ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/ForceManager.cpp
(Generate patch)

Comparing:
trunk/src/brains/ForceManager.cpp (file contents), Revision 507 by gezelter, Fri Apr 15 22:04:00 2005 UTC vs.
branches/development/src/brains/ForceManager.cpp (file contents), Revision 1874 by gezelter, Wed May 15 15:09:35 2013 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
44   * @file ForceManager.cpp
45   * @author tlin
46   * @date 11/09/2004
46 * @time 10:39am
47   * @version 1.0
48   */
49  
50 +
51   #include "brains/ForceManager.hpp"
52   #include "primitives/Molecule.hpp"
53 < #include "UseTheForce/doForces_interface.h"
53 > #define __OPENMD_C
54   #include "utils/simError.h"
55 < namespace oopse {
55 > #include "primitives/Bond.hpp"
56 > #include "primitives/Bend.hpp"
57 > #include "primitives/Torsion.hpp"
58 > #include "primitives/Inversion.hpp"
59 > #include "nonbonded/NonBondedInteraction.hpp"
60 > #include "perturbations/ElectricField.hpp"
61 > #include "parallel/ForceMatrixDecomposition.hpp"
62  
63 <  void ForceManager::calcForces(bool needPotential, bool needStress) {
63 > #include <cstdio>
64 > #include <iostream>
65 > #include <iomanip>
66  
67 <    if (!info_->isFortranInitialized()) {
68 <      info_->update();
69 <    }
67 > using namespace std;
68 > namespace OpenMD {
69 >  
70 >  ForceManager::ForceManager(SimInfo * info) : info_(info), switcher_(NULL),
71 >                                               initialized_(false) {
72 >    forceField_ = info_->getForceField();
73 >    interactionMan_ = new InteractionManager();
74 >    fDecomp_ = new ForceMatrixDecomposition(info_, interactionMan_);
75 >    thermo = new Thermo(info_);
76 >  }
77  
78 <    preCalculation();
78 >  ForceManager::~ForceManager() {
79 >    perturbations_.clear();
80      
81 <    calcShortRangeInteraction();
81 >    delete switcher_;
82 >    delete interactionMan_;
83 >    delete fDecomp_;
84 >    delete thermo;
85 >  }
86 >  
87 >  /**
88 >   * setupCutoffs
89 >   *
90 >   * Sets the values of cutoffRadius, switchingRadius, cutoffMethod,
91 >   * and cutoffPolicy
92 >   *
93 >   * cutoffRadius : realType
94 >   *  If the cutoffRadius was explicitly set, use that value.
95 >   *  If the cutoffRadius was not explicitly set:
96 >   *      Are there electrostatic atoms?  Use 12.0 Angstroms.
97 >   *      No electrostatic atoms?  Poll the atom types present in the
98 >   *      simulation for suggested cutoff values (e.g. 2.5 * sigma).
99 >   *      Use the maximum suggested value that was found.
100 >   *
101 >   * cutoffMethod : (one of HARD, SWITCHED, SHIFTED_FORCE,
102 >   *                        or SHIFTED_POTENTIAL)
103 >   *      If cutoffMethod was explicitly set, use that choice.
104 >   *      If cutoffMethod was not explicitly set, use SHIFTED_FORCE
105 >   *
106 >   * cutoffPolicy : (one of MIX, MAX, TRADITIONAL)
107 >   *      If cutoffPolicy was explicitly set, use that choice.
108 >   *      If cutoffPolicy was not explicitly set, use TRADITIONAL
109 >   *
110 >   * switchingRadius : realType
111 >   *  If the cutoffMethod was set to SWITCHED:
112 >   *      If the switchingRadius was explicitly set, use that value
113 >   *          (but do a sanity check first).
114 >   *      If the switchingRadius was not explicitly set: use 0.85 *
115 >   *      cutoffRadius_
116 >   *  If the cutoffMethod was not set to SWITCHED:
117 >   *      Set switchingRadius equal to cutoffRadius for safety.
118 >   */
119 >  void ForceManager::setupCutoffs() {
120 >    
121 >    Globals* simParams_ = info_->getSimParams();
122 >    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
123 >    int mdFileVersion;
124 >    rCut_ = 0.0; //Needs a value for a later max() call;  
125 >    
126 >    if (simParams_->haveMDfileVersion())
127 >      mdFileVersion = simParams_->getMDfileVersion();
128 >    else
129 >      mdFileVersion = 0;
130 >  
131 >    // We need the list of simulated atom types to figure out cutoffs
132 >    // as well as long range corrections.
133  
134 <    calcLongRangeInteraction(needPotential, needStress);
134 >    set<AtomType*>::iterator i;
135 >    set<AtomType*> atomTypes_;
136 >    atomTypes_ = info_->getSimulatedAtomTypes();
137  
138 <    postCalculation();
138 >    if (simParams_->haveCutoffRadius()) {
139 >      rCut_ = simParams_->getCutoffRadius();
140 >    } else {      
141 >      if (info_->usesElectrostaticAtoms()) {
142 >        sprintf(painCave.errMsg,
143 >                "ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n"
144 >                "\tOpenMD will use a default value of 12.0 angstroms"
145 >                "\tfor the cutoffRadius.\n");
146 >        painCave.isFatal = 0;
147 >        painCave.severity = OPENMD_INFO;
148 >        simError();
149 >        rCut_ = 12.0;
150 >      } else {
151 >        RealType thisCut;
152 >        for (i = atomTypes_.begin(); i != atomTypes_.end(); ++i) {
153 >          thisCut = interactionMan_->getSuggestedCutoffRadius((*i));
154 >          rCut_ = max(thisCut, rCut_);
155 >        }
156 >        sprintf(painCave.errMsg,
157 >                "ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n"
158 >                "\tOpenMD will use %lf angstroms.\n",
159 >                rCut_);
160 >        painCave.isFatal = 0;
161 >        painCave.severity = OPENMD_INFO;
162 >        simError();
163 >      }
164 >    }
165 >
166 >    fDecomp_->setUserCutoff(rCut_);
167 >    interactionMan_->setCutoffRadius(rCut_);
168 >
169 >    map<string, CutoffMethod> stringToCutoffMethod;
170 >    stringToCutoffMethod["HARD"] = HARD;
171 >    stringToCutoffMethod["SWITCHED"] = SWITCHED;
172 >    stringToCutoffMethod["SHIFTED_POTENTIAL"] = SHIFTED_POTENTIAL;    
173 >    stringToCutoffMethod["SHIFTED_FORCE"] = SHIFTED_FORCE;
174 >  
175 >    if (simParams_->haveCutoffMethod()) {
176 >      string cutMeth = toUpperCopy(simParams_->getCutoffMethod());
177 >      map<string, CutoffMethod>::iterator i;
178 >      i = stringToCutoffMethod.find(cutMeth);
179 >      if (i == stringToCutoffMethod.end()) {
180 >        sprintf(painCave.errMsg,
181 >                "ForceManager::setupCutoffs: Could not find chosen cutoffMethod %s\n"
182 >                "\tShould be one of: "
183 >                "HARD, SWITCHED, SHIFTED_POTENTIAL, or SHIFTED_FORCE\n",
184 >                cutMeth.c_str());
185 >        painCave.isFatal = 1;
186 >        painCave.severity = OPENMD_ERROR;
187 >        simError();
188 >      } else {
189 >        cutoffMethod_ = i->second;
190 >      }
191 >    } else {
192 >      if (mdFileVersion > 1) {
193 >        sprintf(painCave.errMsg,
194 >                "ForceManager::setupCutoffs: No value was set for the cutoffMethod.\n"
195 >                "\tOpenMD will use SHIFTED_FORCE.\n");
196 >        painCave.isFatal = 0;
197 >        painCave.severity = OPENMD_INFO;
198 >        simError();
199 >        cutoffMethod_ = SHIFTED_FORCE;        
200 >      } else {
201 >        // handle the case where the old file version was in play
202 >        // (there should be no cutoffMethod, so we have to deduce it
203 >        // from other data).        
204 >
205 >        sprintf(painCave.errMsg,
206 >                "ForceManager::setupCutoffs : DEPRECATED FILE FORMAT!\n"
207 >                "\tOpenMD found a file which does not set a cutoffMethod.\n"
208 >                "\tOpenMD will attempt to deduce a cutoffMethod using the\n"
209 >                "\tbehavior of the older (version 1) code.  To remove this\n"
210 >                "\twarning, add an explicit cutoffMethod and change the top\n"
211 >                "\tof the file so that it begins with <OpenMD version=2>\n");
212 >        painCave.isFatal = 0;
213 >        painCave.severity = OPENMD_WARNING;
214 >        simError();            
215 >                
216 >        // The old file version tethered the shifting behavior to the
217 >        // electrostaticSummationMethod keyword.
218          
219 +        if (simParams_->haveElectrostaticSummationMethod()) {
220 +          string myMethod = simParams_->getElectrostaticSummationMethod();
221 +          toUpper(myMethod);
222 +        
223 +          if (myMethod == "SHIFTED_POTENTIAL") {
224 +            cutoffMethod_ = SHIFTED_POTENTIAL;
225 +          } else if (myMethod == "SHIFTED_FORCE") {
226 +            cutoffMethod_ = SHIFTED_FORCE;
227 +          }
228 +        
229 +          if (simParams_->haveSwitchingRadius())
230 +            rSwitch_ = simParams_->getSwitchingRadius();
231 +
232 +          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
233 +            if (simParams_->haveSwitchingRadius()){
234 +              sprintf(painCave.errMsg,
235 +                      "ForceManager::setupCutoffs : DEPRECATED ERROR MESSAGE\n"
236 +                      "\tA value was set for the switchingRadius\n"
237 +                      "\teven though the electrostaticSummationMethod was\n"
238 +                      "\tset to %s\n", myMethod.c_str());
239 +              painCave.severity = OPENMD_WARNING;
240 +              painCave.isFatal = 1;
241 +              simError();            
242 +            }
243 +          }
244 +          if (abs(rCut_ - rSwitch_) < 0.0001) {
245 +            if (cutoffMethod_ == SHIFTED_FORCE) {              
246 +              sprintf(painCave.errMsg,
247 +                      "ForceManager::setupCutoffs : DEPRECATED BEHAVIOR\n"
248 +                      "\tcutoffRadius and switchingRadius are set to the\n"
249 +                      "\tsame value.  OpenMD will use shifted force\n"
250 +                      "\tpotentials instead of switching functions.\n");
251 +              painCave.isFatal = 0;
252 +              painCave.severity = OPENMD_WARNING;
253 +              simError();            
254 +            } else {
255 +              cutoffMethod_ = SHIFTED_POTENTIAL;
256 +              sprintf(painCave.errMsg,
257 +                      "ForceManager::setupCutoffs : DEPRECATED BEHAVIOR\n"
258 +                      "\tcutoffRadius and switchingRadius are set to the\n"
259 +                      "\tsame value.  OpenMD will use shifted potentials\n"
260 +                      "\tinstead of switching functions.\n");
261 +              painCave.isFatal = 0;
262 +              painCave.severity = OPENMD_WARNING;
263 +              simError();            
264 +            }
265 +          }
266 +        }
267 +      }
268 +    }
269 +
270 +    map<string, CutoffPolicy> stringToCutoffPolicy;
271 +    stringToCutoffPolicy["MIX"] = MIX;
272 +    stringToCutoffPolicy["MAX"] = MAX;
273 +    stringToCutoffPolicy["TRADITIONAL"] = TRADITIONAL;    
274 +
275 +    string cutPolicy;
276 +    if (forceFieldOptions_.haveCutoffPolicy()){
277 +      cutPolicy = forceFieldOptions_.getCutoffPolicy();
278 +    }else if (simParams_->haveCutoffPolicy()) {
279 +      cutPolicy = simParams_->getCutoffPolicy();
280 +    }
281 +
282 +    if (!cutPolicy.empty()){
283 +      toUpper(cutPolicy);
284 +      map<string, CutoffPolicy>::iterator i;
285 +      i = stringToCutoffPolicy.find(cutPolicy);
286 +
287 +      if (i == stringToCutoffPolicy.end()) {
288 +        sprintf(painCave.errMsg,
289 +                "ForceManager::setupCutoffs: Could not find chosen cutoffPolicy %s\n"
290 +                "\tShould be one of: "
291 +                "MIX, MAX, or TRADITIONAL\n",
292 +                cutPolicy.c_str());
293 +        painCave.isFatal = 1;
294 +        painCave.severity = OPENMD_ERROR;
295 +        simError();
296 +      } else {
297 +        cutoffPolicy_ = i->second;
298 +      }
299 +    } else {
300 +      sprintf(painCave.errMsg,
301 +              "ForceManager::setupCutoffs: No value was set for the cutoffPolicy.\n"
302 +              "\tOpenMD will use TRADITIONAL.\n");
303 +      painCave.isFatal = 0;
304 +      painCave.severity = OPENMD_INFO;
305 +      simError();
306 +      cutoffPolicy_ = TRADITIONAL;        
307 +    }
308 +
309 +    fDecomp_->setCutoffPolicy(cutoffPolicy_);
310 +        
311 +    // create the switching function object:
312 +
313 +    switcher_ = new SwitchingFunction();
314 +  
315 +    if (cutoffMethod_ == SWITCHED) {
316 +      if (simParams_->haveSwitchingRadius()) {
317 +        rSwitch_ = simParams_->getSwitchingRadius();
318 +        if (rSwitch_ > rCut_) {        
319 +          sprintf(painCave.errMsg,
320 +                  "ForceManager::setupCutoffs: switchingRadius (%f) is larger "
321 +                  "than the cutoffRadius(%f)\n", rSwitch_, rCut_);
322 +          painCave.isFatal = 1;
323 +          painCave.severity = OPENMD_ERROR;
324 +          simError();
325 +        }
326 +      } else {      
327 +        rSwitch_ = 0.85 * rCut_;
328 +        sprintf(painCave.errMsg,
329 +                "ForceManager::setupCutoffs: No value was set for the switchingRadius.\n"
330 +                "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n"
331 +                "\tswitchingRadius = %f. for this simulation\n", rSwitch_);
332 +        painCave.isFatal = 0;
333 +        painCave.severity = OPENMD_WARNING;
334 +        simError();
335 +      }
336 +    } else {
337 +      if (mdFileVersion > 1) {
338 +        // throw an error if we define a switching radius and don't need one.
339 +        // older file versions should not do this.
340 +        if (simParams_->haveSwitchingRadius()) {
341 +          map<string, CutoffMethod>::const_iterator it;
342 +          string theMeth;
343 +          for (it = stringToCutoffMethod.begin();
344 +               it != stringToCutoffMethod.end(); ++it) {
345 +            if (it->second == cutoffMethod_) {
346 +              theMeth = it->first;
347 +              break;
348 +            }
349 +          }
350 +          sprintf(painCave.errMsg,
351 +                  "ForceManager::setupCutoffs: the cutoffMethod (%s)\n"
352 +                  "\tis not set to SWITCHED, so switchingRadius value\n"
353 +                  "\twill be ignored for this simulation\n", theMeth.c_str());
354 +          painCave.isFatal = 0;
355 +          painCave.severity = OPENMD_WARNING;
356 +          simError();
357 +        }
358 +      }
359 +      rSwitch_ = rCut_;
360 +    }
361 +    
362 +    // Default to cubic switching function.
363 +    sft_ = cubic;
364 +    if (simParams_->haveSwitchingFunctionType()) {
365 +      string funcType = simParams_->getSwitchingFunctionType();
366 +      toUpper(funcType);
367 +      if (funcType == "CUBIC") {
368 +        sft_ = cubic;
369 +      } else {
370 +        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
371 +          sft_ = fifth_order_poly;
372 +        } else {
373 +          // throw error        
374 +          sprintf( painCave.errMsg,
375 +                   "ForceManager::setupSwitching : Unknown switchingFunctionType. (Input file specified %s .)\n"
376 +                   "\tswitchingFunctionType must be one of: "
377 +                   "\"cubic\" or \"fifth_order_polynomial\".",
378 +                   funcType.c_str() );
379 +          painCave.isFatal = 1;
380 +          painCave.severity = OPENMD_ERROR;
381 +          simError();
382 +        }          
383 +      }
384 +    }
385 +    switcher_->setSwitchType(sft_);
386 +    switcher_->setSwitch(rSwitch_, rCut_);
387    }
388  
389 +
390 +
391 +  
392 +  void ForceManager::initialize() {
393 +
394 +    if (!info_->isTopologyDone()) {
395 +
396 +      info_->update();
397 +      interactionMan_->setSimInfo(info_);
398 +      interactionMan_->initialize();
399 +
400 +      // We want to delay the cutoffs until after the interaction
401 +      // manager has set up the atom-atom interactions so that we can
402 +      // query them for suggested cutoff values
403 +      setupCutoffs();
404 +
405 +      info_->prepareTopology();      
406 +
407 +      doParticlePot_ = info_->getSimParams()->getOutputParticlePotential();
408 +      doHeatFlux_ = info_->getSimParams()->getPrintHeatFlux();
409 +      if (doHeatFlux_) doParticlePot_ = true;
410 +
411 +      doElectricField_ = info_->getSimParams()->getOutputElectricField();
412 +  
413 +    }
414 +
415 +    ForceFieldOptions& fopts = forceField_->getForceFieldOptions();
416 +    
417 +    // Force fields can set options on how to scale van der Waals and
418 +    // electrostatic interactions for atoms connected via bonds, bends
419 +    // and torsions in this case the topological distance between
420 +    // atoms is:
421 +    // 0 = topologically unconnected
422 +    // 1 = bonded together
423 +    // 2 = connected via a bend
424 +    // 3 = connected via a torsion
425 +    
426 +    vdwScale_.reserve(4);
427 +    fill(vdwScale_.begin(), vdwScale_.end(), 0.0);
428 +
429 +    electrostaticScale_.reserve(4);
430 +    fill(electrostaticScale_.begin(), electrostaticScale_.end(), 0.0);
431 +
432 +    vdwScale_[0] = 1.0;
433 +    vdwScale_[1] = fopts.getvdw12scale();
434 +    vdwScale_[2] = fopts.getvdw13scale();
435 +    vdwScale_[3] = fopts.getvdw14scale();
436 +    
437 +    electrostaticScale_[0] = 1.0;
438 +    electrostaticScale_[1] = fopts.getelectrostatic12scale();
439 +    electrostaticScale_[2] = fopts.getelectrostatic13scale();
440 +    electrostaticScale_[3] = fopts.getelectrostatic14scale();    
441 +    
442 +    if (info_->getSimParams()->haveElectricField()) {
443 +      ElectricField* eField = new ElectricField(info_);
444 +      perturbations_.push_back(eField);
445 +    }
446 +
447 +    usePeriodicBoundaryConditions_ = info_->getSimParams()->getUsePeriodicBoundaryConditions();
448 +    
449 +    fDecomp_->distributeInitialData();
450 +    
451 +    initialized_ = true;
452 +    
453 +  }
454 +  
455 +  void ForceManager::calcForces() {
456 +    
457 +    if (!initialized_) initialize();
458 +    
459 +    preCalculation();  
460 +    shortRangeInteractions();
461 +    longRangeInteractions();
462 +    postCalculation();    
463 +  }
464 +  
465    void ForceManager::preCalculation() {
466      SimInfo::MoleculeIterator mi;
467      Molecule* mol;
# Line 76 | Line 469 | namespace oopse {
469      Atom* atom;
470      Molecule::RigidBodyIterator rbIter;
471      RigidBody* rb;
472 +    Molecule::CutoffGroupIterator ci;
473 +    CutoffGroup* cg;
474      
475 <    // forces are zeroed here, before any are accumulated.
476 <    // NOTE: do not rezero the forces in Fortran.
477 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
478 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
475 >    // forces and potentials are zeroed here, before any are
476 >    // accumulated.
477 >    
478 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
479 >
480 >    snap->setBondPotential(0.0);
481 >    snap->setBendPotential(0.0);
482 >    snap->setTorsionPotential(0.0);
483 >    snap->setInversionPotential(0.0);
484 >
485 >    potVec zeroPot(0.0);
486 >    snap->setLongRangePotential(zeroPot);
487 >    snap->setExcludedPotentials(zeroPot);
488 >
489 >    snap->setRestraintPotential(0.0);
490 >    snap->setRawPotential(0.0);
491 >
492 >    for (mol = info_->beginMolecule(mi); mol != NULL;
493 >         mol = info_->nextMolecule(mi)) {
494 >      for(atom = mol->beginAtom(ai); atom != NULL;
495 >          atom = mol->nextAtom(ai)) {
496          atom->zeroForcesAndTorques();
497        }
498 <        
498 >      
499        //change the positions of atoms which belong to the rigidbodies
500 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
500 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
501 >           rb = mol->nextRigidBody(rbIter)) {
502          rb->zeroForcesAndTorques();
503        }        
504 +      
505 +      if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){
506 +        for(cg = mol->beginCutoffGroup(ci); cg != NULL;
507 +            cg = mol->nextCutoffGroup(ci)) {
508 +          //calculate the center of mass of cutoff group
509 +          cg->updateCOM();
510 +        }
511 +      }      
512      }
513      
514 +    // Zero out the stress tensor
515 +    stressTensor *= 0.0;
516 +    // Zero out the heatFlux
517 +    fDecomp_->setHeatFlux( Vector3d(0.0) );    
518    }
519 <
520 <  void ForceManager::calcShortRangeInteraction() {
519 >  
520 >  void ForceManager::shortRangeInteractions() {
521      Molecule* mol;
522      RigidBody* rb;
523      Bond* bond;
524      Bend* bend;
525      Torsion* torsion;
526 +    Inversion* inversion;
527      SimInfo::MoleculeIterator mi;
528      Molecule::RigidBodyIterator rbIter;
529      Molecule::BondIterator bondIter;;
530      Molecule::BendIterator  bendIter;
531      Molecule::TorsionIterator  torsionIter;
532 +    Molecule::InversionIterator  inversionIter;
533 +    RealType bondPotential = 0.0;
534 +    RealType bendPotential = 0.0;
535 +    RealType torsionPotential = 0.0;
536 +    RealType inversionPotential = 0.0;
537  
538      //calculate short range interactions    
539 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
539 >    for (mol = info_->beginMolecule(mi); mol != NULL;
540 >         mol = info_->nextMolecule(mi)) {
541  
542        //change the positions of atoms which belong to the rigidbodies
543 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
544 <        rb->updateAtoms();
543 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
544 >           rb = mol->nextRigidBody(rbIter)) {
545 >        rb->updateAtoms();
546        }
547  
548 <      for (bond = mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
549 <        bond->calcForce();
548 >      for (bond = mol->beginBond(bondIter); bond != NULL;
549 >           bond = mol->nextBond(bondIter)) {
550 >        bond->calcForce(doParticlePot_);
551 >        bondPotential += bond->getPotential();
552        }
553  
554 <      for (bend = mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
555 <        bend->calcForce();
556 <      }
557 <
558 <      for (torsion = mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
559 <        torsion->calcForce();
554 >      for (bend = mol->beginBend(bendIter); bend != NULL;
555 >           bend = mol->nextBend(bendIter)) {
556 >        
557 >        RealType angle;
558 >        bend->calcForce(angle, doParticlePot_);
559 >        RealType currBendPot = bend->getPotential();          
560 >        
561 >        bendPotential += bend->getPotential();
562 >        map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend);
563 >        if (i == bendDataSets.end()) {
564 >          BendDataSet dataSet;
565 >          dataSet.prev.angle = dataSet.curr.angle = angle;
566 >          dataSet.prev.potential = dataSet.curr.potential = currBendPot;
567 >          dataSet.deltaV = 0.0;
568 >          bendDataSets.insert(map<Bend*, BendDataSet>::value_type(bend,
569 >                                                                  dataSet));
570 >        }else {
571 >          i->second.prev.angle = i->second.curr.angle;
572 >          i->second.prev.potential = i->second.curr.potential;
573 >          i->second.curr.angle = angle;
574 >          i->second.curr.potential = currBendPot;
575 >          i->second.deltaV =  fabs(i->second.curr.potential -  
576 >                                   i->second.prev.potential);
577 >        }
578        }
579 <
579 >      
580 >      for (torsion = mol->beginTorsion(torsionIter); torsion != NULL;
581 >           torsion = mol->nextTorsion(torsionIter)) {
582 >        RealType angle;
583 >        torsion->calcForce(angle, doParticlePot_);
584 >        RealType currTorsionPot = torsion->getPotential();
585 >        torsionPotential += torsion->getPotential();
586 >        map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion);
587 >        if (i == torsionDataSets.end()) {
588 >          TorsionDataSet dataSet;
589 >          dataSet.prev.angle = dataSet.curr.angle = angle;
590 >          dataSet.prev.potential = dataSet.curr.potential = currTorsionPot;
591 >          dataSet.deltaV = 0.0;
592 >          torsionDataSets.insert(map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet));
593 >        }else {
594 >          i->second.prev.angle = i->second.curr.angle;
595 >          i->second.prev.potential = i->second.curr.potential;
596 >          i->second.curr.angle = angle;
597 >          i->second.curr.potential = currTorsionPot;
598 >          i->second.deltaV =  fabs(i->second.curr.potential -  
599 >                                   i->second.prev.potential);
600 >        }      
601 >      }      
602 >      
603 >      for (inversion = mol->beginInversion(inversionIter);
604 >           inversion != NULL;
605 >           inversion = mol->nextInversion(inversionIter)) {
606 >        RealType angle;
607 >        inversion->calcForce(angle, doParticlePot_);
608 >        RealType currInversionPot = inversion->getPotential();
609 >        inversionPotential += inversion->getPotential();
610 >        map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion);
611 >        if (i == inversionDataSets.end()) {
612 >          InversionDataSet dataSet;
613 >          dataSet.prev.angle = dataSet.curr.angle = angle;
614 >          dataSet.prev.potential = dataSet.curr.potential = currInversionPot;
615 >          dataSet.deltaV = 0.0;
616 >          inversionDataSets.insert(map<Inversion*, InversionDataSet>::value_type(inversion, dataSet));
617 >        }else {
618 >          i->second.prev.angle = i->second.curr.angle;
619 >          i->second.prev.potential = i->second.curr.potential;
620 >          i->second.curr.angle = angle;
621 >          i->second.curr.potential = currInversionPot;
622 >          i->second.deltaV =  fabs(i->second.curr.potential -  
623 >                                   i->second.prev.potential);
624 >        }      
625 >      }      
626      }
128    
129    double  shortRangePotential = 0.0;
130    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
131      shortRangePotential += mol->getPotential();
132    }
627  
628 + #ifdef IS_MPI
629 +    // Collect from all nodes.  This should eventually be moved into a
630 +    // SystemDecomposition, but this is a better place than in
631 +    // Thermo to do the collection.
632 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &bondPotential, 1, MPI::REALTYPE,
633 +                              MPI::SUM);
634 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &bendPotential, 1, MPI::REALTYPE,
635 +                              MPI::SUM);
636 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &torsionPotential, 1,
637 +                              MPI::REALTYPE, MPI::SUM);
638 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &inversionPotential, 1,
639 +                              MPI::REALTYPE, MPI::SUM);
640 + #endif
641 +
642      Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
135    curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential;
136  }
643  
644 <  void ForceManager::calcLongRangeInteraction(bool needPotential, bool needStress) {
645 <    Snapshot* curSnapshot;
646 <    DataStorage* config;
647 <    double* frc;
142 <    double* pos;
143 <    double* trq;
144 <    double* A;
145 <    double* electroFrame;
146 <    double* rc;
644 >    curSnapshot->setBondPotential(bondPotential);
645 >    curSnapshot->setBendPotential(bendPotential);
646 >    curSnapshot->setTorsionPotential(torsionPotential);
647 >    curSnapshot->setInversionPotential(inversionPotential);
648      
649 <    //get current snapshot from SimInfo
650 <    curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
649 >    // RealType shortRangePotential = bondPotential + bendPotential +
650 >    //   torsionPotential +  inversionPotential;    
651  
652 <    //get array pointers
653 <    config = &(curSnapshot->atomData);
654 <    frc = config->getArrayPointer(DataStorage::dslForce);
655 <    pos = config->getArrayPointer(DataStorage::dslPosition);
155 <    trq = config->getArrayPointer(DataStorage::dslTorque);
156 <    A   = config->getArrayPointer(DataStorage::dslAmat);
157 <    electroFrame = config->getArrayPointer(DataStorage::dslElectroFrame);
652 >    // curSnapshot->setShortRangePotential(shortRangePotential);
653 >  }
654 >  
655 >  void ForceManager::longRangeInteractions() {
656  
657 +
658 +    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
659 +    DataStorage* config = &(curSnapshot->atomData);
660 +    DataStorage* cgConfig = &(curSnapshot->cgData);
661 +
662      //calculate the center of mass of cutoff group
663 +
664      SimInfo::MoleculeIterator mi;
665      Molecule* mol;
666      Molecule::CutoffGroupIterator ci;
667      CutoffGroup* cg;
164    Vector3d com;
165    std::vector<Vector3d> rcGroup;
166    
167    if(info_->getNCutoffGroups() > 0){
668  
669 <      for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
670 <        for(cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
671 <          cg->getCOM(com);
672 <          rcGroup.push_back(com);
669 >    if(info_->getNCutoffGroups() > 0){      
670 >      for (mol = info_->beginMolecule(mi); mol != NULL;
671 >           mol = info_->nextMolecule(mi)) {
672 >        for(cg = mol->beginCutoffGroup(ci); cg != NULL;
673 >            cg = mol->nextCutoffGroup(ci)) {
674 >          cg->updateCOM();
675          }
676 <      }// end for (mol)
175 <      
176 <      rc = rcGroup[0].getArrayPointer();
676 >      }      
677      } else {
678 <      // center of mass of the group is the same as position of the atom  if cutoff group does not exist
679 <      rc = pos;
678 >      // center of mass of the group is the same as position of the atom  
679 >      // if cutoff group does not exist
680 >      cgConfig->position = config->position;
681 >      cgConfig->velocity = config->velocity;
682      }
181  
182    //initialize data before passing to fortran
183    double longRangePotential = 0.0;
184    Mat3x3d tau;
185    short int passedCalcPot = needPotential;
186    short int passedCalcStress = needStress;
187    int isError = 0;
683  
684 <    doForceLoop( pos,
685 <                 rc,
686 <                 A,
687 <                 electroFrame,
688 <                 frc,
689 <                 trq,
690 <                 tau.getArrayPointer(),
691 <                 &longRangePotential,
692 <                 &passedCalcPot,
693 <                 &passedCalcStress,
694 <                 &isError );
684 >    fDecomp_->zeroWorkArrays();
685 >    fDecomp_->distributeData();
686 >    
687 >    int cg1, cg2, atom1, atom2, topoDist;
688 >    Vector3d d_grp, dag, d, gvel2, vel2;
689 >    RealType rgrpsq, rgrp, r2, r;
690 >    RealType electroMult, vdwMult;
691 >    RealType vij;
692 >    Vector3d fij, fg, f1;
693 >    tuple3<RealType, RealType, RealType> cuts;
694 >    RealType rCutSq;
695 >    bool in_switching_region;
696 >    RealType sw, dswdr, swderiv;
697 >    vector<int> atomListColumn, atomListRow;
698 >    InteractionData idat;
699 >    SelfData sdat;
700 >    RealType mf;
701 >    RealType vpair;
702 >    RealType dVdFQ1(0.0);
703 >    RealType dVdFQ2(0.0);
704 >    potVec longRangePotential(0.0);
705 >    potVec workPot(0.0);
706 >    potVec exPot(0.0);
707 >    Vector3d eField1(0.0);
708 >    Vector3d eField2(0.0);
709 >    vector<int>::iterator ia, jb;
710  
711 <    if( isError ){
712 <      sprintf( painCave.errMsg,
713 <               "Error returned from the fortran force calculation.\n" );
714 <      painCave.isFatal = 1;
715 <      simError();
711 >    int loopStart, loopEnd;
712 >
713 >    idat.vdwMult = &vdwMult;
714 >    idat.electroMult = &electroMult;
715 >    idat.pot = &workPot;
716 >    idat.excludedPot = &exPot;
717 >    sdat.pot = fDecomp_->getEmbeddingPotential();
718 >    sdat.excludedPot = fDecomp_->getExcludedSelfPotential();
719 >    idat.vpair = &vpair;
720 >    idat.dVdFQ1 = &dVdFQ1;
721 >    idat.dVdFQ2 = &dVdFQ2;
722 >    idat.eField1 = &eField1;
723 >    idat.eField2 = &eField2;  
724 >    idat.f1 = &f1;
725 >    idat.sw = &sw;
726 >    idat.shiftedPot = (cutoffMethod_ == SHIFTED_POTENTIAL) ? true : false;
727 >    idat.shiftedForce = (cutoffMethod_ == SHIFTED_FORCE) ? true : false;
728 >    idat.doParticlePot = doParticlePot_;
729 >    idat.doElectricField = doElectricField_;
730 >    sdat.doParticlePot = doParticlePot_;
731 >    
732 >    loopEnd = PAIR_LOOP;
733 >    if (info_->requiresPrepair() ) {
734 >      loopStart = PREPAIR_LOOP;
735 >    } else {
736 >      loopStart = PAIR_LOOP;
737      }
738 +    for (int iLoop = loopStart; iLoop <= loopEnd; iLoop++) {
739 +    
740 +      if (iLoop == loopStart) {
741 +        bool update_nlist = fDecomp_->checkNeighborList();
742 +        if (update_nlist) {
743 +          if (!usePeriodicBoundaryConditions_)
744 +            Mat3x3d bbox = thermo->getBoundingBox();
745 +          neighborList = fDecomp_->buildNeighborList();
746 +        }
747 +      }
748  
749 <    //store the tau and long range potential    
750 <    curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = longRangePotential;
751 <    curSnapshot->statData.setTau(tau);
752 <  }
749 >      for (vector<pair<int, int> >::iterator it = neighborList.begin();
750 >             it != neighborList.end(); ++it) {
751 >                
752 >        cg1 = (*it).first;
753 >        cg2 = (*it).second;
754 >        
755 >        cuts = fDecomp_->getGroupCutoffs(cg1, cg2);
756 >
757 >        d_grp  = fDecomp_->getIntergroupVector(cg1, cg2);
758 >
759 >        curSnapshot->wrapVector(d_grp);        
760 >        rgrpsq = d_grp.lengthSquare();
761 >        rCutSq = cuts.second;
762  
763 +        if (rgrpsq < rCutSq) {
764 +          idat.rcut = &cuts.first;
765 +          if (iLoop == PAIR_LOOP) {
766 +            vij = 0.0;
767 +            fij = V3Zero;
768 +            eField1 = V3Zero;
769 +            eField2 = V3Zero;
770 +          }
771 +          
772 +          in_switching_region = switcher_->getSwitch(rgrpsq, sw, dswdr,
773 +                                                     rgrp);
774  
775 +          atomListRow = fDecomp_->getAtomsInGroupRow(cg1);
776 +          atomListColumn = fDecomp_->getAtomsInGroupColumn(cg2);
777 +
778 +          if (doHeatFlux_)
779 +            gvel2 = fDecomp_->getGroupVelocityColumn(cg2);
780 +
781 +          for (ia = atomListRow.begin();
782 +               ia != atomListRow.end(); ++ia) {            
783 +            atom1 = (*ia);
784 +
785 +            for (jb = atomListColumn.begin();
786 +                 jb != atomListColumn.end(); ++jb) {              
787 +              atom2 = (*jb);
788 +
789 +              if (!fDecomp_->skipAtomPair(atom1, atom2, cg1, cg2)) {
790 +
791 +                vpair = 0.0;
792 +                workPot = 0.0;
793 +                exPot = 0.0;
794 +                f1 = V3Zero;
795 +                dVdFQ1 = 0.0;
796 +                dVdFQ2 = 0.0;
797 +
798 +                fDecomp_->fillInteractionData(idat, atom1, atom2);
799 +
800 +                topoDist = fDecomp_->getTopologicalDistance(atom1, atom2);
801 +                vdwMult = vdwScale_[topoDist];
802 +                electroMult = electrostaticScale_[topoDist];
803 +
804 +                if (atomListRow.size() == 1 && atomListColumn.size() == 1) {
805 +                  idat.d = &d_grp;
806 +                  idat.r2 = &rgrpsq;
807 +                  if (doHeatFlux_)
808 +                    vel2 = gvel2;
809 +                } else {
810 +                  d = fDecomp_->getInteratomicVector(atom1, atom2);
811 +                  curSnapshot->wrapVector( d );
812 +                  r2 = d.lengthSquare();
813 +                  idat.d = &d;
814 +                  idat.r2 = &r2;
815 +                  if (doHeatFlux_)
816 +                    vel2 = fDecomp_->getAtomVelocityColumn(atom2);
817 +                }
818 +              
819 +                r = sqrt( *(idat.r2) );
820 +                idat.rij = &r;
821 +              
822 +                if (iLoop == PREPAIR_LOOP) {
823 +                  interactionMan_->doPrePair(idat);
824 +                } else {
825 +                  interactionMan_->doPair(idat);
826 +                  fDecomp_->unpackInteractionData(idat, atom1, atom2);
827 +                  vij += vpair;
828 +                  fij += f1;
829 +                  stressTensor -= outProduct( *(idat.d), f1);
830 +                  if (doHeatFlux_)
831 +                    fDecomp_->addToHeatFlux(*(idat.d) * dot(f1, vel2));
832 +                }
833 +              }
834 +            }
835 +          }
836 +
837 +          if (iLoop == PAIR_LOOP) {
838 +            if (in_switching_region) {
839 +              swderiv = vij * dswdr / rgrp;
840 +              fg = swderiv * d_grp;
841 +              fij += fg;
842 +
843 +              if (atomListRow.size() == 1 && atomListColumn.size() == 1) {
844 +                if (!fDecomp_->skipAtomPair(atomListRow[0],
845 +                                            atomListColumn[0],
846 +                                            cg1, cg2)) {
847 +                  stressTensor -= outProduct( *(idat.d), fg);
848 +                  if (doHeatFlux_)
849 +                    fDecomp_->addToHeatFlux(*(idat.d) * dot(fg, vel2));
850 +                }                
851 +              }
852 +          
853 +              for (ia = atomListRow.begin();
854 +                   ia != atomListRow.end(); ++ia) {            
855 +                atom1 = (*ia);                
856 +                mf = fDecomp_->getMassFactorRow(atom1);
857 +                // fg is the force on atom ia due to cutoff group's
858 +                // presence in switching region
859 +                fg = swderiv * d_grp * mf;
860 +                fDecomp_->addForceToAtomRow(atom1, fg);
861 +                if (atomListRow.size() > 1) {
862 +                  if (info_->usesAtomicVirial()) {
863 +                    // find the distance between the atom
864 +                    // and the center of the cutoff group:
865 +                    dag = fDecomp_->getAtomToGroupVectorRow(atom1, cg1);
866 +                    stressTensor -= outProduct(dag, fg);
867 +                    if (doHeatFlux_)
868 +                      fDecomp_->addToHeatFlux( dag * dot(fg, vel2));
869 +                  }
870 +                }
871 +              }
872 +              for (jb = atomListColumn.begin();
873 +                   jb != atomListColumn.end(); ++jb) {              
874 +                atom2 = (*jb);
875 +                mf = fDecomp_->getMassFactorColumn(atom2);
876 +                // fg is the force on atom jb due to cutoff group's
877 +                // presence in switching region
878 +                fg = -swderiv * d_grp * mf;
879 +                fDecomp_->addForceToAtomColumn(atom2, fg);
880 +
881 +                if (atomListColumn.size() > 1) {
882 +                  if (info_->usesAtomicVirial()) {
883 +                    // find the distance between the atom
884 +                    // and the center of the cutoff group:
885 +                    dag = fDecomp_->getAtomToGroupVectorColumn(atom2, cg2);
886 +                    stressTensor -= outProduct(dag, fg);
887 +                    if (doHeatFlux_)
888 +                      fDecomp_->addToHeatFlux( dag * dot(fg, vel2));
889 +                  }
890 +                }
891 +              }
892 +            }
893 +            //if (!info_->usesAtomicVirial()) {
894 +            //  stressTensor -= outProduct(d_grp, fij);
895 +            //  if (doHeatFlux_)
896 +            //     fDecomp_->addToHeatFlux( d_grp * dot(fij, vel2));
897 +            //}
898 +          }
899 +        }
900 +      }
901 +
902 +      if (iLoop == PREPAIR_LOOP) {
903 +        if (info_->requiresPrepair()) {
904 +
905 +          fDecomp_->collectIntermediateData();
906 +
907 +          for (unsigned int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) {
908 +            fDecomp_->fillSelfData(sdat, atom1);
909 +            interactionMan_->doPreForce(sdat);
910 +          }
911 +
912 +          fDecomp_->distributeIntermediateData();
913 +
914 +        }
915 +      }
916 +    }
917 +    
918 +    // collects pairwise information
919 +    fDecomp_->collectData();
920 +        
921 +    if (info_->requiresSelfCorrection()) {
922 +      for (unsigned int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) {
923 +        fDecomp_->fillSelfData(sdat, atom1);
924 +        interactionMan_->doSelfCorrection(sdat);
925 +      }
926 +    }
927 +
928 +    // collects single-atom information
929 +    fDecomp_->collectSelfData();
930 +
931 +    longRangePotential = *(fDecomp_->getEmbeddingPotential()) +
932 +      *(fDecomp_->getPairwisePotential());
933 +
934 +    curSnapshot->setLongRangePotential(longRangePotential);
935 +    
936 +    curSnapshot->setExcludedPotentials(*(fDecomp_->getExcludedSelfPotential()) +
937 +                                         *(fDecomp_->getExcludedPotential()));
938 +
939 +  }
940 +
941 +  
942    void ForceManager::postCalculation() {
943 +
944 +    vector<Perturbation*>::iterator pi;
945 +    for (pi = perturbations_.begin(); pi != perturbations_.end(); ++pi) {
946 +      (*pi)->applyPerturbation();
947 +    }
948 +
949      SimInfo::MoleculeIterator mi;
950      Molecule* mol;
951      Molecule::RigidBodyIterator rbIter;
952      RigidBody* rb;
953 <    
953 >    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
954 >  
955      // collect the atomic forces onto rigid bodies
956 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
957 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
958 <        rb->calcForcesAndTorques();
956 >    
957 >    for (mol = info_->beginMolecule(mi); mol != NULL;
958 >         mol = info_->nextMolecule(mi)) {
959 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
960 >           rb = mol->nextRigidBody(rbIter)) {
961 >        Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial();
962 >        stressTensor += rbTau;
963        }
964      }
965 +    
966 + #ifdef IS_MPI
967 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, stressTensor.getArrayPointer(), 9,
968 +                              MPI::REALTYPE, MPI::SUM);
969 + #endif
970 +    curSnapshot->setStressTensor(stressTensor);
971 +    
972 +    if (info_->getSimParams()->getUseLongRangeCorrections()) {
973 +      /*
974 +      RealType vol = curSnapshot->getVolume();
975 +      RealType Elrc(0.0);
976 +      RealType Wlrc(0.0);
977  
978 <  }
978 >      set<AtomType*>::iterator i;
979 >      set<AtomType*>::iterator j;
980 >    
981 >      RealType n_i, n_j;
982 >      RealType rho_i, rho_j;
983 >      pair<RealType, RealType> LRI;
984 >      
985 >      for (i = atomTypes_.begin(); i != atomTypes_.end(); ++i) {
986 >        n_i = RealType(info_->getGlobalCountOfType(*i));
987 >        rho_i = n_i /  vol;
988 >        for (j = atomTypes_.begin(); j != atomTypes_.end(); ++j) {
989 >          n_j = RealType(info_->getGlobalCountOfType(*j));
990 >          rho_j = n_j / vol;
991 >          
992 >          LRI = interactionMan_->getLongRangeIntegrals( (*i), (*j) );
993  
994 < } //end namespace oopse
994 >          Elrc += n_i   * rho_j * LRI.first;
995 >          Wlrc -= rho_i * rho_j * LRI.second;
996 >        }
997 >      }
998 >      Elrc *= 2.0 * NumericConstant::PI;
999 >      Wlrc *= 2.0 * NumericConstant::PI;
1000 >
1001 >      RealType lrp = curSnapshot->getLongRangePotential();
1002 >      curSnapshot->setLongRangePotential(lrp + Elrc);
1003 >      stressTensor += Wlrc * SquareMatrix3<RealType>::identity();
1004 >      curSnapshot->setStressTensor(stressTensor);
1005 >      */
1006 >    
1007 >    }
1008 >  }
1009 > }

Comparing:
trunk/src/brains/ForceManager.cpp (property svn:keywords), Revision 507 by gezelter, Fri Apr 15 22:04:00 2005 UTC vs.
branches/development/src/brains/ForceManager.cpp (property svn:keywords), Revision 1874 by gezelter, Wed May 15 15:09:35 2013 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines