ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/ForceManager.cpp
(Generate patch)

Comparing:
trunk/src/brains/ForceManager.cpp (file contents), Revision 246 by gezelter, Wed Jan 12 22:41:40 2005 UTC vs.
branches/development/src/brains/ForceManager.cpp (file contents), Revision 1545 by gezelter, Fri Apr 8 21:25:19 2011 UTC

# Line 1 | Line 1
1 < /*
1 > /*
2   * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42 < /**
43 <  * @file ForceManager.cpp
44 <  * @author tlin
45 <  * @date 11/09/2004
46 <  * @time 10:39am
47 <  * @version 1.0
48 <  */
42 > /**
43 > * @file ForceManager.cpp
44 > * @author tlin
45 > * @date 11/09/2004
46 > * @time 10:39am
47 > * @version 1.0
48 > */
49  
50   #include "brains/ForceManager.hpp"
51   #include "primitives/Molecule.hpp"
52   #include "UseTheForce/doForces_interface.h"
53 + #define __OPENMD_C
54 + #include "UseTheForce/DarkSide/fInteractionMap.h"
55   #include "utils/simError.h"
56 < namespace oopse {
56 > #include "primitives/Bond.hpp"
57 > #include "primitives/Bend.hpp"
58 > #include "primitives/Torsion.hpp"
59 > #include "primitives/Inversion.hpp"
60 > #include "parallel/ForceDecomposition.hpp"
61 > //#include "parallel/SerialDecomposition.hpp"
62  
63 < void ForceManager::calcForces(bool needPotential, bool needStress) {
63 > using namespace std;
64 > namespace OpenMD {
65 >  
66 >  ForceManager::ForceManager(SimInfo * info) : info_(info) {
67  
68 + #ifdef IS_MPI
69 +    decomp_ = new ForceDecomposition(info_);
70 + #else
71 +    // decomp_ = new SerialDecomposition(info);
72 + #endif
73 +  }
74 +  
75 +  void ForceManager::calcForces() {
76 +    
77      if (!info_->isFortranInitialized()) {
78 <        info_->update();
78 >      info_->update();
79 >      nbiMan_->setSimInfo(info_);
80 >      nbiMan_->initialize();
81 >      swfun_ = nbiMan_->getSwitchingFunction();
82 >      decomp_->distributeInitialData();
83 >      info_->setupFortran();
84      }
61
62    preCalculation();
85      
86 +    preCalculation();  
87      calcShortRangeInteraction();
88 <
66 <    calcLongRangeInteraction(needPotential, needStress);
67 <
88 >    calcLongRangeInteraction();
89      postCalculation();
90 <        
91 < }
92 <
93 < void ForceManager::preCalculation() {
90 >    
91 >  }
92 >  
93 >  void ForceManager::preCalculation() {
94      SimInfo::MoleculeIterator mi;
95      Molecule* mol;
96      Molecule::AtomIterator ai;
97      Atom* atom;
98      Molecule::RigidBodyIterator rbIter;
99      RigidBody* rb;
100 +    Molecule::CutoffGroupIterator ci;
101 +    CutoffGroup* cg;
102      
103      // forces are zeroed here, before any are accumulated.
104 <    // NOTE: do not rezero the forces in Fortran.
105 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
106 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
107 <            atom->zeroForcesAndTorques();
104 >    
105 >    for (mol = info_->beginMolecule(mi); mol != NULL;
106 >         mol = info_->nextMolecule(mi)) {
107 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
108 >        atom->zeroForcesAndTorques();
109 >      }
110 >          
111 >      //change the positions of atoms which belong to the rigidbodies
112 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
113 >           rb = mol->nextRigidBody(rbIter)) {
114 >        rb->zeroForcesAndTorques();
115 >      }        
116 >
117 >      if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){
118 >        for(cg = mol->beginCutoffGroup(ci); cg != NULL;
119 >            cg = mol->nextCutoffGroup(ci)) {
120 >          //calculate the center of mass of cutoff group
121 >          cg->updateCOM();
122          }
123 <        
87 <        //change the positions of atoms which belong to the rigidbodies
88 <        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
89 <            rb->zeroForcesAndTorques();
90 <        }        
123 >      }      
124      }
125 +  
126 +    // Zero out the stress tensor
127 +    tau *= 0.0;
128      
129 < }
130 <
131 < void ForceManager::calcShortRangeInteraction() {
129 >  }
130 >  
131 >  void ForceManager::calcShortRangeInteraction() {
132      Molecule* mol;
133      RigidBody* rb;
134      Bond* bond;
135      Bend* bend;
136      Torsion* torsion;
137 +    Inversion* inversion;
138      SimInfo::MoleculeIterator mi;
139      Molecule::RigidBodyIterator rbIter;
140      Molecule::BondIterator bondIter;;
141      Molecule::BendIterator  bendIter;
142      Molecule::TorsionIterator  torsionIter;
143 +    Molecule::InversionIterator  inversionIter;
144 +    RealType bondPotential = 0.0;
145 +    RealType bendPotential = 0.0;
146 +    RealType torsionPotential = 0.0;
147 +    RealType inversionPotential = 0.0;
148  
149      //calculate short range interactions    
150 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
150 >    for (mol = info_->beginMolecule(mi); mol != NULL;
151 >         mol = info_->nextMolecule(mi)) {
152  
153 <        //change the positions of atoms which belong to the rigidbodies
154 <        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
155 <            rb->updateAtoms();
156 <        }
153 >      //change the positions of atoms which belong to the rigidbodies
154 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
155 >           rb = mol->nextRigidBody(rbIter)) {
156 >        rb->updateAtoms();
157 >      }
158  
159 <        for (bond = mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
160 <            bond->calcForce();
161 <        }
159 >      for (bond = mol->beginBond(bondIter); bond != NULL;
160 >           bond = mol->nextBond(bondIter)) {
161 >        bond->calcForce();
162 >        bondPotential += bond->getPotential();
163 >      }
164  
165 <        for (bend = mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
166 <            bend->calcForce();
165 >      for (bend = mol->beginBend(bendIter); bend != NULL;
166 >           bend = mol->nextBend(bendIter)) {
167 >        
168 >        RealType angle;
169 >        bend->calcForce(angle);
170 >        RealType currBendPot = bend->getPotential();          
171 >        
172 >        bendPotential += bend->getPotential();
173 >        map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend);
174 >        if (i == bendDataSets.end()) {
175 >          BendDataSet dataSet;
176 >          dataSet.prev.angle = dataSet.curr.angle = angle;
177 >          dataSet.prev.potential = dataSet.curr.potential = currBendPot;
178 >          dataSet.deltaV = 0.0;
179 >          bendDataSets.insert(map<Bend*, BendDataSet>::value_type(bend, dataSet));
180 >        }else {
181 >          i->second.prev.angle = i->second.curr.angle;
182 >          i->second.prev.potential = i->second.curr.potential;
183 >          i->second.curr.angle = angle;
184 >          i->second.curr.potential = currBendPot;
185 >          i->second.deltaV =  fabs(i->second.curr.potential -  
186 >                                   i->second.prev.potential);
187          }
188 <
189 <        for (torsion = mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
190 <            torsion->calcForce();
191 <        }
192 <
188 >      }
189 >      
190 >      for (torsion = mol->beginTorsion(torsionIter); torsion != NULL;
191 >           torsion = mol->nextTorsion(torsionIter)) {
192 >        RealType angle;
193 >        torsion->calcForce(angle);
194 >        RealType currTorsionPot = torsion->getPotential();
195 >        torsionPotential += torsion->getPotential();
196 >        map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion);
197 >        if (i == torsionDataSets.end()) {
198 >          TorsionDataSet dataSet;
199 >          dataSet.prev.angle = dataSet.curr.angle = angle;
200 >          dataSet.prev.potential = dataSet.curr.potential = currTorsionPot;
201 >          dataSet.deltaV = 0.0;
202 >          torsionDataSets.insert(map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet));
203 >        }else {
204 >          i->second.prev.angle = i->second.curr.angle;
205 >          i->second.prev.potential = i->second.curr.potential;
206 >          i->second.curr.angle = angle;
207 >          i->second.curr.potential = currTorsionPot;
208 >          i->second.deltaV =  fabs(i->second.curr.potential -  
209 >                                   i->second.prev.potential);
210 >        }      
211 >      }      
212 >      
213 >      for (inversion = mol->beginInversion(inversionIter);
214 >           inversion != NULL;
215 >           inversion = mol->nextInversion(inversionIter)) {
216 >        RealType angle;
217 >        inversion->calcForce(angle);
218 >        RealType currInversionPot = inversion->getPotential();
219 >        inversionPotential += inversion->getPotential();
220 >        map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion);
221 >        if (i == inversionDataSets.end()) {
222 >          InversionDataSet dataSet;
223 >          dataSet.prev.angle = dataSet.curr.angle = angle;
224 >          dataSet.prev.potential = dataSet.curr.potential = currInversionPot;
225 >          dataSet.deltaV = 0.0;
226 >          inversionDataSets.insert(map<Inversion*, InversionDataSet>::value_type(inversion, dataSet));
227 >        }else {
228 >          i->second.prev.angle = i->second.curr.angle;
229 >          i->second.prev.potential = i->second.curr.potential;
230 >          i->second.curr.angle = angle;
231 >          i->second.curr.potential = currInversionPot;
232 >          i->second.deltaV =  fabs(i->second.curr.potential -  
233 >                                   i->second.prev.potential);
234 >        }      
235 >      }      
236      }
237      
238 <    double  shortRangePotential = 0.0;
239 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
131 <        shortRangePotential += mol->getPotential();
132 <    }
133 <
238 >    RealType  shortRangePotential = bondPotential + bendPotential +
239 >      torsionPotential +  inversionPotential;    
240      Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
241      curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential;
242 < }
242 >    curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential;
243 >    curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential;
244 >    curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential;
245 >    curSnapshot->statData[Stats::INVERSION_POTENTIAL] = inversionPotential;    
246 >  }
247 >  
248 >  void ForceManager::calcLongRangeInteraction() {
249  
250 < void ForceManager::calcLongRangeInteraction(bool needPotential, bool needStress) {
251 <    Snapshot* curSnapshot;
252 <    DataStorage* config;
253 <    double* frc;
254 <    double* pos;
255 <    double* trq;
256 <    double* A;
257 <    double* electroFrame;
258 <    double* rc;
259 <    
260 <    //get current snapshot from SimInfo
149 <    curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
250 >    // some of this initial stuff will go away:
251 >    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
252 >    DataStorage* config = &(curSnapshot->atomData);
253 >    DataStorage* cgConfig = &(curSnapshot->cgData);
254 >    RealType* frc = config->getArrayPointer(DataStorage::dslForce);
255 >    RealType* pos = config->getArrayPointer(DataStorage::dslPosition);
256 >    RealType* trq = config->getArrayPointer(DataStorage::dslTorque);
257 >    RealType* A = config->getArrayPointer(DataStorage::dslAmat);
258 >    RealType* electroFrame = config->getArrayPointer(DataStorage::dslElectroFrame);
259 >    RealType* particlePot = config->getArrayPointer(DataStorage::dslParticlePot);
260 >    RealType* rc;    
261  
262 <    //get array pointers
263 <    config = &(curSnapshot->atomData);
264 <    frc = config->getArrayPointer(DataStorage::dslForce);
265 <    pos = config->getArrayPointer(DataStorage::dslPosition);
266 <    trq = config->getArrayPointer(DataStorage::dslTorque);
267 <    A   = config->getArrayPointer(DataStorage::dslAmat);
157 <    electroFrame = config->getArrayPointer(DataStorage::dslElectroFrame);
158 <
159 <    //calculate the center of mass of cutoff group
160 <    SimInfo::MoleculeIterator mi;
161 <    Molecule* mol;
162 <    Molecule::CutoffGroupIterator ci;
163 <    CutoffGroup* cg;
164 <    Vector3d com;
165 <    std::vector<Vector3d> rcGroup;
166 <    
167 <    if(info_->getNCutoffGroups() > 0){
168 <
169 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
170 <        for(cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
171 <            cg->getCOM(com);
172 <            rcGroup.push_back(com);
173 <        }
174 <    }// end for (mol)
175 <      
176 <        rc = rcGroup[0].getArrayPointer();
177 <    } else {
178 <        // center of mass of the group is the same as position of the atom  if cutoff group does not exist
179 <        rc = pos;
262 >    if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){
263 >      rc = cgConfig->getArrayPointer(DataStorage::dslPosition);
264 >    } else {
265 >      // center of mass of the group is the same as position of the atom  
266 >      // if cutoff group does not exist
267 >      rc = pos;
268      }
269 <  
269 >    
270      //initialize data before passing to fortran
271 <    double longRangePotential = 0.0;
272 <    Mat3x3d tau;
185 <    short int passedCalcPot = needPotential;
186 <    short int passedCalcStress = needStress;
271 >    RealType longRangePotential[LR_POT_TYPES];
272 >    RealType lrPot = 0.0;
273      int isError = 0;
274  
275 <    doForceLoop( pos,
276 <            rc,
277 <            A,
192 <            electroFrame,
193 <            frc,
194 <            trq,
195 <            tau.getArrayPointer(),
196 <            &longRangePotential,
197 <            &passedCalcPot,
198 <            &passedCalcStress,
199 <            &isError );
275 >    for (int i=0; i<LR_POT_TYPES;i++){
276 >      longRangePotential[i]=0.0; //Initialize array
277 >    }
278  
279 <    if( isError ){
280 <        sprintf( painCave.errMsg,
281 <             "Error returned from the fortran force calculation.\n" );
282 <        painCave.isFatal = 1;
283 <        simError();
279 >    // new stuff starts here:
280 >
281 >    decomp_->distributeData();
282 >
283 >    int cg1, cg2;
284 >    Vector3d d_grp;
285 >    RealType rgrpsq, rgrp;
286 >    RealType vij;
287 >    Vector3d fij, fg;
288 >    pair<int, int> gtypes;
289 >    RealType rCutSq;
290 >    bool in_switching_region;
291 >    RealType sw, dswdr, swderiv;
292 >    vector<int> atomListI;
293 >    vector<int> atomListJ;
294 >    InteractionData idat;
295 >
296 >    int loopStart, loopEnd;
297 >
298 >    loopEnd = PAIR_LOOP;
299 >    if (info_->requiresPrepair_) {
300 >      loopStart = PREPAIR_LOOP;
301 >    } else {
302 >      loopStart = PAIR_LOOP;
303      }
304  
305 <    //store the tau and long range potential    
306 <    curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = longRangePotential;
307 <    curSnapshot->statData.setTau(tau);
308 < }
305 >    for (int iLoop = loopStart; iLoop < loopEnd; iLoop++) {
306 >      
307 >      if (iLoop == loopStart) {
308 >        bool update_nlist = decomp_->checkNeighborList();
309 >        if (update_nlist)
310 >          neighborList = decomp_->buildNeighborList();
311 >      }
312  
313 +      for (vector<pair<int, int> >::iterator it = neighborList.begin();
314 +             it != neighborList.end(); ++it) {
315 +        
316 +        cg1 = (*it).first;
317 +        cg2 = (*it).second;
318  
319 < void ForceManager::postCalculation() {
319 >        gtypes = decomp_->getGroupTypes(cg1, cg2);
320 >        d_grp  = decomp_->getIntergroupVector(cg1, cg2);
321 >        curSnapshot->wrapVector(d_grp);        
322 >        rgrpsq = d_grp.lengthSquare();
323 >        rCutSq = groupCutoffMap(gtypes).first;
324 >
325 >        if (rgrpsq < rCutSq) {
326 >          idat.rcut = groupCutoffMap(gtypes).second;
327 >          if (iLoop == PAIR_LOOP) {
328 >            vij = 0.0;
329 >            fij = V3Zero;
330 >          }
331 >          
332 >          in_switching_region = swfun_->getSwitch(rgrpsq, idat.sw, idat.dswdr, rgrp);    
333 >          
334 >          atomListI = decomp_->getAtomsInGroupI(cg1);
335 >          atomListJ = decomp_->getAtomsInGroupJ(cg2);
336 >
337 >          for (vector<int>::iterator ia = atomListI.begin();
338 >               ia != atomListI.end(); ++ia) {            
339 >            atom1 = (*ia);
340 >            
341 >            for (vector<int>::iterator jb = atomListJ.begin();
342 >                 jb != atomListJ.end(); ++jb) {              
343 >              atom2 = (*jb);
344 >              
345 >              if (!decomp_->skipAtomPair(atom1, atom2)) {
346 >                
347 >                if (atomListI.size() == 1 && atomListJ.size() == 1) {
348 >                  idat.d = d_grp;
349 >                  idat.r2 = rgrpsq;
350 >                } else {
351 >                  idat.d = decomp_->getInteratomicVector(atom1, atom2);
352 >                  curSnapshot->wrapVector(idat.d);
353 >                  idat.r2 = idat.d.lengthSquare();
354 >                }
355 >                
356 >                idat.r = sqrt(idat.r2);
357 >                decomp_->fillInteractionData(atom1, atom2, idat);
358 >                
359 >                if (iLoop == PREPAIR_LOOP) {
360 >                  interactionMan_->doPrePair(idat);
361 >                } else {
362 >                  interactionMan_->doPair(idat);
363 >                  vij += idat.vpair;
364 >                  fij += idat.f1;
365 >                  tau -= outProduct(idat.d, idat.f);
366 >                }
367 >              }
368 >            }
369 >          }
370 >
371 >          if (iLoop == PAIR_LOOP) {
372 >            if (in_switching_region) {
373 >              swderiv = vij * dswdr / rgrp;
374 >              fg = swderiv * d_grp;
375 >
376 >              fij += fg;
377 >
378 >              if (atomListI.size() == 1 && atomListJ.size() == 1) {
379 >                tau -= outProduct(idat.d, fg);
380 >              }
381 >          
382 >              for (vector<int>::iterator ia = atomListI.begin();
383 >                   ia != atomListI.end(); ++ia) {            
384 >                atom1 = (*ia);                
385 >                mf = decomp_->getMfactI(atom1);
386 >                // fg is the force on atom ia due to cutoff group's
387 >                // presence in switching region
388 >                fg = swderiv * d_grp * mf;
389 >                decomp_->addForceToAtomI(atom1, fg);
390 >
391 >                if (atomListI.size() > 1) {
392 >                  if (info_->usesAtomicVirial_) {
393 >                    // find the distance between the atom
394 >                    // and the center of the cutoff group:
395 >                    dag = decomp_->getAtomToGroupVectorI(atom1, cg1);
396 >                    tau -= outProduct(dag, fg);
397 >                  }
398 >                }
399 >              }
400 >              for (vector<int>::iterator jb = atomListJ.begin();
401 >                   jb != atomListJ.end(); ++jb) {              
402 >                atom2 = (*jb);
403 >                mf = decomp_->getMfactJ(atom2);
404 >                // fg is the force on atom jb due to cutoff group's
405 >                // presence in switching region
406 >                fg = -swderiv * d_grp * mf;
407 >                decomp_->addForceToAtomJ(atom2, fg);
408 >
409 >                if (atomListJ.size() > 1) {
410 >                  if (info_->usesAtomicVirial_) {
411 >                    // find the distance between the atom
412 >                    // and the center of the cutoff group:
413 >                    dag = decomp_->getAtomToGroupVectorJ(atom2, cg2);
414 >                    tau -= outProduct(dag, fg);
415 >                  }
416 >                }
417 >              }
418 >            }
419 >            //if (!SIM_uses_AtomicVirial) {
420 >            //  tau -= outProduct(d_grp, fij);
421 >            //}
422 >          }
423 >        }
424 >      }
425 >
426 >      if (iLoop == PREPAIR_LOOP) {
427 >        if (info_->requiresPrepair_) {            
428 >          decomp_->collectIntermediateData();
429 >          atomList = decomp_->getAtomList();
430 >          for (vector<int>::iterator ia = atomList.begin();
431 >               ia != atomList.end(); ++ia) {              
432 >            atom1 = (*ia);            
433 >            decomp_->populateSelfData(atom1, SelfData sdat);
434 >            interactionMan_->doPreForce(sdat);
435 >          }
436 >          decomp_->distributeIntermediateData();        
437 >        }
438 >      }
439 >
440 >    }
441 >    
442 >    decomp_->collectData();
443 >    
444 >    if (info_->requiresSkipCorrection_ || info_->requiresSelfCorrection_) {
445 >      atomList = decomp_->getAtomList();
446 >      for (vector<int>::iterator ia = atomList.begin();
447 >           ia != atomList.end(); ++ia) {              
448 >        atom1 = (*ia);    
449 >
450 >        if (info_->requiresSkipCorrection_) {
451 >          vector<int> skipList = decomp_->getSkipsForAtom(atom1);
452 >          for (vector<int>::iterator jb = skipList.begin();
453 >               jb != skipList.end(); ++jb) {              
454 >            atom2 = (*jb);
455 >            decomp_->populateSkipData(atom1, atom2, InteractionData idat);
456 >            interactionMan_->doSkipCorrection(idat);
457 >          }
458 >        }
459 >          
460 >        if (info_->requiresSelfCorrection_) {
461 >          decomp_->populateSelfData(atom1, SelfData sdat);
462 >          interactionMan_->doSelfCorrection(sdat);
463 >      }
464 >      
465 >      
466 >    }
467 >
468 >    for (int i=0; i<LR_POT_TYPES;i++){
469 >      lrPot += longRangePotential[i]; //Quick hack
470 >    }
471 >        
472 >    //store the tau and long range potential    
473 >    curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot;
474 >    curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VDW_POT];
475 >    curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_POT];
476 >  }
477 >
478 >  
479 >  void ForceManager::postCalculation() {
480      SimInfo::MoleculeIterator mi;
481      Molecule* mol;
482      Molecule::RigidBodyIterator rbIter;
483      RigidBody* rb;
484 +    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
485      
486      // collect the atomic forces onto rigid bodies
487 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
488 <        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
489 <            rb->calcForcesAndTorques();
490 <        }
487 >    
488 >    for (mol = info_->beginMolecule(mi); mol != NULL;
489 >         mol = info_->nextMolecule(mi)) {
490 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
491 >           rb = mol->nextRigidBody(rbIter)) {
492 >        Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial();
493 >        tau += rbTau;
494 >      }
495      }
496 +    
497 + #ifdef IS_MPI
498 +    Mat3x3d tmpTau(tau);
499 +    MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(),
500 +                  9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
501 + #endif
502 +    curSnapshot->statData.setTau(tau);
503 +  }
504  
505 < }
228 <
229 < } //end namespace oopse
505 > } //end namespace OpenMD

Comparing:
trunk/src/brains/ForceManager.cpp (property svn:keywords), Revision 246 by gezelter, Wed Jan 12 22:41:40 2005 UTC vs.
branches/development/src/brains/ForceManager.cpp (property svn:keywords), Revision 1545 by gezelter, Fri Apr 8 21:25:19 2011 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines