoffPolicy.\n"
301 +              "\tOpenMD will use TRADITIONAL.\n");
302 +      painCave.isFatal = 0;
303 +      painCave.severity = OPENMD_INFO;
304 +      simError();
305 +      cutoffPolicy_ = TRADITIONAL;        
306 +    }
307 +
308 +    fDecomp_->setCutoffPolicy(cutoffPolicy_);
309 +        
310 +    // create the switching function object:
311 +
312 +    switcher_ = new SwitchingFunction();
313 +  
314 +    if (cutoffMethod_ == SWITCHED) {
315 +      if (simParams_->haveSwitchingRadius()) {
316 +        rSwitch_ = simParams_->getSwitchingRadius();
317 +        if (rSwitch_ > rCut_) {        
318 +          sprintf(painCave.errMsg,
319 +                  "ForceManager::setupCutoffs: switchingRadius (%f) is larger "
320 +                  "than the cutoffRadius(%f)\n", rSwitch_, rCut_);
321 +          painCave.isFatal = 1;
322 +          painCave.severity = OPENMD_ERROR;
323 +          simError();
324 +        }
325 +      } else {      
326 +        rSwitch_ = 0.85 * rCut_;
327 +        sprintf(painCave.errMsg,
328 +                "ForceManager::setupCutoffs: No value was set for the switchingRadius.\n"
329 +                "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n"
330 +                "\tswitchingRadius = %f. for this simulation\n", rSwitch_);
331 +        painCave.isFatal = 0;
332 +        painCave.severity = OPENMD_WARNING;
333 +        simError();
334 +      }
335 +    } else {
336 +      if (mdFileVersion > 1) {
337 +        // throw an error if we define a switching radius and don't need one.
338 +        // older file versions should not do this.
339 +        if (simParams_->haveSwitchingRadius()) {
340 +          map<string, CutoffMethod>::const_iterator it;
341 +          string theMeth;
342 +          for (it = stringToCutoffMethod.begin();
343 +               it != stringToCutoffMethod.end(); ++it) {
344 +            if (it->second == cutoffMethod_) {
345 +              theMeth = it->first;
346 +              break;
347 +            }
348 +          }
349 +          sprintf(painCave.errMsg,
350 +                  "ForceManager::setupCutoffs: the cutoffMethod (%s)\n"
351 +                  "\tis not set to SWITCHED, so switchingRadius value\n"
352 +                  "\twill be ignored for this simulation\n", theMeth.c_str());
353 +          painCave.isFatal = 0;
354 +          painCave.severity = OPENMD_WARNING;
355 +          simError();
356 +        }
357 +      }
358 +      rSwitch_ = rCut_;
359 +    }
360 +    
361 +    // Default to cubic switching function.
362 +    sft_ = cubic;
363 +    if (simParams_->haveSwitchingFunctionType()) {
364 +      string funcType = simParams_->getSwitchingFunctionType();
365 +      toUpper(funcType);
366 +      if (funcType == "CUBIC") {
367 +        sft_ = cubic;
368 +      } else {
369 +        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
370 +          sft_ = fifth_order_poly;
371 +        } else {
372 +          // throw error        
373 +          sprintf( painCave.errMsg,
374 +                   "ForceManager::setupSwitching : Unknown switchingFunctionType. (Input file specified %s .)\n"
375 +                   "\tswitchingFunctionType must be one of: "
376 +                   "\"cubic\" or \"fifth_order_polynomial\".",
377 +                   funcType.c_str() );
378 +          painCave.isFatal = 1;
379 +          painCave.severity = OPENMD_ERROR;
380 +          simError();
381 +        }          
382 +      }
383 +    }
384 +    switcher_->setSwitchType(sft_);
385 +    switcher_->setSwitch(rSwitch_, rCut_);
386    }
387  
388 +
389 +
390 +  
391 +  void ForceManager::initialize() {
392 +
393 +    if (!info_->isTopologyDone()) {
394 +
395 +      info_->update();
396 +      interactionMan_->setSimInfo(info_);
397 +      interactionMan_->initialize();
398 +
399 +      // We want to delay the cutoffs until after the interaction
400 +      // manager has set up the atom-atom interactions so that we can
401 +      // query them for suggested cutoff values
402 +      setupCutoffs();
403 +
404 +      info_->prepareTopology();      
405 +
406 +      doParticlePot_ = info_->getSimParams()->getOutputParticlePotential();
407 +      doHeatFlux_ = info_->getSimParams()->getPrintHeatFlux();
408 +      if (doHeatFlux_) doParticlePot_ = true;
409 +
410 +      doElectricField_ = info_->getSimParams()->getOutputElectricField();
411 +  
412 +    }
413 +
414 +    ForceFieldOptions& fopts = forceField_->getForceFieldOptions();
415 +    
416 +    // Force fields can set options on how to scale van der Waals and
417 +    // electrostatic interactions for atoms connected via bonds, bends
418 +    // and torsions in this case the topological distance between
419 +    // atoms is:
420 +    // 0 = topologically unconnected
421 +    // 1 = bonded together
422 +    // 2 = connected via a bend
423 +    // 3 = connected via a torsion
424 +    
425 +    vdwScale_.reserve(4);
426 +    fill(vdwScale_.begin(), vdwScale_.end(), 0.0);
427 +
428 +    electrostaticScale_.reserve(4);
429 +    fill(electrostaticScale_.begin(), electrostaticScale_.end(), 0.0);
430 +
431 +    vdwScale_[0] = 1.0;
432 +    vdwScale_[1] = fopts.getvdw12scale();
433 +    vdwScale_[2] = fopts.getvdw13scale();
434 +    vdwScale_[3] = fopts.getvdw14scale();
435 +    
436 +    electrostaticScale_[0] = 1.0;
437 +    electrostaticScale_[1] = fopts.getelectrostatic12scale();
438 +    electrostaticScale_[2] = fopts.getelectrostatic13scale();
439 +    electrostaticScale_[3] = fopts.getelectrostatic14scale();    
440 +    
441 +    if (info_->getSimParams()->haveElectricField()) {
442 +      ElectricField* eField = new ElectricField(info_);
443 +      perturbations_.push_back(eField);
444 +    }
445 +
446 +    usePeriodicBoundaryConditions_ = info_->getSimParams()->getUsePeriodicBoundaryConditions();
447 +    
448 +    fDecomp_->distributeInitialData();
449 +    
450 +    initialized_ = true;
451 +    
452 +  }
453 +  
454 +  void ForceManager::calcForces() {
455 +    
456 +    if (!initialized_) initialize();
457 +    
458 +    preCalculation();  
459 +    shortRangeInteractions();
460 +    longRangeInteractions();
461 +    postCalculation();    
462 +  }
463 +  
464    void ForceManager::preCalculation() {
465      SimInfo::MoleculeIterator mi;
466      Molecule* mol;
# Line 78 | Line 468 | namespace oopse {
468      Atom* atom;
469      Molecule::RigidBodyIterator rbIter;
470      RigidBody* rb;
471 +    Molecule::CutoffGroupIterator ci;
472 +    CutoffGroup* cg;
473      
474 <    // forces are zeroed here, before any are accumulated.
475 <    // NOTE: do not rezero the forces in Fortran.
476 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
477 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
474 >    // forces and potentials are zeroed here, before any are
475 >    // accumulated.
476 >    
477 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
478 >
479 >    snap->setBondPotential(0.0);
480 >    snap->setBendPotential(0.0);
481 >    snap->setTorsionPotential(0.0);
482 >    snap->setInversionPotential(0.0);
483 >
484 >    potVec zeroPot(0.0);
485 >    snap->setLongRangePotential(zeroPot);
486 >    snap->setExcludedPotentials(zeroPot);
487 >
488 >    snap->setRestraintPotential(0.0);
489 >    snap->setRawPotential(0.0);
490 >
491 >    for (mol = info_->beginMolecule(mi); mol != NULL;
492 >         mol = info_->nextMolecule(mi)) {
493 >      for(atom = mol->beginAtom(ai); atom != NULL;
494 >          atom = mol->nextAtom(ai)) {
495          atom->zeroForcesAndTorques();
496        }
497 <        
497 >      
498        //change the positions of atoms which belong to the rigidbodies
499 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
499 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
500 >           rb = mol->nextRigidBody(rbIter)) {
501          rb->zeroForcesAndTorques();
502        }        
503 +      
504 +      if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){
505 +        for(cg = mol->beginCutoffGroup(ci); cg != NULL;
506 +            cg = mol->nextCutoffGroup(ci)) {
507 +          //calculate the center of mass of cutoff group
508 +          cg->updateCOM();
509 +        }
510 +      }      
511      }
512      
513 +    // Zero out the stress tensor
514 +    stressTensor *= 0.0;
515 +    // Zero out the heatFlux
516 +    fDecomp_->setHeatFlux( Vector3d(0.0) );    
517    }
518 <
519 <  void ForceManager::calcShortRangeInteraction() {
518 >  
519 >  void ForceManager::shortRangeInteractions() {
520      Molecule* mol;
521      RigidBody* rb;
522      Bond* bond;
523      Bend* bend;
524      Torsion* torsion;
525 +    Inversion* inversion;
526      SimInfo::MoleculeIterator mi;
527      Molecule::RigidBodyIterator rbIter;
528      Molecule::BondIterator bondIter;;
529      Molecule::BendIterator  bendIter;
530      Molecule::TorsionIterator  torsionIter;
531 +    Molecule::InversionIterator  inversionIter;
532 +    RealType bondPotential = 0.0;
533 +    RealType bendPotential = 0.0;
534 +    RealType torsionPotential = 0.0;
535 +    RealType inversionPotential = 0.0;
536  
537      //calculate short range interactions    
538 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
538 >    for (mol = info_->beginMolecule(mi); mol != NULL;
539 >         mol = info_->nextMolecule(mi)) {
540  
541        //change the positions of atoms which belong to the rigidbodies
542 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
543 <        rb->updateAtoms();
542 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
543 >           rb = mol->nextRigidBody(rbIter)) {
544 >        rb->updateAtoms();
545        }
546  
547 <      for (bond = mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
548 <        bond->calcForce();
547 >      for (bond = mol->beginBond(bondIter); bond != NULL;
548 >           bond = mol->nextBond(bondIter)) {
549 >        bond->calcForce(doParticlePot_);
550 >        bondPotential += bond->getPotential();
551        }
552  
553 <      for (bend = mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
554 <        bend->calcForce();
555 <      }
556 <
557 <      for (torsion = mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
558 <        torsion->calcForce();
553 >      for (bend = mol->beginBend(bendIter); bend != NULL;
554 >           bend = mol->nextBend(bendIter)) {
555 >        
556 >        RealType angle;
557 >        bend->calcForce(angle, doParticlePot_);
558 >        RealType currBendPot = bend->getPotential();          
559 >        
560 >        bendPotential += bend->getPotential();
561 >        map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend);
562 >        if (i == bendDataSets.end()) {
563 >          BendDataSet dataSet;
564 >          dataSet.prev.angle = dataSet.curr.angle = angle;
565 >          dataSet.prev.potential = dataSet.curr.potential = currBendPot;
566 >          dataSet.deltaV = 0.0;
567 >          bendDataSets.insert(map<Bend*, BendDataSet>::value_type(bend,
568 >                                                                  dataSet));
569 >        }else {
570 >          i->second.prev.angle = i->second.curr.angle;
571 >          i->second.prev.potential = i->second.curr.potential;
572 >          i->second.curr.angle = angle;
573 >          i->second.curr.potential = currBendPot;
574 >          i->second.deltaV =  fabs(i->second.curr.potential -  
575 >                                   i->second.prev.potential);
576 >        }
577        }
578 <
578 >      
579 >      for (torsion = mol->beginTorsion(torsionIter); torsion != NULL;
580 >           torsion = mol->nextTorsion(torsionIter)) {
581 >        RealType angle;
582 >        torsion->calcForce(angle, doParticlePot_);
583 >        RealType currTorsionPot = torsion->getPotential();
584 >        torsionPotential += torsion->getPotential();
585 >        map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion);
586 >        if (i == torsionDataSets.end()) {
587 >          TorsionDataSet dataSet;
588 >          dataSet.prev.angle = dataSet.curr.angle = angle;
589 >          dataSet.prev.potential = dataSet.curr.potential = currTorsionPot;
590 >          dataSet.deltaV = 0.0;
591 >          torsionDataSets.insert(map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet));
592 >        }else {
593 >          i->second.prev.angle = i->second.curr.angle;
594 >          i->second.prev.potential = i->second.curr.potential;
595 >          i->second.curr.angle = angle;
596 >          i->second.curr.potential = currTorsionPot;
597 >          i->second.deltaV =  fabs(i->second.curr.potential -  
598 >                                   i->second.prev.potential);
599 >        }      
600 >      }      
601 >      
602 >      for (inversion = mol->beginInversion(inversionIter);
603 >           inversion != NULL;
604 >           inversion = mol->nextInversion(inversionIter)) {
605 >        RealType angle;
606 >        inversion->calcForce(angle, doParticlePot_);
607 >        RealType currInversionPot = inversion->getPotential();
608 >        inversionPotential += inversion->getPotential();
609 >        map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion);
610 >        if (i == inversionDataSets.end()) {
611 >          InversionDataSet dataSet;
612 >          dataSet.prev.angle = dataSet.curr.angle = angle;
613 >          dataSet.prev.potential = dataSet.curr.potential = currInversionPot;
614 >          dataSet.deltaV = 0.0;
615 >          inversionDataSets.insert(map<Inversion*, InversionDataSet>::value_type(inversion, dataSet));
616 >        }else {
617 >          i->second.prev.angle = i->second.curr.angle;
618 >          i->second.prev.potential = i->second.curr.potential;
619 >          i->second.curr.angle = angle;
620 >          i->second.curr.potential = currInversionPot;
621 >          i->second.deltaV =  fabs(i->second.curr.potential -  
622 >                                   i->second.prev.potential);
623 >        }      
624 >      }      
625      }
130    
131    double  shortRangePotential = 0.0;
132    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
133      shortRangePotential += mol->getPotential();
134    }
626  
627 + #ifdef IS_MPI
628 +    // Collect from all nodes.  This should eventually be moved into a
629 +    // SystemDecomposition, but this is a better place than in
630 +    // Thermo to do the collection.
631 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &bondPotential, 1, MPI::REALTYPE,
632 +                              MPI::SUM);
633 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &bendPotential, 1, MPI::REALTYPE,
634 +                              MPI::SUM);
635 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &torsionPotential, 1,
636 +                              MPI::REALTYPE, MPI::SUM);
637 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &inversionPotential, 1,
638 +                              MPI::REALTYPE, MPI::SUM);
639 + #endif
640 +
641      Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
137    curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential;
138  }
642  
643 <  void ForceManager::calcLongRangeInteraction(bool needPotential, bool needStress) {
644 <    Snapshot* curSnapshot;
645 <    DataStorage* config;
646 <    double* frc;
144 <    double* pos;
145 <    double* trq;
146 <    double* A;
147 <    double* electroFrame;
148 <    double* rc;
643 >    curSnapshot->setBondPotential(bondPotential);
644 >    curSnapshot->setBendPotential(bendPotential);
645 >    curSnapshot->setTorsionPotential(torsionPotential);
646 >    curSnapshot->setInversionPotential(inversionPotential);
647      
648 <    //get current snapshot from SimInfo
649 <    curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
648 >    // RealType shortRangePotential = bondPotential + bendPotential +
649 >    //   torsionPotential +  inversionPotential;    
650  
651 <    //get array pointers
652 <    config = &(curSnapshot->atomData);
653 <    frc = config->getArrayPointer(DataStorage::dslForce);
654 <    pos = config->getArrayPointer(DataStorage::dslPosition);
157 <    trq = config->getArrayPointer(DataStorage::dslTorque);
158 <    A   = config->getArrayPointer(DataStorage::dslAmat);
159 <    electroFrame = config->getArrayPointer(DataStorage::dslElectroFrame);
651 >    // curSnapshot->setShortRangePotential(shortRangePotential);
652 >  }
653 >  
654 >  void ForceManager::longRangeInteractions() {
655  
656 +
657 +    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
658 +    DataStorage* config = &(curSnapshot->atomData);
659 +    DataStorage* cgConfig = &(curSnapshot->cgData);
660 +
661      //calculate the center of mass of cutoff group
662 +
663      SimInfo::MoleculeIterator mi;
664      Molecule* mol;
665      Molecule::CutoffGroupIterator ci;
666      CutoffGroup* cg;
166    Vector3d com;
167    std::vector<Vector3d> rcGroup;
667  
668 <    if(info_->getNCutoffGroups() > 0){
669 <
670 <      for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
671 <        for(cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
672 <          cg->getCOM(com);
673 <          rcGroup.push_back(com);
668 >    if(info_->getNCutoffGroups() > 0){      
669 >      for (mol = info_->beginMolecule(mi); mol != NULL;
670 >           mol = info_->nextMolecule(mi)) {
671 >        for(cg = mol->beginCutoffGroup(ci); cg != NULL;
672 >            cg = mol->nextCutoffGroup(ci)) {
673 >          cg->updateCOM();
674          }
675 <      }// end for (mol)
177 <      
178 <      rc = rcGroup[0].getArrayPointer();
675 >      }      
676      } else {
677 <      // center of mass of the group is the same as position of the atom  if cutoff group does not exist
678 <      rc = pos;
677 >      // center of mass of the group is the same as position of the atom  
678 >      // if cutoff group does not exist
679 >      cgConfig->position = config->position;
680 >      cgConfig->velocity = config->velocity;
681      }
682 <  
683 <    //initialize data before passing to fortran
684 <    double longRangePotential[LR_POT_TYPES];
186 <    double lrPot = 0.0;
682 >
683 >    fDecomp_->zeroWorkArrays();
684 >    fDecomp_->distributeData();
685      
686 <    Mat3x3d tau;
687 <    short int passedCalcPot = needPotential;
688 <    short int passedCalcStress = needStress;
689 <    int isError = 0;
686 >    int cg1, cg2, atom1, atom2, topoDist;
687 >    Vector3d d_grp, dag, d, gvel2, vel2;
688 >    RealType rgrpsq, rgrp, r2, r;
689 >    RealType electroMult, vdwMult;
690 >    RealType vij;
691 >    Vector3d fij, fg, f1;
692 >    tuple3<RealType, RealType, RealType> cuts;
693 >    RealType rCutSq;
694 >    bool in_switching_region;
695 >    RealType sw, dswdr, swderiv;
696 >    vector<int> atomListColumn, atomListRow, atomListLocal;
697 >    InteractionData idat;
698 >    SelfData sdat;
699 >    RealType mf;
700 >    RealType vpair;
701 >    RealType dVdFQ1(0.0);
702 >    RealType dVdFQ2(0.0);
703 >    potVec longRangePotential(0.0);
704 >    potVec workPot(0.0);
705 >    potVec exPot(0.0);
706 >    Vector3d eField1(0.0);
707 >    Vector3d eField2(0.0);
708 >    vector<int>::iterator ia, jb;
709  
710 <    for (int i=0; i<LR_POT_TYPES;i++){
711 <      longRangePotential[i]=0.0; //Initialize array
710 >    int loopStart, loopEnd;
711 >
712 >    idat.vdwMult = &vdwMult;
713 >    idat.electroMult = &electroMult;
714 >    idat.pot = &workPot;
715 >    idat.excludedPot = &exPot;
716 >    sdat.pot = fDecomp_->getEmbeddingPotential();
717 >    sdat.excludedPot = fDecomp_->getExcludedSelfPotential();
718 >    idat.vpair = &vpair;
719 >    idat.dVdFQ1 = &dVdFQ1;
720 >    idat.dVdFQ2 = &dVdFQ2;
721 >    idat.eField1 = &eField1;
722 >    idat.eField2 = &eField2;  
723 >    idat.f1 = &f1;
724 >    idat.sw = &sw;
725 >    idat.shiftedPot = (cutoffMethod_ == SHIFTED_POTENTIAL) ? true : false;
726 >    idat.shiftedForce = (cutoffMethod_ == SHIFTED_FORCE) ? true : false;
727 >    idat.doParticlePot = doParticlePot_;
728 >    idat.doElectricField = doElectricField_;
729 >    sdat.doParticlePot = doParticlePot_;
730 >    
731 >    loopEnd = PAIR_LOOP;
732 >    if (info_->requiresPrepair() ) {
733 >      loopStart = PREPAIR_LOOP;
734 >    } else {
735 >      loopStart = PAIR_LOOP;
736      }
737 +    for (int iLoop = loopStart; iLoop <= loopEnd; iLoop++) {
738 +    
739 +      if (iLoop == loopStart) {
740 +        bool update_nlist = fDecomp_->checkNeighborList();
741 +        if (update_nlist) {
742 +          if (!usePeriodicBoundaryConditions_)
743 +            Mat3x3d bbox = thermo->getBoundingBox();
744 +          neighborList = fDecomp_->buildNeighborList();
745 +        }
746 +      }
747  
748 +      for (vector<pair<int, int> >::iterator it = neighborList.begin();
749 +             it != neighborList.end(); ++it) {
750 +                
751 +        cg1 = (*it).first;
752 +        cg2 = (*it).second;
753 +        
754 +        cuts = fDecomp_->getGroupCutoffs(cg1, cg2);
755  
756 +        d_grp  = fDecomp_->getIntergroupVector(cg1, cg2);
757  
758 <    doForceLoop( pos,
759 <                 rc,
760 <                 A,
202 <                 electroFrame,
203 <                 frc,
204 <                 trq,
205 <                 tau.getArrayPointer(),
206 <                 longRangePotential,
207 <                 &passedCalcPot,
208 <                 &passedCalcStress,
209 <                 &isError );
758 >        curSnapshot->wrapVector(d_grp);        
759 >        rgrpsq = d_grp.lengthSquare();
760 >        rCutSq = cuts.second;
761  
762 <    if( isError ){
763 <      sprintf( painCave.errMsg,
764 <               "Error returned from the fortran force calculation.\n" );
765 <      painCave.isFatal = 1;
766 <      simError();
767 <    }
768 <    for (int i=0; i<LR_POT_TYPES;i++){
769 <      lrPot += longRangePotential[i]; //Quick hack
762 >        if (rgrpsq < rCutSq) {
763 >          idat.rcut = &cuts.first;
764 >          if (iLoop == PAIR_LOOP) {
765 >            vij = 0.0;
766 >            fij = V3Zero;
767 >            eField1 = V3Zero;
768 >            eField2 = V3Zero;
769 >          }
770 >          
771 >          in_switching_region = switcher_->getSwitch(rgrpsq, sw, dswdr,
772 >                                                     rgrp);
773 >
774 >          atomListRow = fDecomp_->getAtomsInGroupRow(cg1);
775 >          atomListColumn = fDecomp_->getAtomsInGroupColumn(cg2);
776 >
777 >          if (doHeatFlux_)
778 >            gvel2 = fDecomp_->getGroupVelocityColumn(cg2);
779 >
780 >          for (ia = atomListRow.begin();
781 >               ia != atomListRow.end(); ++ia) {            
782 >            atom1 = (*ia);
783 >
784 >            for (jb = atomListColumn.begin();
785 >                 jb != atomListColumn.end(); ++jb) {              
786 >              atom2 = (*jb);
787 >
788 >              if (!fDecomp_->skipAtomPair(atom1, atom2, cg1, cg2)) {
789 >
790 >                vpair = 0.0;
791 >                workPot = 0.0;
792 >                exPot = 0.0;
793 >                f1 = V3Zero;
794 >                dVdFQ1 = 0.0;
795 >                dVdFQ2 = 0.0;
796 >
797 >                fDecomp_->fillInteractionData(idat, atom1, atom2);
798 >
799 >                topoDist = fDecomp_->getTopologicalDistance(atom1, atom2);
800 >                vdwMult = vdwScale_[topoDist];
801 >                electroMult = electrostaticScale_[topoDist];
802 >
803 >                if (atomListRow.size() == 1 && atomListColumn.size() == 1) {
804 >                  idat.d = &d_grp;
805 >                  idat.r2 = &rgrpsq;
806 >                  if (doHeatFlux_)
807 >                    vel2 = gvel2;
808 >                } else {
809 >                  d = fDecomp_->getInteratomicVector(atom1, atom2);
810 >                  curSnapshot->wrapVector( d );
811 >                  r2 = d.lengthSquare();
812 >                  idat.d = &d;
813 >                  idat.r2 = &r2;
814 >                  if (doHeatFlux_)
815 >                    vel2 = fDecomp_->getAtomVelocityColumn(atom2);
816 >                }
817 >              
818 >                r = sqrt( *(idat.r2) );
819 >                idat.rij = &r;
820 >              
821 >                if (iLoop == PREPAIR_LOOP) {
822 >                  interactionMan_->doPrePair(idat);
823 >                } else {
824 >                  interactionMan_->doPair(idat);
825 >                  fDecomp_->unpackInteractionData(idat, atom1, atom2);
826 >                  vij += vpair;
827 >                  fij += f1;
828 >                  stressTensor -= outProduct( *(idat.d), f1);
829 >                  if (doHeatFlux_)
830 >                    fDecomp_->addToHeatFlux(*(idat.d) * dot(f1, vel2));
831 >                }
832 >              }
833 >            }
834 >          }
835 >
836 >          if (iLoop == PAIR_LOOP) {
837 >            if (in_switching_region) {
838 >              swderiv = vij * dswdr / rgrp;
839 >              fg = swderiv * d_grp;
840 >              fij += fg;
841 >
842 >              if (atomListRow.size() == 1 && atomListColumn.size() == 1) {
843 >                if (!fDecomp_->skipAtomPair(atomListRow[0],
844 >                                            atomListColumn[0],
845 >                                            cg1, cg2)) {
846 >                  stressTensor -= outProduct( *(idat.d), fg);
847 >                  if (doHeatFlux_)
848 >                    fDecomp_->addToHeatFlux(*(idat.d) * dot(fg, vel2));
849 >                }                
850 >              }
851 >          
852 >              for (ia = atomListRow.begin();
853 >                   ia != atomListRow.end(); ++ia) {            
854 >                atom1 = (*ia);                
855 >                mf = fDecomp_->getMassFactorRow(atom1);
856 >                // fg is the force on atom ia due to cutoff group's
857 >                // presence in switching region
858 >                fg = swderiv * d_grp * mf;
859 >                fDecomp_->addForceToAtomRow(atom1, fg);
860 >                if (atomListRow.size() > 1) {
861 >                  if (info_->usesAtomicVirial()) {
862 >                    // find the distance between the atom
863 >                    // and the center of the cutoff group:
864 >                    dag = fDecomp_->getAtomToGroupVectorRow(atom1, cg1);
865 >                    stressTensor -= outProduct(dag, fg);
866 >                    if (doHeatFlux_)
867 >                      fDecomp_->addToHeatFlux( dag * dot(fg, vel2));
868 >                  }
869 >                }
870 >              }
871 >              for (jb = atomListColumn.begin();
872 >                   jb != atomListColumn.end(); ++jb) {              
873 >                atom2 = (*jb);
874 >                mf = fDecomp_->getMassFactorColumn(atom2);
875 >                // fg is the force on atom jb due to cutoff group's
876 >                // presence in switching region
877 >                fg = -swderiv * d_grp * mf;
878 >                fDecomp_->addForceToAtomColumn(atom2, fg);
879 >
880 >                if (atomListColumn.size() > 1) {
881 >                  if (info_->usesAtomicVirial()) {
882 >                    // find the distance between the atom
883 >                    // and the center of the cutoff group:
884 >                    dag = fDecomp_->getAtomToGroupVectorColumn(atom2, cg2);
885 >                    stressTensor -= outProduct(dag, fg);
886 >                    if (doHeatFlux_)
887 >                      fDecomp_->addToHeatFlux( dag * dot(fg, vel2));
888 >                  }
889 >                }
890 >              }
891 >            }
892 >            //if (!info_->usesAtomicVirial()) {
893 >            //  stressTensor -= outProduct(d_grp, fij);
894 >            //  if (doHeatFlux_)
895 >            //     fDecomp_->addToHeatFlux( d_grp * dot(fij, vel2));
896 >            //}
897 >          }
898 >        }
899 >      }
900 >
901 >      if (iLoop == PREPAIR_LOOP) {
902 >        if (info_->requiresPrepair()) {
903 >
904 >          fDecomp_->collectIntermediateData();
905 >
906 >          for (unsigned int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) {
907 >            fDecomp_->fillSelfData(sdat, atom1);
908 >            interactionMan_->doPreForce(sdat);
909 >          }
910 >
911 >          fDecomp_->distributeIntermediateData();
912 >
913 >        }
914 >      }
915      }
916 +    
917 +    // collects pairwise information
918 +    fDecomp_->collectData();
919 +        
920 +    if (info_->requiresSelfCorrection()) {
921 +      for (unsigned int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) {
922 +        fDecomp_->fillSelfData(sdat, atom1);
923 +        interactionMan_->doSelfCorrection(sdat);
924 +      }
925 +    }
926  
927 <    //store the tau and long range potential    
928 <    curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot;
223 <    //  curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = longRangePotential;
224 <    curSnapshot->statData.setTau(tau);
225 <  }
927 >    // collects single-atom information
928 >    fDecomp_->collectSelfData();
929  
930 +    longRangePotential = *(fDecomp_->getEmbeddingPotential()) +
931 +      *(fDecomp_->getPairwisePotential());
932  
933 +    curSnapshot->setLongRangePotential(longRangePotential);
934 +    
935 +    curSnapshot->setExcludedPotentials(*(fDecomp_->getExcludedSelfPotential()) +
936 +                                         *(fDecomp_->getExcludedPotential()));
937 +
938 +  }
939 +
940 +  
941    void ForceManager::postCalculation() {
942 +
943 +    vector<Perturbation*>::iterator pi;
944 +    for (pi = perturbations_.begin(); pi != perturbations_.end(); ++pi) {
945 +      (*pi)->applyPerturbation();
946 +    }
947 +
948      SimInfo::MoleculeIterator mi;
949      Molecule* mol;
950      Molecule::RigidBodyIterator rbIter;
951      RigidBody* rb;
952 <    
952 >    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
953 >  
954      // collect the atomic forces onto rigid bodies
955 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
956 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
957 <        rb->calcForcesAndTorques();
955 >    
956 >    for (mol = info_->beginMolecule(mi); mol != NULL;
957 >         mol = info_->nextMolecule(mi)) {
958 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
959 >           rb = mol->nextRigidBody(rbIter)) {
960 >        Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial();
961 >        stressTensor += rbTau;
962        }
963      }
964 +    
965 + #ifdef IS_MPI
966 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, stressTensor.getArrayPointer(), 9,
967 +                              MPI::REALTYPE, MPI::SUM);
968 + #endif
969 +    curSnapshot->setStressTensor(stressTensor);
970 +    
971 +    if (info_->getSimParams()->getUseLongRangeCorrections()) {
972 +      /*
973 +      RealType vol = curSnapshot->getVolume();
974 +      RealType Elrc(0.0);
975 +      RealType Wlrc(0.0);
976  
977 <  }
977 >      set<AtomType*>::iterator i;
978 >      set<AtomType*>::iterator j;
979 >    
980 >      RealType n_i, n_j;
981 >      RealType rho_i, rho_j;
982 >      pair<RealType, RealType> LRI;
983 >      
984 >      for (i = atomTypes_.begin(); i != atomTypes_.end(); ++i) {
985 >        n_i = RealType(info_->getGlobalCountOfType(*i));
986 >        rho_i = n_i /  vol;
987 >        for (j = atomTypes_.begin(); j != atomTypes_.end(); ++j) {
988 >          n_j = RealType(info_->getGlobalCountOfType(*j));
989 >          rho_j = n_j / vol;
990 >          
991 >          LRI = interactionMan_->getLongRangeIntegrals( (*i), (*j) );
992  
993 < } //end namespace oopse
993 >          Elrc += n_i   * rho_j * LRI.first;
994 >          Wlrc -= rho_i * rho_j * LRI.second;
995 >        }
996 >      }
997 >      Elrc *= 2.0 * NumericConstant::PI;
998 >      Wlrc *= 2.0 * NumericConstant::PI;
999 >
1000 >      RealType lrp = curSnapshot->getLongRangePotential();
1001 >      curSnapshot->setLongRangePotential(lrp + Elrc);
1002 >      stressTensor += Wlrc * SquareMatrix3<RealType>::identity();
1003 >      curSnapshot->setStressTensor(stressTensor);
1004 >      */
1005 >    
1006 >    }
1007 >  }
1008 > }

Comparing:
trunk/src/brains/ForceManager.cpp (property svn:keywords), Revision 664 by chuckv, Wed Oct 12 21:57:16 2005 UTC vs.
branches/development/src/brains/ForceManager.cpp (property svn:keywords), Revision 1868 by gezelter, Tue Apr 30 15:56:54 2013 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines