ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/ForceManager.cpp
(Generate patch)

Comparing:
trunk/src/brains/ForceManager.cpp (file contents), Revision 665 by tim, Thu Oct 13 22:26:47 2005 UTC vs.
branches/development/src/brains/ForceManager.cpp (file contents), Revision 1767 by gezelter, Fri Jul 6 22:01:58 2012 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
# Line 47 | Line 48
48   * @version 1.0
49   */
50  
51 +
52   #include "brains/ForceManager.hpp"
53   #include "primitives/Molecule.hpp"
54 < #include "UseTheForce/doForces_interface.h"
53 < #define __C
54 < #include "UseTheForce/DarkSide/fInteractionMap.h"
54 > #define __OPENMD_C
55   #include "utils/simError.h"
56 < namespace oopse {
56 > #include "primitives/Bond.hpp"
57 > #include "primitives/Bend.hpp"
58 > #include "primitives/Torsion.hpp"
59 > #include "primitives/Inversion.hpp"
60 > #include "nonbonded/NonBondedInteraction.hpp"
61 > #include "parallel/ForceMatrixDecomposition.hpp"
62  
63 <  void ForceManager::calcForces(bool needPotential, bool needStress) {
63 > #include <cstdio>
64 > #include <iostream>
65 > #include <iomanip>
66  
67 <    if (!info_->isFortranInitialized()) {
68 <      info_->update();
69 <    }
67 > using namespace std;
68 > namespace OpenMD {
69 >  
70 >  ForceManager::ForceManager(SimInfo * info) : info_(info) {
71 >    forceField_ = info_->getForceField();
72 >    interactionMan_ = new InteractionManager();
73 >    fDecomp_ = new ForceMatrixDecomposition(info_, interactionMan_);
74 >  }
75  
76 <    preCalculation();
76 >  /**
77 >   * setupCutoffs
78 >   *
79 >   * Sets the values of cutoffRadius, switchingRadius, cutoffMethod,
80 >   * and cutoffPolicy
81 >   *
82 >   * cutoffRadius : realType
83 >   *  If the cutoffRadius was explicitly set, use that value.
84 >   *  If the cutoffRadius was not explicitly set:
85 >   *      Are there electrostatic atoms?  Use 12.0 Angstroms.
86 >   *      No electrostatic atoms?  Poll the atom types present in the
87 >   *      simulation for suggested cutoff values (e.g. 2.5 * sigma).
88 >   *      Use the maximum suggested value that was found.
89 >   *
90 >   * cutoffMethod : (one of HARD, SWITCHED, SHIFTED_FORCE,
91 >   *                        or SHIFTED_POTENTIAL)
92 >   *      If cutoffMethod was explicitly set, use that choice.
93 >   *      If cutoffMethod was not explicitly set, use SHIFTED_FORCE
94 >   *
95 >   * cutoffPolicy : (one of MIX, MAX, TRADITIONAL)
96 >   *      If cutoffPolicy was explicitly set, use that choice.
97 >   *      If cutoffPolicy was not explicitly set, use TRADITIONAL
98 >   *
99 >   * switchingRadius : realType
100 >   *  If the cutoffMethod was set to SWITCHED:
101 >   *      If the switchingRadius was explicitly set, use that value
102 >   *          (but do a sanity check first).
103 >   *      If the switchingRadius was not explicitly set: use 0.85 *
104 >   *      cutoffRadius_
105 >   *  If the cutoffMethod was not set to SWITCHED:
106 >   *      Set switchingRadius equal to cutoffRadius for safety.
107 >   */
108 >  void ForceManager::setupCutoffs() {
109      
110 <    calcShortRangeInteraction();
110 >    Globals* simParams_ = info_->getSimParams();
111 >    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
112 >    int mdFileVersion;
113 >    rCut_ = 0.0; //Needs a value for a later max() call;  
114 >    
115 >    if (simParams_->haveMDfileVersion())
116 >      mdFileVersion = simParams_->getMDfileVersion();
117 >    else
118 >      mdFileVersion = 0;
119 >  
120 >    if (simParams_->haveCutoffRadius()) {
121 >      rCut_ = simParams_->getCutoffRadius();
122 >    } else {      
123 >      if (info_->usesElectrostaticAtoms()) {
124 >        sprintf(painCave.errMsg,
125 >                "ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n"
126 >                "\tOpenMD will use a default value of 12.0 angstroms"
127 >                "\tfor the cutoffRadius.\n");
128 >        painCave.isFatal = 0;
129 >        painCave.severity = OPENMD_INFO;
130 >        simError();
131 >        rCut_ = 12.0;
132 >      } else {
133 >        RealType thisCut;
134 >        set<AtomType*>::iterator i;
135 >        set<AtomType*> atomTypes;
136 >        atomTypes = info_->getSimulatedAtomTypes();        
137 >        for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
138 >          thisCut = interactionMan_->getSuggestedCutoffRadius((*i));
139 >          rCut_ = max(thisCut, rCut_);
140 >        }
141 >        sprintf(painCave.errMsg,
142 >                "ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n"
143 >                "\tOpenMD will use %lf angstroms.\n",
144 >                rCut_);
145 >        painCave.isFatal = 0;
146 >        painCave.severity = OPENMD_INFO;
147 >        simError();
148 >      }
149 >    }
150  
151 <    calcLongRangeInteraction(needPotential, needStress);
151 >    fDecomp_->setUserCutoff(rCut_);
152 >    interactionMan_->setCutoffRadius(rCut_);
153  
154 <    postCalculation();
154 >    map<string, CutoffMethod> stringToCutoffMethod;
155 >    stringToCutoffMethod["HARD"] = HARD;
156 >    stringToCutoffMethod["SWITCHED"] = SWITCHED;
157 >    stringToCutoffMethod["SHIFTED_POTENTIAL"] = SHIFTED_POTENTIAL;    
158 >    stringToCutoffMethod["SHIFTED_FORCE"] = SHIFTED_FORCE;
159 >  
160 >    if (simParams_->haveCutoffMethod()) {
161 >      string cutMeth = toUpperCopy(simParams_->getCutoffMethod());
162 >      map<string, CutoffMethod>::iterator i;
163 >      i = stringToCutoffMethod.find(cutMeth);
164 >      if (i == stringToCutoffMethod.end()) {
165 >        sprintf(painCave.errMsg,
166 >                "ForceManager::setupCutoffs: Could not find chosen cutoffMethod %s\n"
167 >                "\tShould be one of: "
168 >                "HARD, SWITCHED, SHIFTED_POTENTIAL, or SHIFTED_FORCE\n",
169 >                cutMeth.c_str());
170 >        painCave.isFatal = 1;
171 >        painCave.severity = OPENMD_ERROR;
172 >        simError();
173 >      } else {
174 >        cutoffMethod_ = i->second;
175 >      }
176 >    } else {
177 >      if (mdFileVersion > 1) {
178 >        sprintf(painCave.errMsg,
179 >                "ForceManager::setupCutoffs: No value was set for the cutoffMethod.\n"
180 >                "\tOpenMD will use SHIFTED_FORCE.\n");
181 >        painCave.isFatal = 0;
182 >        painCave.severity = OPENMD_INFO;
183 >        simError();
184 >        cutoffMethod_ = SHIFTED_FORCE;        
185 >      } else {
186 >        // handle the case where the old file version was in play
187 >        // (there should be no cutoffMethod, so we have to deduce it
188 >        // from other data).        
189 >
190 >        sprintf(painCave.errMsg,
191 >                "ForceManager::setupCutoffs : DEPRECATED FILE FORMAT!\n"
192 >                "\tOpenMD found a file which does not set a cutoffMethod.\n"
193 >                "\tOpenMD will attempt to deduce a cutoffMethod using the\n"
194 >                "\tbehavior of the older (version 1) code.  To remove this\n"
195 >                "\twarning, add an explicit cutoffMethod and change the top\n"
196 >                "\tof the file so that it begins with <OpenMD version=2>\n");
197 >        painCave.isFatal = 0;
198 >        painCave.severity = OPENMD_WARNING;
199 >        simError();            
200 >                
201 >        // The old file version tethered the shifting behavior to the
202 >        // electrostaticSummationMethod keyword.
203          
204 +        if (simParams_->haveElectrostaticSummationMethod()) {
205 +          string myMethod = simParams_->getElectrostaticSummationMethod();
206 +          toUpper(myMethod);
207 +        
208 +          if (myMethod == "SHIFTED_POTENTIAL") {
209 +            cutoffMethod_ = SHIFTED_POTENTIAL;
210 +          } else if (myMethod == "SHIFTED_FORCE") {
211 +            cutoffMethod_ = SHIFTED_FORCE;
212 +          }
213 +        
214 +          if (simParams_->haveSwitchingRadius())
215 +            rSwitch_ = simParams_->getSwitchingRadius();
216 +
217 +          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
218 +            if (simParams_->haveSwitchingRadius()){
219 +              sprintf(painCave.errMsg,
220 +                      "ForceManager::setupCutoffs : DEPRECATED ERROR MESSAGE\n"
221 +                      "\tA value was set for the switchingRadius\n"
222 +                      "\teven though the electrostaticSummationMethod was\n"
223 +                      "\tset to %s\n", myMethod.c_str());
224 +              painCave.severity = OPENMD_WARNING;
225 +              painCave.isFatal = 1;
226 +              simError();            
227 +            }
228 +          }
229 +          if (abs(rCut_ - rSwitch_) < 0.0001) {
230 +            if (cutoffMethod_ == SHIFTED_FORCE) {              
231 +              sprintf(painCave.errMsg,
232 +                      "ForceManager::setupCutoffs : DEPRECATED BEHAVIOR\n"
233 +                      "\tcutoffRadius and switchingRadius are set to the\n"
234 +                      "\tsame value.  OpenMD will use shifted force\n"
235 +                      "\tpotentials instead of switching functions.\n");
236 +              painCave.isFatal = 0;
237 +              painCave.severity = OPENMD_WARNING;
238 +              simError();            
239 +            } else {
240 +              cutoffMethod_ = SHIFTED_POTENTIAL;
241 +              sprintf(painCave.errMsg,
242 +                      "ForceManager::setupCutoffs : DEPRECATED BEHAVIOR\n"
243 +                      "\tcutoffRadius and switchingRadius are set to the\n"
244 +                      "\tsame value.  OpenMD will use shifted potentials\n"
245 +                      "\tinstead of switching functions.\n");
246 +              painCave.isFatal = 0;
247 +              painCave.severity = OPENMD_WARNING;
248 +              simError();            
249 +            }
250 +          }
251 +        }
252 +      }
253 +    }
254 +
255 +    map<string, CutoffPolicy> stringToCutoffPolicy;
256 +    stringToCutoffPolicy["MIX"] = MIX;
257 +    stringToCutoffPolicy["MAX"] = MAX;
258 +    stringToCutoffPolicy["TRADITIONAL"] = TRADITIONAL;    
259 +
260 +    string cutPolicy;
261 +    if (forceFieldOptions_.haveCutoffPolicy()){
262 +      cutPolicy = forceFieldOptions_.getCutoffPolicy();
263 +    }else if (simParams_->haveCutoffPolicy()) {
264 +      cutPolicy = simParams_->getCutoffPolicy();
265 +    }
266 +
267 +    if (!cutPolicy.empty()){
268 +      toUpper(cutPolicy);
269 +      map<string, CutoffPolicy>::iterator i;
270 +      i = stringToCutoffPolicy.find(cutPolicy);
271 +
272 +      if (i == stringToCutoffPolicy.end()) {
273 +        sprintf(painCave.errMsg,
274 +                "ForceManager::setupCutoffs: Could not find chosen cutoffPolicy %s\n"
275 +                "\tShould be one of: "
276 +                "MIX, MAX, or TRADITIONAL\n",
277 +                cutPolicy.c_str());
278 +        painCave.isFatal = 1;
279 +        painCave.severity = OPENMD_ERROR;
280 +        simError();
281 +      } else {
282 +        cutoffPolicy_ = i->second;
283 +      }
284 +    } else {
285 +      sprintf(painCave.errMsg,
286 +              "ForceManager::setupCutoffs: No value was set for the cutoffPolicy.\n"
287 +              "\tOpenMD will use TRADITIONAL.\n");
288 +      painCave.isFatal = 0;
289 +      painCave.severity = OPENMD_INFO;
290 +      simError();
291 +      cutoffPolicy_ = TRADITIONAL;        
292 +    }
293 +
294 +    fDecomp_->setCutoffPolicy(cutoffPolicy_);
295 +        
296 +    // create the switching function object:
297 +
298 +    switcher_ = new SwitchingFunction();
299 +  
300 +    if (cutoffMethod_ == SWITCHED) {
301 +      if (simParams_->haveSwitchingRadius()) {
302 +        rSwitch_ = simParams_->getSwitchingRadius();
303 +        if (rSwitch_ > rCut_) {        
304 +          sprintf(painCave.errMsg,
305 +                  "ForceManager::setupCutoffs: switchingRadius (%f) is larger "
306 +                  "than the cutoffRadius(%f)\n", rSwitch_, rCut_);
307 +          painCave.isFatal = 1;
308 +          painCave.severity = OPENMD_ERROR;
309 +          simError();
310 +        }
311 +      } else {      
312 +        rSwitch_ = 0.85 * rCut_;
313 +        sprintf(painCave.errMsg,
314 +                "ForceManager::setupCutoffs: No value was set for the switchingRadius.\n"
315 +                "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n"
316 +                "\tswitchingRadius = %f. for this simulation\n", rSwitch_);
317 +        painCave.isFatal = 0;
318 +        painCave.severity = OPENMD_WARNING;
319 +        simError();
320 +      }
321 +    } else {
322 +      if (mdFileVersion > 1) {
323 +        // throw an error if we define a switching radius and don't need one.
324 +        // older file versions should not do this.
325 +        if (simParams_->haveSwitchingRadius()) {
326 +          map<string, CutoffMethod>::const_iterator it;
327 +          string theMeth;
328 +          for (it = stringToCutoffMethod.begin();
329 +               it != stringToCutoffMethod.end(); ++it) {
330 +            if (it->second == cutoffMethod_) {
331 +              theMeth = it->first;
332 +              break;
333 +            }
334 +          }
335 +          sprintf(painCave.errMsg,
336 +                  "ForceManager::setupCutoffs: the cutoffMethod (%s)\n"
337 +                  "\tis not set to SWITCHED, so switchingRadius value\n"
338 +                  "\twill be ignored for this simulation\n", theMeth.c_str());
339 +          painCave.isFatal = 0;
340 +          painCave.severity = OPENMD_WARNING;
341 +          simError();
342 +        }
343 +      }
344 +      rSwitch_ = rCut_;
345 +    }
346 +    
347 +    // Default to cubic switching function.
348 +    sft_ = cubic;
349 +    if (simParams_->haveSwitchingFunctionType()) {
350 +      string funcType = simParams_->getSwitchingFunctionType();
351 +      toUpper(funcType);
352 +      if (funcType == "CUBIC") {
353 +        sft_ = cubic;
354 +      } else {
355 +        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
356 +          sft_ = fifth_order_poly;
357 +        } else {
358 +          // throw error        
359 +          sprintf( painCave.errMsg,
360 +                   "ForceManager::setupSwitching : Unknown switchingFunctionType. (Input file specified %s .)\n"
361 +                   "\tswitchingFunctionType must be one of: "
362 +                   "\"cubic\" or \"fifth_order_polynomial\".",
363 +                   funcType.c_str() );
364 +          painCave.isFatal = 1;
365 +          painCave.severity = OPENMD_ERROR;
366 +          simError();
367 +        }          
368 +      }
369 +    }
370 +    switcher_->setSwitchType(sft_);
371 +    switcher_->setSwitch(rSwitch_, rCut_);
372 +    interactionMan_->setSwitchingRadius(rSwitch_);
373    }
374  
375 +
376 +
377 +  
378 +  void ForceManager::initialize() {
379 +
380 +    if (!info_->isTopologyDone()) {
381 +
382 +      info_->update();
383 +      interactionMan_->setSimInfo(info_);
384 +      interactionMan_->initialize();
385 +
386 +      // We want to delay the cutoffs until after the interaction
387 +      // manager has set up the atom-atom interactions so that we can
388 +      // query them for suggested cutoff values
389 +      setupCutoffs();
390 +
391 +      info_->prepareTopology();      
392 +
393 +      doParticlePot_ = info_->getSimParams()->getOutputParticlePotential();
394 +      doHeatFlux_ = info_->getSimParams()->getPrintHeatFlux();
395 +      if (doHeatFlux_) doParticlePot_ = true;
396 +  
397 +    }
398 +
399 +    ForceFieldOptions& fopts = forceField_->getForceFieldOptions();
400 +    
401 +    // Force fields can set options on how to scale van der Waals and
402 +    // electrostatic interactions for atoms connected via bonds, bends
403 +    // and torsions in this case the topological distance between
404 +    // atoms is:
405 +    // 0 = topologically unconnected
406 +    // 1 = bonded together
407 +    // 2 = connected via a bend
408 +    // 3 = connected via a torsion
409 +    
410 +    vdwScale_.reserve(4);
411 +    fill(vdwScale_.begin(), vdwScale_.end(), 0.0);
412 +
413 +    electrostaticScale_.reserve(4);
414 +    fill(electrostaticScale_.begin(), electrostaticScale_.end(), 0.0);
415 +
416 +    vdwScale_[0] = 1.0;
417 +    vdwScale_[1] = fopts.getvdw12scale();
418 +    vdwScale_[2] = fopts.getvdw13scale();
419 +    vdwScale_[3] = fopts.getvdw14scale();
420 +    
421 +    electrostaticScale_[0] = 1.0;
422 +    electrostaticScale_[1] = fopts.getelectrostatic12scale();
423 +    electrostaticScale_[2] = fopts.getelectrostatic13scale();
424 +    electrostaticScale_[3] = fopts.getelectrostatic14scale();    
425 +    
426 +    fDecomp_->distributeInitialData();
427 +
428 +    initialized_ = true;
429 +
430 +  }
431 +
432 +  void ForceManager::calcForces() {
433 +    
434 +    if (!initialized_) initialize();
435 +
436 +    preCalculation();  
437 +    shortRangeInteractions();
438 +    longRangeInteractions();
439 +    postCalculation();    
440 +  }
441 +  
442    void ForceManager::preCalculation() {
443      SimInfo::MoleculeIterator mi;
444      Molecule* mol;
# Line 78 | Line 446 | namespace oopse {
446      Atom* atom;
447      Molecule::RigidBodyIterator rbIter;
448      RigidBody* rb;
449 +    Molecule::CutoffGroupIterator ci;
450 +    CutoffGroup* cg;
451      
452 <    // forces are zeroed here, before any are accumulated.
453 <    // NOTE: do not rezero the forces in Fortran.
454 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
455 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
452 >    // forces and potentials are zeroed here, before any are
453 >    // accumulated.
454 >    
455 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
456 >
457 >    snap->setBondPotential(0.0);
458 >    snap->setBendPotential(0.0);
459 >    snap->setTorsionPotential(0.0);
460 >    snap->setInversionPotential(0.0);
461 >
462 >    potVec zeroPot(0.0);
463 >    snap->setLongRangePotential(zeroPot);
464 >    snap->setExcludedPotentials(zeroPot);
465 >
466 >    snap->setRestraintPotential(0.0);
467 >    snap->setRawPotential(0.0);
468 >
469 >    for (mol = info_->beginMolecule(mi); mol != NULL;
470 >         mol = info_->nextMolecule(mi)) {
471 >      for(atom = mol->beginAtom(ai); atom != NULL;
472 >          atom = mol->nextAtom(ai)) {
473          atom->zeroForcesAndTorques();
474        }
475 <        
475 >      
476        //change the positions of atoms which belong to the rigidbodies
477 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
477 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
478 >           rb = mol->nextRigidBody(rbIter)) {
479          rb->zeroForcesAndTorques();
480        }        
481 +      
482 +      if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){
483 +        for(cg = mol->beginCutoffGroup(ci); cg != NULL;
484 +            cg = mol->nextCutoffGroup(ci)) {
485 +          //calculate the center of mass of cutoff group
486 +          cg->updateCOM();
487 +        }
488 +      }      
489      }
490      
491 +    // Zero out the stress tensor
492 +    stressTensor *= 0.0;
493 +    // Zero out the heatFlux
494 +    fDecomp_->setHeatFlux( Vector3d(0.0) );    
495    }
496 <
497 <  void ForceManager::calcShortRangeInteraction() {
496 >  
497 >  void ForceManager::shortRangeInteractions() {
498      Molecule* mol;
499      RigidBody* rb;
500      Bond* bond;
501      Bend* bend;
502      Torsion* torsion;
503 +    Inversion* inversion;
504      SimInfo::MoleculeIterator mi;
505      Molecule::RigidBodyIterator rbIter;
506      Molecule::BondIterator bondIter;;
507      Molecule::BendIterator  bendIter;
508      Molecule::TorsionIterator  torsionIter;
509 +    Molecule::InversionIterator  inversionIter;
510 +    RealType bondPotential = 0.0;
511 +    RealType bendPotential = 0.0;
512 +    RealType torsionPotential = 0.0;
513 +    RealType inversionPotential = 0.0;
514  
515      //calculate short range interactions    
516 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
516 >    for (mol = info_->beginMolecule(mi); mol != NULL;
517 >         mol = info_->nextMolecule(mi)) {
518  
519        //change the positions of atoms which belong to the rigidbodies
520 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
521 <        rb->updateAtoms();
520 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
521 >           rb = mol->nextRigidBody(rbIter)) {
522 >        rb->updateAtoms();
523        }
524  
525 <      for (bond = mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
526 <        bond->calcForce();
525 >      for (bond = mol->beginBond(bondIter); bond != NULL;
526 >           bond = mol->nextBond(bondIter)) {
527 >        bond->calcForce(doParticlePot_);
528 >        bondPotential += bond->getPotential();
529        }
530  
531 <      for (bend = mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
532 <        bend->calcForce();
533 <      }
534 <
535 <      for (torsion = mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
536 <        torsion->calcForce();
531 >      for (bend = mol->beginBend(bendIter); bend != NULL;
532 >           bend = mol->nextBend(bendIter)) {
533 >        
534 >        RealType angle;
535 >        bend->calcForce(angle, doParticlePot_);
536 >        RealType currBendPot = bend->getPotential();          
537 >        
538 >        bendPotential += bend->getPotential();
539 >        map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend);
540 >        if (i == bendDataSets.end()) {
541 >          BendDataSet dataSet;
542 >          dataSet.prev.angle = dataSet.curr.angle = angle;
543 >          dataSet.prev.potential = dataSet.curr.potential = currBendPot;
544 >          dataSet.deltaV = 0.0;
545 >          bendDataSets.insert(map<Bend*, BendDataSet>::value_type(bend,
546 >                                                                  dataSet));
547 >        }else {
548 >          i->second.prev.angle = i->second.curr.angle;
549 >          i->second.prev.potential = i->second.curr.potential;
550 >          i->second.curr.angle = angle;
551 >          i->second.curr.potential = currBendPot;
552 >          i->second.deltaV =  fabs(i->second.curr.potential -  
553 >                                   i->second.prev.potential);
554 >        }
555        }
556 <
556 >      
557 >      for (torsion = mol->beginTorsion(torsionIter); torsion != NULL;
558 >           torsion = mol->nextTorsion(torsionIter)) {
559 >        RealType angle;
560 >        torsion->calcForce(angle, doParticlePot_);
561 >        RealType currTorsionPot = torsion->getPotential();
562 >        torsionPotential += torsion->getPotential();
563 >        map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion);
564 >        if (i == torsionDataSets.end()) {
565 >          TorsionDataSet dataSet;
566 >          dataSet.prev.angle = dataSet.curr.angle = angle;
567 >          dataSet.prev.potential = dataSet.curr.potential = currTorsionPot;
568 >          dataSet.deltaV = 0.0;
569 >          torsionDataSets.insert(map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet));
570 >        }else {
571 >          i->second.prev.angle = i->second.curr.angle;
572 >          i->second.prev.potential = i->second.curr.potential;
573 >          i->second.curr.angle = angle;
574 >          i->second.curr.potential = currTorsionPot;
575 >          i->second.deltaV =  fabs(i->second.curr.potential -  
576 >                                   i->second.prev.potential);
577 >        }      
578 >      }      
579 >      
580 >      for (inversion = mol->beginInversion(inversionIter);
581 >           inversion != NULL;
582 >           inversion = mol->nextInversion(inversionIter)) {
583 >        RealType angle;
584 >        inversion->calcForce(angle, doParticlePot_);
585 >        RealType currInversionPot = inversion->getPotential();
586 >        inversionPotential += inversion->getPotential();
587 >        map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion);
588 >        if (i == inversionDataSets.end()) {
589 >          InversionDataSet dataSet;
590 >          dataSet.prev.angle = dataSet.curr.angle = angle;
591 >          dataSet.prev.potential = dataSet.curr.potential = currInversionPot;
592 >          dataSet.deltaV = 0.0;
593 >          inversionDataSets.insert(map<Inversion*, InversionDataSet>::value_type(inversion, dataSet));
594 >        }else {
595 >          i->second.prev.angle = i->second.curr.angle;
596 >          i->second.prev.potential = i->second.curr.potential;
597 >          i->second.curr.angle = angle;
598 >          i->second.curr.potential = currInversionPot;
599 >          i->second.deltaV =  fabs(i->second.curr.potential -  
600 >                                   i->second.prev.potential);
601 >        }      
602 >      }      
603      }
130    
604  
605 <    double bondPotential = 0.0;
606 <    double bendPotential = 0.0;
607 <    double torsionPotential = 0.0;
605 > #ifdef IS_MPI
606 >    // Collect from all nodes.  This should eventually be moved into a
607 >    // SystemDecomposition, but this is a better place than in
608 >    // Thermo to do the collection.
609 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &bondPotential, 1, MPI::REALTYPE,
610 >                              MPI::SUM);
611 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &bendPotential, 1, MPI::REALTYPE,
612 >                              MPI::SUM);
613 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &torsionPotential, 1,
614 >                              MPI::REALTYPE, MPI::SUM);
615 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &inversionPotential, 1,
616 >                              MPI::REALTYPE, MPI::SUM);
617 > #endif
618  
619 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
619 >    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
620  
621 <      for (bond = mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
622 <          bondPotential += bond->getPotential();
623 <      }
621 >    curSnapshot->setBondPotential(bondPotential);
622 >    curSnapshot->setBendPotential(bendPotential);
623 >    curSnapshot->setTorsionPotential(torsionPotential);
624 >    curSnapshot->setInversionPotential(inversionPotential);
625 >    
626 >    // RealType shortRangePotential = bondPotential + bendPotential +
627 >    //   torsionPotential +  inversionPotential;    
628  
629 <      for (bend = mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
630 <          bendPotential += bend->getPotential();
631 <      }
629 >    // curSnapshot->setShortRangePotential(shortRangePotential);
630 >  }
631 >  
632 >  void ForceManager::longRangeInteractions() {
633  
146      for (torsion = mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
147          torsionPotential += torsion->getPotential();
148      }
634  
150    }    
151
152    double  shortRangePotential = bondPotential + bendPotential + torsionPotential;    
635      Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
636 <    curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential;
637 <    curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential;
156 <    curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential;
157 <    curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential;
158 <    
159 <  }
636 >    DataStorage* config = &(curSnapshot->atomData);
637 >    DataStorage* cgConfig = &(curSnapshot->cgData);
638  
161  void ForceManager::calcLongRangeInteraction(bool needPotential, bool needStress) {
162    Snapshot* curSnapshot;
163    DataStorage* config;
164    double* frc;
165    double* pos;
166    double* trq;
167    double* A;
168    double* electroFrame;
169    double* rc;
170    
171    //get current snapshot from SimInfo
172    curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
173
174    //get array pointers
175    config = &(curSnapshot->atomData);
176    frc = config->getArrayPointer(DataStorage::dslForce);
177    pos = config->getArrayPointer(DataStorage::dslPosition);
178    trq = config->getArrayPointer(DataStorage::dslTorque);
179    A   = config->getArrayPointer(DataStorage::dslAmat);
180    electroFrame = config->getArrayPointer(DataStorage::dslElectroFrame);
181
639      //calculate the center of mass of cutoff group
640 +
641      SimInfo::MoleculeIterator mi;
642      Molecule* mol;
643      Molecule::CutoffGroupIterator ci;
644      CutoffGroup* cg;
187    Vector3d com;
188    std::vector<Vector3d> rcGroup;
645  
646 <    if(info_->getNCutoffGroups() > 0){
647 <
648 <      for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
649 <        for(cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
650 <          cg->getCOM(com);
651 <          rcGroup.push_back(com);
646 >    if(info_->getNCutoffGroups() > 0){      
647 >      for (mol = info_->beginMolecule(mi); mol != NULL;
648 >           mol = info_->nextMolecule(mi)) {
649 >        for(cg = mol->beginCutoffGroup(ci); cg != NULL;
650 >            cg = mol->nextCutoffGroup(ci)) {
651 >          cg->updateCOM();
652          }
653 <      }// end for (mol)
198 <      
199 <      rc = rcGroup[0].getArrayPointer();
653 >      }      
654      } else {
655 <      // center of mass of the group is the same as position of the atom  if cutoff group does not exist
656 <      rc = pos;
655 >      // center of mass of the group is the same as position of the atom  
656 >      // if cutoff group does not exist
657 >      cgConfig->position = config->position;
658 >      cgConfig->velocity = config->velocity;
659      }
660 <  
661 <    //initialize data before passing to fortran
662 <    double longRangePotential[LR_POT_TYPES];
207 <    double lrPot = 0.0;
660 >
661 >    fDecomp_->zeroWorkArrays();
662 >    fDecomp_->distributeData();
663      
664 <    Mat3x3d tau;
665 <    short int passedCalcPot = needPotential;
666 <    short int passedCalcStress = needStress;
667 <    int isError = 0;
664 >    int cg1, cg2, atom1, atom2, topoDist;
665 >    Vector3d d_grp, dag, d, gvel2, vel2;
666 >    RealType rgrpsq, rgrp, r2, r;
667 >    RealType electroMult, vdwMult;
668 >    RealType vij;
669 >    Vector3d fij, fg, f1;
670 >    tuple3<RealType, RealType, RealType> cuts;
671 >    RealType rCutSq;
672 >    bool in_switching_region;
673 >    RealType sw, dswdr, swderiv;
674 >    vector<int> atomListColumn, atomListRow, atomListLocal;
675 >    InteractionData idat;
676 >    SelfData sdat;
677 >    RealType mf;
678 >    RealType vpair;
679 >    RealType dVdFQ1(0.0);
680 >    RealType dVdFQ2(0.0);
681 >    potVec longRangePotential(0.0);
682 >    potVec workPot(0.0);
683 >    potVec exPot(0.0);
684 >    vector<int>::iterator ia, jb;
685  
686 <    for (int i=0; i<LR_POT_TYPES;i++){
687 <      longRangePotential[i]=0.0; //Initialize array
688 <    }
686 >    int loopStart, loopEnd;
687 >
688 >    idat.vdwMult = &vdwMult;
689 >    idat.electroMult = &electroMult;
690 >    idat.pot = &workPot;
691 >    idat.excludedPot = &exPot;
692 >    sdat.pot = fDecomp_->getEmbeddingPotential();
693 >    sdat.excludedPot = fDecomp_->getExcludedSelfPotential();
694 >    idat.vpair = &vpair;
695 >    idat.dVdFQ1 = &dVdFQ1;
696 >    idat.dVdFQ2 = &dVdFQ2;
697 >    idat.f1 = &f1;
698 >    idat.sw = &sw;
699 >    idat.shiftedPot = (cutoffMethod_ == SHIFTED_POTENTIAL) ? true : false;
700 >    idat.shiftedForce = (cutoffMethod_ == SHIFTED_FORCE) ? true : false;
701 >    idat.doParticlePot = doParticlePot_;
702 >    sdat.doParticlePot = doParticlePot_;
703 >    
704 >    loopEnd = PAIR_LOOP;
705 >    if (info_->requiresPrepair() ) {
706 >      loopStart = PREPAIR_LOOP;
707 >    } else {
708 >      loopStart = PAIR_LOOP;
709 >    }
710 >    for (int iLoop = loopStart; iLoop <= loopEnd; iLoop++) {
711 >    
712 >      if (iLoop == loopStart) {
713 >        bool update_nlist = fDecomp_->checkNeighborList();
714 >        if (update_nlist)
715 >          neighborList = fDecomp_->buildNeighborList();
716 >      }            
717 >
718 >      for (vector<pair<int, int> >::iterator it = neighborList.begin();
719 >             it != neighborList.end(); ++it) {
720 >                
721 >        cg1 = (*it).first;
722 >        cg2 = (*it).second;
723 >        
724 >        cuts = fDecomp_->getGroupCutoffs(cg1, cg2);
725  
726 +        d_grp  = fDecomp_->getIntergroupVector(cg1, cg2);
727  
728 +        curSnapshot->wrapVector(d_grp);        
729 +        rgrpsq = d_grp.lengthSquare();
730 +        rCutSq = cuts.second;
731  
732 <    doForceLoop( pos,
733 <                 rc,
734 <                 A,
735 <                 electroFrame,
736 <                 frc,
737 <                 trq,
738 <                 tau.getArrayPointer(),
739 <                 longRangePotential,
740 <                 &passedCalcPot,
229 <                 &passedCalcStress,
230 <                 &isError );
732 >        if (rgrpsq < rCutSq) {
733 >          idat.rcut = &cuts.first;
734 >          if (iLoop == PAIR_LOOP) {
735 >            vij = 0.0;
736 >            fij = V3Zero;
737 >          }
738 >          
739 >          in_switching_region = switcher_->getSwitch(rgrpsq, sw, dswdr,
740 >                                                     rgrp);
741  
742 <    if( isError ){
743 <      sprintf( painCave.errMsg,
744 <               "Error returned from the fortran force calculation.\n" );
745 <      painCave.isFatal = 1;
746 <      simError();
742 >          atomListRow = fDecomp_->getAtomsInGroupRow(cg1);
743 >          atomListColumn = fDecomp_->getAtomsInGroupColumn(cg2);
744 >
745 >          if (doHeatFlux_)
746 >            gvel2 = fDecomp_->getGroupVelocityColumn(cg2);
747 >
748 >          for (ia = atomListRow.begin();
749 >               ia != atomListRow.end(); ++ia) {            
750 >            atom1 = (*ia);
751 >
752 >            for (jb = atomListColumn.begin();
753 >                 jb != atomListColumn.end(); ++jb) {              
754 >              atom2 = (*jb);
755 >
756 >              if (!fDecomp_->skipAtomPair(atom1, atom2, cg1, cg2)) {
757 >
758 >                vpair = 0.0;
759 >                workPot = 0.0;
760 >                exPot = 0.0;
761 >                f1 = V3Zero;
762 >                dVdFQ1 = 0.0;
763 >                dVdFQ2 = 0.0;
764 >
765 >                fDecomp_->fillInteractionData(idat, atom1, atom2);
766 >
767 >                topoDist = fDecomp_->getTopologicalDistance(atom1, atom2);
768 >                vdwMult = vdwScale_[topoDist];
769 >                electroMult = electrostaticScale_[topoDist];
770 >
771 >                if (atomListRow.size() == 1 && atomListColumn.size() == 1) {
772 >                  idat.d = &d_grp;
773 >                  idat.r2 = &rgrpsq;
774 >                  if (doHeatFlux_)
775 >                    vel2 = gvel2;
776 >                } else {
777 >                  d = fDecomp_->getInteratomicVector(atom1, atom2);
778 >                  curSnapshot->wrapVector( d );
779 >                  r2 = d.lengthSquare();
780 >                  idat.d = &d;
781 >                  idat.r2 = &r2;
782 >                  if (doHeatFlux_)
783 >                    vel2 = fDecomp_->getAtomVelocityColumn(atom2);
784 >                }
785 >              
786 >                r = sqrt( *(idat.r2) );
787 >                idat.rij = &r;
788 >              
789 >                if (iLoop == PREPAIR_LOOP) {
790 >                  interactionMan_->doPrePair(idat);
791 >                } else {
792 >                  interactionMan_->doPair(idat);
793 >                  fDecomp_->unpackInteractionData(idat, atom1, atom2);
794 >                  vij += vpair;
795 >                  fij += f1;
796 >                  stressTensor -= outProduct( *(idat.d), f1);
797 >                  if (doHeatFlux_)
798 >                    fDecomp_->addToHeatFlux(*(idat.d) * dot(f1, vel2));
799 >                }
800 >              }
801 >            }
802 >          }
803 >
804 >          if (iLoop == PAIR_LOOP) {
805 >            if (in_switching_region) {
806 >              swderiv = vij * dswdr / rgrp;
807 >              fg = swderiv * d_grp;
808 >              fij += fg;
809 >
810 >              if (atomListRow.size() == 1 && atomListColumn.size() == 1) {
811 >                stressTensor -= outProduct( *(idat.d), fg);
812 >                if (doHeatFlux_)
813 >                  fDecomp_->addToHeatFlux(*(idat.d) * dot(fg, vel2));
814 >                
815 >              }
816 >          
817 >              for (ia = atomListRow.begin();
818 >                   ia != atomListRow.end(); ++ia) {            
819 >                atom1 = (*ia);                
820 >                mf = fDecomp_->getMassFactorRow(atom1);
821 >                // fg is the force on atom ia due to cutoff group's
822 >                // presence in switching region
823 >                fg = swderiv * d_grp * mf;
824 >                fDecomp_->addForceToAtomRow(atom1, fg);
825 >                if (atomListRow.size() > 1) {
826 >                  if (info_->usesAtomicVirial()) {
827 >                    // find the distance between the atom
828 >                    // and the center of the cutoff group:
829 >                    dag = fDecomp_->getAtomToGroupVectorRow(atom1, cg1);
830 >                    stressTensor -= outProduct(dag, fg);
831 >                    if (doHeatFlux_)
832 >                      fDecomp_->addToHeatFlux( dag * dot(fg, vel2));
833 >                  }
834 >                }
835 >              }
836 >              for (jb = atomListColumn.begin();
837 >                   jb != atomListColumn.end(); ++jb) {              
838 >                atom2 = (*jb);
839 >                mf = fDecomp_->getMassFactorColumn(atom2);
840 >                // fg is the force on atom jb due to cutoff group's
841 >                // presence in switching region
842 >                fg = -swderiv * d_grp * mf;
843 >                fDecomp_->addForceToAtomColumn(atom2, fg);
844 >
845 >                if (atomListColumn.size() > 1) {
846 >                  if (info_->usesAtomicVirial()) {
847 >                    // find the distance between the atom
848 >                    // and the center of the cutoff group:
849 >                    dag = fDecomp_->getAtomToGroupVectorColumn(atom2, cg2);
850 >                    stressTensor -= outProduct(dag, fg);
851 >                    if (doHeatFlux_)
852 >                      fDecomp_->addToHeatFlux( dag * dot(fg, vel2));
853 >                  }
854 >                }
855 >              }
856 >            }
857 >            //if (!info_->usesAtomicVirial()) {
858 >            //  stressTensor -= outProduct(d_grp, fij);
859 >            //  if (doHeatFlux_)
860 >            //     fDecomp_->addToHeatFlux( d_grp * dot(fij, vel2));
861 >            //}
862 >          }
863 >        }
864 >      }
865 >
866 >      if (iLoop == PREPAIR_LOOP) {
867 >        if (info_->requiresPrepair()) {
868 >
869 >          fDecomp_->collectIntermediateData();
870 >
871 >          for (unsigned int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) {
872 >            fDecomp_->fillSelfData(sdat, atom1);
873 >            interactionMan_->doPreForce(sdat);
874 >          }
875 >
876 >          fDecomp_->distributeIntermediateData();
877 >
878 >        }
879 >      }
880      }
881 <    for (int i=0; i<LR_POT_TYPES;i++){
882 <      lrPot += longRangePotential[i]; //Quick hack
881 >    
882 >    // collects pairwise information
883 >    fDecomp_->collectData();
884 >        
885 >    if (info_->requiresSelfCorrection()) {
886 >      for (unsigned int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) {
887 >        fDecomp_->fillSelfData(sdat, atom1);
888 >        interactionMan_->doSelfCorrection(sdat);
889 >      }
890      }
891  
892 <    //store the tau and long range potential    
893 <    curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot;
244 <    //  curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = longRangePotential;
245 <    curSnapshot->statData.setTau(tau);
246 <  }
892 >    // collects single-atom information
893 >    fDecomp_->collectSelfData();
894  
895 +    longRangePotential = *(fDecomp_->getEmbeddingPotential()) +
896 +      *(fDecomp_->getPairwisePotential());
897  
898 +    curSnapshot->setLongRangePotential(longRangePotential);
899 +    
900 +    curSnapshot->setExcludedPotentials(*(fDecomp_->getExcludedSelfPotential()) +
901 +                                         *(fDecomp_->getExcludedPotential()));
902 +
903 +  }
904 +
905 +  
906    void ForceManager::postCalculation() {
907      SimInfo::MoleculeIterator mi;
908      Molecule* mol;
909      Molecule::RigidBodyIterator rbIter;
910      RigidBody* rb;
911 <    
911 >    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
912 >  
913      // collect the atomic forces onto rigid bodies
914 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
915 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
916 <        rb->calcForcesAndTorques();
914 >    
915 >    for (mol = info_->beginMolecule(mi); mol != NULL;
916 >         mol = info_->nextMolecule(mi)) {
917 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
918 >           rb = mol->nextRigidBody(rbIter)) {
919 >        Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial();
920 >        stressTensor += rbTau;
921        }
922      }
923 <
923 >    
924 > #ifdef IS_MPI
925 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, stressTensor.getArrayPointer(), 9,
926 >                              MPI::REALTYPE, MPI::SUM);
927 > #endif
928 >    curSnapshot->setStressTensor(stressTensor);
929 >    
930    }
931  
932 < } //end namespace oopse
932 > } //end namespace OpenMD

Comparing:
trunk/src/brains/ForceManager.cpp (property svn:keywords), Revision 665 by tim, Thu Oct 13 22:26:47 2005 UTC vs.
branches/development/src/brains/ForceManager.cpp (property svn:keywords), Revision 1767 by gezelter, Fri Jul 6 22:01:58 2012 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines