ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/ForceManager.cpp
(Generate patch)

Comparing:
trunk/src/brains/ForceManager.cpp (file contents), Revision 507 by gezelter, Fri Apr 15 22:04:00 2005 UTC vs.
branches/development/src/brains/ForceManager.cpp (file contents), Revision 1571 by gezelter, Fri May 27 16:45:44 2011 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42   /**
# Line 49 | Line 49
49  
50   #include "brains/ForceManager.hpp"
51   #include "primitives/Molecule.hpp"
52 < #include "UseTheForce/doForces_interface.h"
52 > #define __OPENMD_C
53   #include "utils/simError.h"
54 < namespace oopse {
54 > #include "primitives/Bond.hpp"
55 > #include "primitives/Bend.hpp"
56 > #include "primitives/Torsion.hpp"
57 > #include "primitives/Inversion.hpp"
58 > #include "nonbonded/NonBondedInteraction.hpp"
59 > #include "parallel/ForceMatrixDecomposition.hpp"
60  
61 <  void ForceManager::calcForces(bool needPotential, bool needStress) {
61 > using namespace std;
62 > namespace OpenMD {
63 >  
64 >  ForceManager::ForceManager(SimInfo * info) : info_(info) {
65  
66 <    if (!info_->isFortranInitialized()) {
66 >    fDecomp_ = new ForceMatrixDecomposition(info_);
67 >  }
68 >  
69 >  void ForceManager::calcForces() {
70 >    
71 >    if (!info_->isTopologyDone()) {
72        info_->update();
73 +      interactionMan_->setSimInfo(info_);
74 +      interactionMan_->initialize();
75 +      swfun_ = interactionMan_->getSwitchingFunction();
76 +      info_->prepareTopology();
77 +      fDecomp_->distributeInitialData();
78      }
61
62    preCalculation();
79      
80 <    calcShortRangeInteraction();
81 <
82 <    calcLongRangeInteraction(needPotential, needStress);
67 <
80 >    preCalculation();  
81 >    shortRangeInteractions();
82 >    longRangeInteractions();
83      postCalculation();
84 <        
84 >    
85    }
86 <
86 >  
87    void ForceManager::preCalculation() {
88      SimInfo::MoleculeIterator mi;
89      Molecule* mol;
# Line 76 | Line 91 | namespace oopse {
91      Atom* atom;
92      Molecule::RigidBodyIterator rbIter;
93      RigidBody* rb;
94 +    Molecule::CutoffGroupIterator ci;
95 +    CutoffGroup* cg;
96      
97      // forces are zeroed here, before any are accumulated.
98 <    // NOTE: do not rezero the forces in Fortran.
99 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
98 >    
99 >    for (mol = info_->beginMolecule(mi); mol != NULL;
100 >         mol = info_->nextMolecule(mi)) {
101        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
102          atom->zeroForcesAndTorques();
103        }
104 <        
104 >          
105        //change the positions of atoms which belong to the rigidbodies
106 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
106 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
107 >           rb = mol->nextRigidBody(rbIter)) {
108          rb->zeroForcesAndTorques();
109        }        
110 +
111 +      if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){
112 +        for(cg = mol->beginCutoffGroup(ci); cg != NULL;
113 +            cg = mol->nextCutoffGroup(ci)) {
114 +          //calculate the center of mass of cutoff group
115 +          cg->updateCOM();
116 +        }
117 +      }      
118      }
119 +  
120 +    // Zero out the stress tensor
121 +    tau *= 0.0;
122      
123    }
124 <
125 <  void ForceManager::calcShortRangeInteraction() {
124 >  
125 >  void ForceManager::shortRangeInteractions() {
126      Molecule* mol;
127      RigidBody* rb;
128      Bond* bond;
129      Bend* bend;
130      Torsion* torsion;
131 +    Inversion* inversion;
132      SimInfo::MoleculeIterator mi;
133      Molecule::RigidBodyIterator rbIter;
134      Molecule::BondIterator bondIter;;
135      Molecule::BendIterator  bendIter;
136      Molecule::TorsionIterator  torsionIter;
137 +    Molecule::InversionIterator  inversionIter;
138 +    RealType bondPotential = 0.0;
139 +    RealType bendPotential = 0.0;
140 +    RealType torsionPotential = 0.0;
141 +    RealType inversionPotential = 0.0;
142  
143      //calculate short range interactions    
144 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
144 >    for (mol = info_->beginMolecule(mi); mol != NULL;
145 >         mol = info_->nextMolecule(mi)) {
146  
147        //change the positions of atoms which belong to the rigidbodies
148 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
149 <        rb->updateAtoms();
148 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
149 >           rb = mol->nextRigidBody(rbIter)) {
150 >        rb->updateAtoms();
151        }
152  
153 <      for (bond = mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
154 <        bond->calcForce();
153 >      for (bond = mol->beginBond(bondIter); bond != NULL;
154 >           bond = mol->nextBond(bondIter)) {
155 >        bond->calcForce();
156 >        bondPotential += bond->getPotential();
157        }
158  
159 <      for (bend = mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
160 <        bend->calcForce();
159 >      for (bend = mol->beginBend(bendIter); bend != NULL;
160 >           bend = mol->nextBend(bendIter)) {
161 >        
162 >        RealType angle;
163 >        bend->calcForce(angle);
164 >        RealType currBendPot = bend->getPotential();          
165 >        
166 >        bendPotential += bend->getPotential();
167 >        map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend);
168 >        if (i == bendDataSets.end()) {
169 >          BendDataSet dataSet;
170 >          dataSet.prev.angle = dataSet.curr.angle = angle;
171 >          dataSet.prev.potential = dataSet.curr.potential = currBendPot;
172 >          dataSet.deltaV = 0.0;
173 >          bendDataSets.insert(map<Bend*, BendDataSet>::value_type(bend, dataSet));
174 >        }else {
175 >          i->second.prev.angle = i->second.curr.angle;
176 >          i->second.prev.potential = i->second.curr.potential;
177 >          i->second.curr.angle = angle;
178 >          i->second.curr.potential = currBendPot;
179 >          i->second.deltaV =  fabs(i->second.curr.potential -  
180 >                                   i->second.prev.potential);
181 >        }
182        }
183 <
184 <      for (torsion = mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
185 <        torsion->calcForce();
186 <      }
187 <
183 >      
184 >      for (torsion = mol->beginTorsion(torsionIter); torsion != NULL;
185 >           torsion = mol->nextTorsion(torsionIter)) {
186 >        RealType angle;
187 >        torsion->calcForce(angle);
188 >        RealType currTorsionPot = torsion->getPotential();
189 >        torsionPotential += torsion->getPotential();
190 >        map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion);
191 >        if (i == torsionDataSets.end()) {
192 >          TorsionDataSet dataSet;
193 >          dataSet.prev.angle = dataSet.curr.angle = angle;
194 >          dataSet.prev.potential = dataSet.curr.potential = currTorsionPot;
195 >          dataSet.deltaV = 0.0;
196 >          torsionDataSets.insert(map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet));
197 >        }else {
198 >          i->second.prev.angle = i->second.curr.angle;
199 >          i->second.prev.potential = i->second.curr.potential;
200 >          i->second.curr.angle = angle;
201 >          i->second.curr.potential = currTorsionPot;
202 >          i->second.deltaV =  fabs(i->second.curr.potential -  
203 >                                   i->second.prev.potential);
204 >        }      
205 >      }      
206 >      
207 >      for (inversion = mol->beginInversion(inversionIter);
208 >           inversion != NULL;
209 >           inversion = mol->nextInversion(inversionIter)) {
210 >        RealType angle;
211 >        inversion->calcForce(angle);
212 >        RealType currInversionPot = inversion->getPotential();
213 >        inversionPotential += inversion->getPotential();
214 >        map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion);
215 >        if (i == inversionDataSets.end()) {
216 >          InversionDataSet dataSet;
217 >          dataSet.prev.angle = dataSet.curr.angle = angle;
218 >          dataSet.prev.potential = dataSet.curr.potential = currInversionPot;
219 >          dataSet.deltaV = 0.0;
220 >          inversionDataSets.insert(map<Inversion*, InversionDataSet>::value_type(inversion, dataSet));
221 >        }else {
222 >          i->second.prev.angle = i->second.curr.angle;
223 >          i->second.prev.potential = i->second.curr.potential;
224 >          i->second.curr.angle = angle;
225 >          i->second.curr.potential = currInversionPot;
226 >          i->second.deltaV =  fabs(i->second.curr.potential -  
227 >                                   i->second.prev.potential);
228 >        }      
229 >      }      
230      }
231      
232 <    double  shortRangePotential = 0.0;
233 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
131 <      shortRangePotential += mol->getPotential();
132 <    }
133 <
232 >    RealType  shortRangePotential = bondPotential + bendPotential +
233 >      torsionPotential +  inversionPotential;    
234      Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
235      curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential;
236 +    curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential;
237 +    curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential;
238 +    curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential;
239 +    curSnapshot->statData[Stats::INVERSION_POTENTIAL] = inversionPotential;    
240    }
241 +  
242 +  void ForceManager::longRangeInteractions() {
243  
244 <  void ForceManager::calcLongRangeInteraction(bool needPotential, bool needStress) {
245 <    Snapshot* curSnapshot;
246 <    DataStorage* config;
247 <    double* frc;
248 <    double* pos;
249 <    double* trq;
250 <    double* A;
251 <    double* electroFrame;
252 <    double* rc;
253 <    
254 <    //get current snapshot from SimInfo
149 <    curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
244 >    // some of this initial stuff will go away:
245 >    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
246 >    DataStorage* config = &(curSnapshot->atomData);
247 >    DataStorage* cgConfig = &(curSnapshot->cgData);
248 >    RealType* frc = config->getArrayPointer(DataStorage::dslForce);
249 >    RealType* pos = config->getArrayPointer(DataStorage::dslPosition);
250 >    RealType* trq = config->getArrayPointer(DataStorage::dslTorque);
251 >    RealType* A = config->getArrayPointer(DataStorage::dslAmat);
252 >    RealType* electroFrame = config->getArrayPointer(DataStorage::dslElectroFrame);
253 >    RealType* particlePot = config->getArrayPointer(DataStorage::dslParticlePot);
254 >    RealType* rc;    
255  
256 <    //get array pointers
257 <    config = &(curSnapshot->atomData);
153 <    frc = config->getArrayPointer(DataStorage::dslForce);
154 <    pos = config->getArrayPointer(DataStorage::dslPosition);
155 <    trq = config->getArrayPointer(DataStorage::dslTorque);
156 <    A   = config->getArrayPointer(DataStorage::dslAmat);
157 <    electroFrame = config->getArrayPointer(DataStorage::dslElectroFrame);
158 <
159 <    //calculate the center of mass of cutoff group
160 <    SimInfo::MoleculeIterator mi;
161 <    Molecule* mol;
162 <    Molecule::CutoffGroupIterator ci;
163 <    CutoffGroup* cg;
164 <    Vector3d com;
165 <    std::vector<Vector3d> rcGroup;
166 <    
167 <    if(info_->getNCutoffGroups() > 0){
168 <
169 <      for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
170 <        for(cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
171 <          cg->getCOM(com);
172 <          rcGroup.push_back(com);
173 <        }
174 <      }// end for (mol)
175 <      
176 <      rc = rcGroup[0].getArrayPointer();
256 >    if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){
257 >      rc = cgConfig->getArrayPointer(DataStorage::dslPosition);
258      } else {
259 <      // center of mass of the group is the same as position of the atom  if cutoff group does not exist
259 >      // center of mass of the group is the same as position of the atom  
260 >      // if cutoff group does not exist
261        rc = pos;
262      }
263 <  
263 >    
264      //initialize data before passing to fortran
265 <    double longRangePotential = 0.0;
266 <    Mat3x3d tau;
185 <    short int passedCalcPot = needPotential;
186 <    short int passedCalcStress = needStress;
265 >    RealType longRangePotential[N_INTERACTION_FAMILIES];
266 >    RealType lrPot = 0.0;
267      int isError = 0;
268  
269 <    doForceLoop( pos,
270 <                 rc,
271 <                 A,
272 <                 electroFrame,
193 <                 frc,
194 <                 trq,
195 <                 tau.getArrayPointer(),
196 <                 &longRangePotential,
197 <                 &passedCalcPot,
198 <                 &passedCalcStress,
199 <                 &isError );
269 >    // dangerous to iterate over enums, but we'll live on the edge:
270 >    for (int i = NO_FAMILY; i != N_INTERACTION_FAMILIES; ++i){
271 >      longRangePotential[i]=0.0; //Initialize array
272 >    }
273  
274 <    if( isError ){
275 <      sprintf( painCave.errMsg,
276 <               "Error returned from the fortran force calculation.\n" );
277 <      painCave.isFatal = 1;
278 <      simError();
274 >    // new stuff starts here:
275 >
276 >    fDecomp_->distributeData();
277 >
278 >    int cg1, cg2, atom1, atom2;
279 >    Vector3d d_grp, dag;
280 >    RealType rgrpsq, rgrp;
281 >    RealType vij;
282 >    Vector3d fij, fg;
283 >    pair<int, int> gtypes;
284 >    RealType rCutSq;
285 >    bool in_switching_region;
286 >    RealType sw, dswdr, swderiv;
287 >    vector<int> atomListColumn, atomListRow, atomListLocal;
288 >    InteractionData idat;
289 >    SelfData sdat;
290 >    RealType mf;
291 >
292 >    int loopStart, loopEnd;
293 >
294 >    loopEnd = PAIR_LOOP;
295 >    if (info_->requiresPrepair() ) {
296 >      loopStart = PREPAIR_LOOP;
297 >    } else {
298 >      loopStart = PAIR_LOOP;
299      }
300  
301 +    for (int iLoop = loopStart; iLoop < loopEnd; iLoop++) {
302 +      
303 +      if (iLoop == loopStart) {
304 +        bool update_nlist = fDecomp_->checkNeighborList();
305 +        if (update_nlist)
306 +          neighborList = fDecomp_->buildNeighborList();
307 +      }
308 +
309 +      for (vector<pair<int, int> >::iterator it = neighborList.begin();
310 +             it != neighborList.end(); ++it) {
311 +        
312 +        cg1 = (*it).first;
313 +        cg2 = (*it).second;
314 +
315 +        gtypes = fDecomp_->getGroupTypes(cg1, cg2);
316 +        d_grp  = fDecomp_->getIntergroupVector(cg1, cg2);
317 +        curSnapshot->wrapVector(d_grp);        
318 +        rgrpsq = d_grp.lengthSquare();
319 +        rCutSq = groupCutoffMap[gtypes].first;
320 +
321 +        if (rgrpsq < rCutSq) {
322 +          *(idat.rcut) = groupCutoffMap[gtypes].second;
323 +          if (iLoop == PAIR_LOOP) {
324 +            vij *= 0.0;
325 +            fij = V3Zero;
326 +          }
327 +          
328 +          in_switching_region = swfun_->getSwitch(rgrpsq, *(idat.sw), dswdr,
329 +                                                  rgrp);              
330 +          atomListRow = fDecomp_->getAtomsInGroupRow(cg1);
331 +          atomListColumn = fDecomp_->getAtomsInGroupColumn(cg2);
332 +
333 +          for (vector<int>::iterator ia = atomListRow.begin();
334 +               ia != atomListRow.end(); ++ia) {            
335 +            atom1 = (*ia);
336 +            
337 +            for (vector<int>::iterator jb = atomListColumn.begin();
338 +                 jb != atomListColumn.end(); ++jb) {              
339 +              atom2 = (*jb);
340 +              
341 +              if (!fDecomp_->skipAtomPair(atom1, atom2)) {
342 +                
343 +                idat = fDecomp_->fillInteractionData(atom1, atom2);
344 +
345 +                if (atomListRow.size() == 1 && atomListColumn.size() == 1) {
346 +                  *(idat.d) = d_grp;
347 +                  *(idat.r2) = rgrpsq;
348 +                } else {
349 +                  *(idat.d) = fDecomp_->getInteratomicVector(atom1, atom2);
350 +                  curSnapshot->wrapVector( *(idat.d) );
351 +                  *(idat.r2) = idat.d->lengthSquare();
352 +                }
353 +                
354 +                *(idat.rij) = sqrt( *(idat.r2) );
355 +              
356 +                if (iLoop == PREPAIR_LOOP) {
357 +                  interactionMan_->doPrePair(idat);
358 +                } else {
359 +                  interactionMan_->doPair(idat);
360 +                  vij += *(idat.vpair);
361 +                  fij += *(idat.f1);
362 +                  tau -= outProduct( *(idat.d), *(idat.f1));
363 +                }
364 +              }
365 +            }
366 +          }
367 +
368 +          if (iLoop == PAIR_LOOP) {
369 +            if (in_switching_region) {
370 +              swderiv = vij * dswdr / rgrp;
371 +              fg = swderiv * d_grp;
372 +
373 +              fij += fg;
374 +
375 +              if (atomListRow.size() == 1 && atomListColumn.size() == 1) {
376 +                tau -= outProduct( *(idat.d), fg);
377 +              }
378 +          
379 +              for (vector<int>::iterator ia = atomListRow.begin();
380 +                   ia != atomListRow.end(); ++ia) {            
381 +                atom1 = (*ia);                
382 +                mf = fDecomp_->getMassFactorRow(atom1);
383 +                // fg is the force on atom ia due to cutoff group's
384 +                // presence in switching region
385 +                fg = swderiv * d_grp * mf;
386 +                fDecomp_->addForceToAtomRow(atom1, fg);
387 +
388 +                if (atomListRow.size() > 1) {
389 +                  if (info_->usesAtomicVirial()) {
390 +                    // find the distance between the atom
391 +                    // and the center of the cutoff group:
392 +                    dag = fDecomp_->getAtomToGroupVectorRow(atom1, cg1);
393 +                    tau -= outProduct(dag, fg);
394 +                  }
395 +                }
396 +              }
397 +              for (vector<int>::iterator jb = atomListColumn.begin();
398 +                   jb != atomListColumn.end(); ++jb) {              
399 +                atom2 = (*jb);
400 +                mf = fDecomp_->getMassFactorColumn(atom2);
401 +                // fg is the force on atom jb due to cutoff group's
402 +                // presence in switching region
403 +                fg = -swderiv * d_grp * mf;
404 +                fDecomp_->addForceToAtomColumn(atom2, fg);
405 +
406 +                if (atomListColumn.size() > 1) {
407 +                  if (info_->usesAtomicVirial()) {
408 +                    // find the distance between the atom
409 +                    // and the center of the cutoff group:
410 +                    dag = fDecomp_->getAtomToGroupVectorColumn(atom2, cg2);
411 +                    tau -= outProduct(dag, fg);
412 +                  }
413 +                }
414 +              }
415 +            }
416 +            //if (!SIM_uses_AtomicVirial) {
417 +            //  tau -= outProduct(d_grp, fij);
418 +            //}
419 +          }
420 +        }
421 +      }
422 +
423 +      if (iLoop == PREPAIR_LOOP) {
424 +        if (info_->requiresPrepair()) {            
425 +          fDecomp_->collectIntermediateData();
426 +
427 +          for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) {
428 +            sdat = fDecomp_->fillSelfData(atom1);
429 +            interactionMan_->doPreForce(sdat);
430 +          }
431 +
432 +          fDecomp_->distributeIntermediateData();        
433 +        }
434 +      }
435 +
436 +    }
437 +    
438 +    fDecomp_->collectData();
439 +    
440 +    if ( info_->requiresSkipCorrection() ) {
441 +      
442 +      for (int atom1 = 0; atom1 < fDecomp_->getNAtomsInRow(); atom1++) {
443 +
444 +        vector<int> skipList = fDecomp_->getSkipsForRowAtom( atom1 );
445 +        
446 +        for (vector<int>::iterator jb = skipList.begin();
447 +             jb != skipList.end(); ++jb) {        
448 +    
449 +          atom2 = (*jb);
450 +          idat = fDecomp_->fillSkipData(atom1, atom2);
451 +          interactionMan_->doSkipCorrection(idat);
452 +
453 +        }
454 +      }
455 +    }
456 +    
457 +    if (info_->requiresSelfCorrection()) {
458 +
459 +      for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) {          
460 +        sdat = fDecomp_->fillSelfData(atom1);
461 +        interactionMan_->doSelfCorrection(sdat);
462 +      }
463 +
464 +    }
465 +
466 +    // dangerous to iterate over enums, but we'll live on the edge:
467 +    for (int i = NO_FAMILY; i != N_INTERACTION_FAMILIES; ++i){
468 +      lrPot += longRangePotential[i]; //Quick hack
469 +    }
470 +        
471      //store the tau and long range potential    
472 <    curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = longRangePotential;
473 <    curSnapshot->statData.setTau(tau);
472 >    curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot;
473 >    curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VANDERWAALS_FAMILY];
474 >    curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_FAMILY];
475    }
476  
477 <
477 >  
478    void ForceManager::postCalculation() {
479      SimInfo::MoleculeIterator mi;
480      Molecule* mol;
481      Molecule::RigidBodyIterator rbIter;
482      RigidBody* rb;
483 +    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
484      
485      // collect the atomic forces onto rigid bodies
486 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
487 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
488 <        rb->calcForcesAndTorques();
486 >    
487 >    for (mol = info_->beginMolecule(mi); mol != NULL;
488 >         mol = info_->nextMolecule(mi)) {
489 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
490 >           rb = mol->nextRigidBody(rbIter)) {
491 >        Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial();
492 >        tau += rbTau;
493        }
494      }
495 <
495 >    
496 > #ifdef IS_MPI
497 >    Mat3x3d tmpTau(tau);
498 >    MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(),
499 >                  9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
500 > #endif
501 >    curSnapshot->statData.setTau(tau);
502    }
503  
504 < } //end namespace oopse
504 > } //end namespace OpenMD

Comparing:
trunk/src/brains/ForceManager.cpp (property svn:keywords), Revision 507 by gezelter, Fri Apr 15 22:04:00 2005 UTC vs.
branches/development/src/brains/ForceManager.cpp (property svn:keywords), Revision 1571 by gezelter, Fri May 27 16:45:44 2011 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines