ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/ForceManager.cpp
(Generate patch)

Comparing:
trunk/src/brains/ForceManager.cpp (file contents), Revision 749 by tim, Wed Nov 16 23:10:02 2005 UTC vs.
branches/development/src/brains/ForceManager.cpp (file contents), Revision 1581 by gezelter, Mon Jun 13 22:13:12 2011 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42   /**
# Line 47 | Line 47
47   * @version 1.0
48   */
49  
50 +
51   #include "brains/ForceManager.hpp"
52   #include "primitives/Molecule.hpp"
53 < #include "UseTheForce/doForces_interface.h"
53 < #define __C
54 < #include "UseTheForce/DarkSide/fInteractionMap.h"
53 > #define __OPENMD_C
54   #include "utils/simError.h"
55 + #include "primitives/Bond.hpp"
56   #include "primitives/Bend.hpp"
57 < #include "primitives/Bend.hpp"
58 < namespace oopse {
57 > #include "primitives/Torsion.hpp"
58 > #include "primitives/Inversion.hpp"
59 > #include "nonbonded/NonBondedInteraction.hpp"
60 > #include "parallel/ForceMatrixDecomposition.hpp"
61  
62 <  struct BendOrderStruct {
63 <    Bend* bend;
64 <    BendDataSet dataSet;
65 <  };
66 <  struct TorsionOrderStruct {
67 <    Torsion* torsion;
68 <    TorsionDataSet dataSet;
67 <  };
68 <
69 <  bool  BendSortFunctor(const BendOrderStruct& b1, const BendOrderStruct& b2) {
70 <    return b1.dataSet.deltaV < b2.dataSet.deltaV;
62 > using namespace std;
63 > namespace OpenMD {
64 >  
65 >  ForceManager::ForceManager(SimInfo * info) : info_(info) {
66 >    forceField_ = info_->getForceField();
67 >    interactionMan_ = new InteractionManager();
68 >    fDecomp_ = new ForceMatrixDecomposition(info_, interactionMan_);
69    }
70  
71 <  bool  TorsionSortFunctor(const TorsionOrderStruct& t1, const TorsionOrderStruct& t2) {
72 <    return t1.dataSet.deltaV < t2.dataSet.deltaV;
73 <  }
74 <  
75 <  void ForceManager::calcForces(bool needPotential, bool needStress) {
71 >  /**
72 >   * setupCutoffs
73 >   *
74 >   * Sets the values of cutoffRadius, cutoffMethod, and cutoffPolicy
75 >   *
76 >   * cutoffRadius : realType
77 >   *  If the cutoffRadius was explicitly set, use that value.
78 >   *  If the cutoffRadius was not explicitly set:
79 >   *      Are there electrostatic atoms?  Use 12.0 Angstroms.
80 >   *      No electrostatic atoms?  Poll the atom types present in the
81 >   *      simulation for suggested cutoff values (e.g. 2.5 * sigma).
82 >   *      Use the maximum suggested value that was found.
83 >   *
84 >   * cutoffMethod : (one of HARD, SWITCHED, SHIFTED_FORCE, SHIFTED_POTENTIAL)
85 >   *      If cutoffMethod was explicitly set, use that choice.
86 >   *      If cutoffMethod was not explicitly set, use SHIFTED_FORCE
87 >   *
88 >   * cutoffPolicy : (one of MIX, MAX, TRADITIONAL)
89 >   *      If cutoffPolicy was explicitly set, use that choice.
90 >   *      If cutoffPolicy was not explicitly set, use TRADITIONAL
91 >   */
92 >  void ForceManager::setupCutoffs() {
93 >    
94 >    Globals* simParams_ = info_->getSimParams();
95 >    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
96 >    
97 >    if (simParams_->haveCutoffRadius()) {
98 >      rCut_ = simParams_->getCutoffRadius();
99 >    } else {      
100 >      if (info_->usesElectrostaticAtoms()) {
101 >        sprintf(painCave.errMsg,
102 >                "ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n"
103 >                "\tOpenMD will use a default value of 12.0 angstroms"
104 >                "\tfor the cutoffRadius.\n");
105 >        painCave.isFatal = 0;
106 >        painCave.severity = OPENMD_INFO;
107 >        simError();
108 >        rCut_ = 12.0;
109 >      } else {
110 >        RealType thisCut;
111 >        set<AtomType*>::iterator i;
112 >        set<AtomType*> atomTypes;
113 >        atomTypes = info_->getSimulatedAtomTypes();        
114 >        for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
115 >          thisCut = interactionMan_->getSuggestedCutoffRadius((*i));
116 >          rCut_ = max(thisCut, rCut_);
117 >        }
118 >        sprintf(painCave.errMsg,
119 >                "ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n"
120 >                "\tOpenMD will use %lf angstroms.\n",
121 >                rCut_);
122 >        painCave.isFatal = 0;
123 >        painCave.severity = OPENMD_INFO;
124 >        simError();
125 >      }
126 >      fDecomp_->setUserCutoff(rCut_);
127 >    }
128  
129 <    if (!info_->isFortranInitialized()) {
130 <      info_->update();
129 >    map<string, CutoffMethod> stringToCutoffMethod;
130 >    stringToCutoffMethod["HARD"] = HARD;
131 >    stringToCutoffMethod["SWITCHED"] = SWITCHED;
132 >    stringToCutoffMethod["SHIFTED_POTENTIAL"] = SHIFTED_POTENTIAL;    
133 >    stringToCutoffMethod["SHIFTED_FORCE"] = SHIFTED_FORCE;
134 >  
135 >    if (simParams_->haveCutoffMethod()) {
136 >      string cutMeth = toUpperCopy(simParams_->getCutoffMethod());
137 >      map<string, CutoffMethod>::iterator i;
138 >      i = stringToCutoffMethod.find(cutMeth);
139 >      if (i == stringToCutoffMethod.end()) {
140 >        sprintf(painCave.errMsg,
141 >                "ForceManager::setupCutoffs: Could not find chosen cutoffMethod %s\n"
142 >                "\tShould be one of: "
143 >                "HARD, SWITCHED, SHIFTED_POTENTIAL, or SHIFTED_FORCE\n",
144 >                cutMeth.c_str());
145 >        painCave.isFatal = 1;
146 >        painCave.severity = OPENMD_ERROR;
147 >        simError();
148 >      } else {
149 >        cutoffMethod_ = i->second;
150 >      }
151 >    } else {
152 >      sprintf(painCave.errMsg,
153 >              "ForceManager::setupCutoffs: No value was set for the cutoffMethod.\n"
154 >              "\tOpenMD will use SHIFTED_FORCE.\n");
155 >      painCave.isFatal = 0;
156 >      painCave.severity = OPENMD_INFO;
157 >      simError();
158 >      cutoffMethod_ = SHIFTED_FORCE;        
159      }
160  
161 <    preCalculation();
162 <    
163 <    calcShortRangeInteraction();
161 >    map<string, CutoffPolicy> stringToCutoffPolicy;
162 >    stringToCutoffPolicy["MIX"] = MIX;
163 >    stringToCutoffPolicy["MAX"] = MAX;
164 >    stringToCutoffPolicy["TRADITIONAL"] = TRADITIONAL;    
165  
166 <    calcLongRangeInteraction(needPotential, needStress);
166 >    std::string cutPolicy;
167 >    if (forceFieldOptions_.haveCutoffPolicy()){
168 >      cutPolicy = forceFieldOptions_.getCutoffPolicy();
169 >    }else if (simParams_->haveCutoffPolicy()) {
170 >      cutPolicy = simParams_->getCutoffPolicy();
171 >    }
172  
173 <    postCalculation();
173 >    if (!cutPolicy.empty()){
174 >      toUpper(cutPolicy);
175 >      map<string, CutoffPolicy>::iterator i;
176 >      i = stringToCutoffPolicy.find(cutPolicy);
177  
178 <    std::vector<BendOrderStruct> bendOrderStruct;
179 <    for(std::map<Bend*, BendDataSet>::iterator i = bendDataSets.begin(); i != bendDataSets.end(); ++i) {
180 <        BendOrderStruct tmp;
181 <        tmp.bend= const_cast<Bend*>(i->first);
182 <        tmp.dataSet = i->second;
183 <        bendOrderStruct.push_back(tmp);
178 >      if (i == stringToCutoffPolicy.end()) {
179 >        sprintf(painCave.errMsg,
180 >                "ForceManager::setupCutoffs: Could not find chosen cutoffPolicy %s\n"
181 >                "\tShould be one of: "
182 >                "MIX, MAX, or TRADITIONAL\n",
183 >                cutPolicy.c_str());
184 >        painCave.isFatal = 1;
185 >        painCave.severity = OPENMD_ERROR;
186 >        simError();
187 >      } else {
188 >        cutoffPolicy_ = i->second;
189 >      }
190 >    } else {
191 >      sprintf(painCave.errMsg,
192 >              "ForceManager::setupCutoffs: No value was set for the cutoffPolicy.\n"
193 >              "\tOpenMD will use TRADITIONAL.\n");
194 >      painCave.isFatal = 0;
195 >      painCave.severity = OPENMD_INFO;
196 >      simError();
197 >      cutoffPolicy_ = TRADITIONAL;        
198      }
199 +    fDecomp_->setCutoffPolicy(cutoffPolicy_);
200 +  }
201  
202 <    std::vector<TorsionOrderStruct> torsionOrderStruct;
203 <    for(std::map<Torsion*, TorsionDataSet>::iterator j = torsionDataSets.begin(); j != torsionDataSets.end(); ++j) {
204 <        TorsionOrderStruct tmp;
205 <        tmp.torsion = const_cast<Torsion*>(j->first);
206 <        tmp.dataSet = j->second;
207 <        torsionOrderStruct.push_back(tmp);
208 <    }
209 <    
210 <    std::sort(bendOrderStruct.begin(), bendOrderStruct.end(), std::ptr_fun(BendSortFunctor));
211 <    std::sort(torsionOrderStruct.begin(), torsionOrderStruct.end(), std::ptr_fun(TorsionSortFunctor));
212 <    std::cout << "bend" << std::endl;
213 <    for (std::vector<BendOrderStruct>::iterator k = bendOrderStruct.begin(); k != bendOrderStruct.end(); ++k) {
214 <        Bend* bend = k->bend;
215 <        std::cout << "atom1=" <<bend->getAtomA()->getGlobalIndex() << ",atom2 = "<< bend->getAtomB()->getGlobalIndex() << ",atom3="<<bend->getAtomC()->getGlobalIndex() << " ";
216 <        std::cout << "deltaV=" << k->dataSet.deltaV << ",p_theta=" << k->dataSet.prev.angle <<",p_pot=" << k->dataSet.prev.potential<< ",c_theta=" << k->dataSet.curr.angle << ", c_pot = " << k->dataSet.curr.potential <<std::endl;
202 >  /**
203 >   * setupSwitching
204 >   *
205 >   * Sets the values of switchingRadius and
206 >   *  If the switchingRadius was explicitly set, use that value (but check it)
207 >   *  If the switchingRadius was not explicitly set: use 0.85 * cutoffRadius_
208 >   */
209 >  void ForceManager::setupSwitching() {
210 >    Globals* simParams_ = info_->getSimParams();
211 >
212 >    // create the switching function object:
213 >    switcher_ = new SwitchingFunction();
214 >    
215 >    if (simParams_->haveSwitchingRadius()) {
216 >      rSwitch_ = simParams_->getSwitchingRadius();
217 >      if (rSwitch_ > rCut_) {        
218 >        sprintf(painCave.errMsg,
219 >                "ForceManager::setupSwitching: switchingRadius (%f) is larger "
220 >                "than the cutoffRadius(%f)\n", rSwitch_, rCut_);
221 >        painCave.isFatal = 1;
222 >        painCave.severity = OPENMD_ERROR;
223 >        simError();
224 >      }
225 >    } else {      
226 >      rSwitch_ = 0.85 * rCut_;
227 >      sprintf(painCave.errMsg,
228 >              "ForceManager::setupSwitching: No value was set for the switchingRadius.\n"
229 >              "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n"
230 >              "\tswitchingRadius = %f. for this simulation\n", rSwitch_);
231 >      painCave.isFatal = 0;
232 >      painCave.severity = OPENMD_WARNING;
233 >      simError();
234 >    }          
235 >    
236 >    // Default to cubic switching function.
237 >    sft_ = cubic;
238 >    if (simParams_->haveSwitchingFunctionType()) {
239 >      string funcType = simParams_->getSwitchingFunctionType();
240 >      toUpper(funcType);
241 >      if (funcType == "CUBIC") {
242 >        sft_ = cubic;
243 >      } else {
244 >        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
245 >          sft_ = fifth_order_poly;
246 >        } else {
247 >          // throw error        
248 >          sprintf( painCave.errMsg,
249 >                   "ForceManager::setupSwitching : Unknown switchingFunctionType. (Input file specified %s .)\n"
250 >                   "\tswitchingFunctionType must be one of: "
251 >                   "\"cubic\" or \"fifth_order_polynomial\".",
252 >                   funcType.c_str() );
253 >          painCave.isFatal = 1;
254 >          painCave.severity = OPENMD_ERROR;
255 >          simError();
256 >        }          
257 >      }
258      }
259 <    std::cout << "torsio" << std::endl;
260 <    for (std::vector<TorsionOrderStruct>::iterator l = torsionOrderStruct.begin(); l != torsionOrderStruct.end(); ++l) {
261 <        Torsion* torsion = l->torsion;
262 <        std::cout << "atom1=" <<torsion->getAtomA()->getGlobalIndex() << ",atom2 = "<< torsion->getAtomB()->getGlobalIndex() << ",atom3="<<torsion->getAtomC()->getGlobalIndex() << ",atom4="<<torsion->getAtomD()->getGlobalIndex()<< " ";
263 <        std::cout << "deltaV=" << l->dataSet.deltaV << ",p_theta=" << l->dataSet.prev.angle <<",p_pot=" << l->dataSet.prev.potential<< ",c_theta=" << l->dataSet.curr.angle << ", c_pot = " << l->dataSet.curr.potential <<std::endl;
259 >    switcher_->setSwitchType(sft_);
260 >    switcher_->setSwitch(rSwitch_, rCut_);
261 >  }
262 >  
263 >  void ForceManager::initialize() {
264 >
265 >    if (!info_->isTopologyDone()) {
266 >      info_->update();
267 >      interactionMan_->setSimInfo(info_);
268 >      interactionMan_->initialize();
269 >
270 >      // We want to delay the cutoffs until after the interaction
271 >      // manager has set up the atom-atom interactions so that we can
272 >      // query them for suggested cutoff values
273 >
274 >      setupCutoffs();
275 >      setupSwitching();
276 >
277 >      info_->prepareTopology();      
278      }
279 +
280 +    ForceFieldOptions& fopts = forceField_->getForceFieldOptions();
281      
282 +    // Force fields can set options on how to scale van der Waals and electrostatic
283 +    // interactions for atoms connected via bonds, bends and torsions
284 +    // in this case the topological distance between atoms is:
285 +    // 0 = topologically unconnected
286 +    // 1 = bonded together
287 +    // 2 = connected via a bend
288 +    // 3 = connected via a torsion
289 +    
290 +    vdwScale_.reserve(4);
291 +    fill(vdwScale_.begin(), vdwScale_.end(), 0.0);
292 +
293 +    electrostaticScale_.reserve(4);
294 +    fill(electrostaticScale_.begin(), electrostaticScale_.end(), 0.0);
295 +
296 +    vdwScale_[0] = 1.0;
297 +    vdwScale_[1] = fopts.getvdw12scale();
298 +    vdwScale_[2] = fopts.getvdw13scale();
299 +    vdwScale_[3] = fopts.getvdw14scale();
300 +    
301 +    electrostaticScale_[0] = 1.0;
302 +    electrostaticScale_[1] = fopts.getelectrostatic12scale();
303 +    electrostaticScale_[2] = fopts.getelectrostatic13scale();
304 +    electrostaticScale_[3] = fopts.getelectrostatic14scale();    
305 +    
306 +    fDecomp_->distributeInitialData();
307 +
308 +    initialized_ = true;
309 +
310    }
311  
312 +  void ForceManager::calcForces() {
313 +    
314 +    if (!initialized_) initialize();
315 +
316 +    preCalculation();  
317 +    shortRangeInteractions();
318 +    longRangeInteractions();
319 +    postCalculation();    
320 +  }
321 +  
322    void ForceManager::preCalculation() {
323      SimInfo::MoleculeIterator mi;
324      Molecule* mol;
# Line 128 | Line 326 | namespace oopse {
326      Atom* atom;
327      Molecule::RigidBodyIterator rbIter;
328      RigidBody* rb;
329 +    Molecule::CutoffGroupIterator ci;
330 +    CutoffGroup* cg;
331      
332      // forces are zeroed here, before any are accumulated.
333 <    // NOTE: do not rezero the forces in Fortran.
334 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
333 >    
334 >    for (mol = info_->beginMolecule(mi); mol != NULL;
335 >         mol = info_->nextMolecule(mi)) {
336        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
337          atom->zeroForcesAndTorques();
338        }
339 <        
339 >          
340        //change the positions of atoms which belong to the rigidbodies
341 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
341 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
342 >           rb = mol->nextRigidBody(rbIter)) {
343          rb->zeroForcesAndTorques();
344        }        
345 +
346 +      if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){
347 +        for(cg = mol->beginCutoffGroup(ci); cg != NULL;
348 +            cg = mol->nextCutoffGroup(ci)) {
349 +          //calculate the center of mass of cutoff group
350 +          cg->updateCOM();
351 +        }
352 +      }      
353      }
354 +  
355 +    // Zero out the stress tensor
356 +    tau *= 0.0;
357      
358    }
359 <
360 <  void ForceManager::calcShortRangeInteraction() {
359 >  
360 >  void ForceManager::shortRangeInteractions() {
361      Molecule* mol;
362      RigidBody* rb;
363      Bond* bond;
364      Bend* bend;
365      Torsion* torsion;
366 +    Inversion* inversion;
367      SimInfo::MoleculeIterator mi;
368      Molecule::RigidBodyIterator rbIter;
369      Molecule::BondIterator bondIter;;
370      Molecule::BendIterator  bendIter;
371      Molecule::TorsionIterator  torsionIter;
372 <    double bondPotential = 0.0;
373 <    double bendPotential = 0.0;
374 <    double torsionPotential = 0.0;
372 >    Molecule::InversionIterator  inversionIter;
373 >    RealType bondPotential = 0.0;
374 >    RealType bendPotential = 0.0;
375 >    RealType torsionPotential = 0.0;
376 >    RealType inversionPotential = 0.0;
377  
378      //calculate short range interactions    
379 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
379 >    for (mol = info_->beginMolecule(mi); mol != NULL;
380 >         mol = info_->nextMolecule(mi)) {
381  
382        //change the positions of atoms which belong to the rigidbodies
383 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
384 <          rb->updateAtoms();
383 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
384 >           rb = mol->nextRigidBody(rbIter)) {
385 >        rb->updateAtoms();
386        }
387  
388 <      for (bond = mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
388 >      for (bond = mol->beginBond(bondIter); bond != NULL;
389 >           bond = mol->nextBond(bondIter)) {
390          bond->calcForce();
391          bondPotential += bond->getPotential();
392        }
393  
394 <      //int i =0;
395 <      for (bend = mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
396 <          //std::cout << i++ << "\t";
397 <          double angle;
398 <            bend->calcForce(angle);
399 <          double currBendPot = bend->getPotential();          
400 <            bendPotential += bend->getPotential();
401 <          std::map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend);
402 <          if (i == bendDataSets.end()) {
403 <            BendDataSet dataSet;
404 <            dataSet.prev.angle = dataSet.curr.angle = angle;
405 <            dataSet.prev.potential = dataSet.curr.potential = currBendPot;
406 <            dataSet.deltaV = 0.0;
407 <            bendDataSets.insert(std::map<Bend*, BendDataSet>::value_type(bend, dataSet));
408 <          }else {
409 <            i->second.prev.angle = i->second.curr.angle;
410 <            i->second.prev.potential = i->second.curr.potential;
411 <            i->second.curr.angle = angle;
412 <            i->second.curr.potential = currBendPot;
413 <            i->second.deltaV =  fabs(i->second.curr.potential -  i->second.prev.potential);
414 <          }
394 >      for (bend = mol->beginBend(bendIter); bend != NULL;
395 >           bend = mol->nextBend(bendIter)) {
396 >        
397 >        RealType angle;
398 >        bend->calcForce(angle);
399 >        RealType currBendPot = bend->getPotential();          
400 >        
401 >        bendPotential += bend->getPotential();
402 >        map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend);
403 >        if (i == bendDataSets.end()) {
404 >          BendDataSet dataSet;
405 >          dataSet.prev.angle = dataSet.curr.angle = angle;
406 >          dataSet.prev.potential = dataSet.curr.potential = currBendPot;
407 >          dataSet.deltaV = 0.0;
408 >          bendDataSets.insert(map<Bend*, BendDataSet>::value_type(bend, dataSet));
409 >        }else {
410 >          i->second.prev.angle = i->second.curr.angle;
411 >          i->second.prev.potential = i->second.curr.potential;
412 >          i->second.curr.angle = angle;
413 >          i->second.curr.potential = currBendPot;
414 >          i->second.deltaV =  fabs(i->second.curr.potential -  
415 >                                   i->second.prev.potential);
416 >        }
417        }
418 <
419 <      for (torsion = mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
420 <        double angle;
421 <          torsion->calcForce(angle);
422 <        double currTorsionPot = torsion->getPotential();
423 <          torsionPotential += torsion->getPotential();
424 <          std::map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion);
425 <          if (i == torsionDataSets.end()) {
426 <            TorsionDataSet dataSet;
427 <            dataSet.prev.angle = dataSet.curr.angle = angle;
428 <            dataSet.prev.potential = dataSet.curr.potential = currTorsionPot;
429 <            dataSet.deltaV = 0.0;
430 <            torsionDataSets.insert(std::map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet));
431 <          }else {
432 <            i->second.prev.angle = i->second.curr.angle;
433 <            i->second.prev.potential = i->second.curr.potential;
434 <            i->second.curr.angle = angle;
435 <            i->second.curr.potential = currTorsionPot;
436 <            i->second.deltaV =  fabs(i->second.curr.potential -  i->second.prev.potential);
437 <          }      
438 <      }
439 <
418 >      
419 >      for (torsion = mol->beginTorsion(torsionIter); torsion != NULL;
420 >           torsion = mol->nextTorsion(torsionIter)) {
421 >        RealType angle;
422 >        torsion->calcForce(angle);
423 >        RealType currTorsionPot = torsion->getPotential();
424 >        torsionPotential += torsion->getPotential();
425 >        map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion);
426 >        if (i == torsionDataSets.end()) {
427 >          TorsionDataSet dataSet;
428 >          dataSet.prev.angle = dataSet.curr.angle = angle;
429 >          dataSet.prev.potential = dataSet.curr.potential = currTorsionPot;
430 >          dataSet.deltaV = 0.0;
431 >          torsionDataSets.insert(map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet));
432 >        }else {
433 >          i->second.prev.angle = i->second.curr.angle;
434 >          i->second.prev.potential = i->second.curr.potential;
435 >          i->second.curr.angle = angle;
436 >          i->second.curr.potential = currTorsionPot;
437 >          i->second.deltaV =  fabs(i->second.curr.potential -  
438 >                                   i->second.prev.potential);
439 >        }      
440 >      }      
441 >      
442 >      for (inversion = mol->beginInversion(inversionIter);
443 >           inversion != NULL;
444 >           inversion = mol->nextInversion(inversionIter)) {
445 >        RealType angle;
446 >        inversion->calcForce(angle);
447 >        RealType currInversionPot = inversion->getPotential();
448 >        inversionPotential += inversion->getPotential();
449 >        map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion);
450 >        if (i == inversionDataSets.end()) {
451 >          InversionDataSet dataSet;
452 >          dataSet.prev.angle = dataSet.curr.angle = angle;
453 >          dataSet.prev.potential = dataSet.curr.potential = currInversionPot;
454 >          dataSet.deltaV = 0.0;
455 >          inversionDataSets.insert(map<Inversion*, InversionDataSet>::value_type(inversion, dataSet));
456 >        }else {
457 >          i->second.prev.angle = i->second.curr.angle;
458 >          i->second.prev.potential = i->second.curr.potential;
459 >          i->second.curr.angle = angle;
460 >          i->second.curr.potential = currInversionPot;
461 >          i->second.deltaV =  fabs(i->second.curr.potential -  
462 >                                   i->second.prev.potential);
463 >        }      
464 >      }      
465      }
466      
467 <    double  shortRangePotential = bondPotential + bendPotential + torsionPotential;    
467 >    RealType  shortRangePotential = bondPotential + bendPotential +
468 >      torsionPotential +  inversionPotential;    
469      Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
470      curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential;
471      curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential;
472      curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential;
473      curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential;
474 <    
474 >    curSnapshot->statData[Stats::INVERSION_POTENTIAL] = inversionPotential;    
475    }
476 +  
477 +  void ForceManager::longRangeInteractions() {
478  
479 <  void ForceManager::calcLongRangeInteraction(bool needPotential, bool needStress) {
480 <    Snapshot* curSnapshot;
481 <    DataStorage* config;
233 <    double* frc;
234 <    double* pos;
235 <    double* trq;
236 <    double* A;
237 <    double* electroFrame;
238 <    double* rc;
239 <    
240 <    //get current snapshot from SimInfo
241 <    curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
479 >    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
480 >    DataStorage* config = &(curSnapshot->atomData);
481 >    DataStorage* cgConfig = &(curSnapshot->cgData);
482  
243    //get array pointers
244    config = &(curSnapshot->atomData);
245    frc = config->getArrayPointer(DataStorage::dslForce);
246    pos = config->getArrayPointer(DataStorage::dslPosition);
247    trq = config->getArrayPointer(DataStorage::dslTorque);
248    A   = config->getArrayPointer(DataStorage::dslAmat);
249    electroFrame = config->getArrayPointer(DataStorage::dslElectroFrame);
250
483      //calculate the center of mass of cutoff group
484 +
485      SimInfo::MoleculeIterator mi;
486      Molecule* mol;
487      Molecule::CutoffGroupIterator ci;
488      CutoffGroup* cg;
256    Vector3d com;
257    std::vector<Vector3d> rcGroup;
489  
490 <    if(info_->getNCutoffGroups() > 0){
491 <
492 <      for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
493 <        for(cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
494 <          cg->getCOM(com);
495 <          rcGroup.push_back(com);
490 >    if(info_->getNCutoffGroups() > 0){      
491 >      for (mol = info_->beginMolecule(mi); mol != NULL;
492 >           mol = info_->nextMolecule(mi)) {
493 >        for(cg = mol->beginCutoffGroup(ci); cg != NULL;
494 >            cg = mol->nextCutoffGroup(ci)) {
495 >          cg->updateCOM();
496          }
497 <      }// end for (mol)
267 <      
268 <      rc = rcGroup[0].getArrayPointer();
497 >      }      
498      } else {
499 <      // center of mass of the group is the same as position of the atom  if cutoff group does not exist
500 <      rc = pos;
499 >      // center of mass of the group is the same as position of the atom  
500 >      // if cutoff group does not exist
501 >      cgConfig->position = config->position;
502      }
503 <  
504 <    //initialize data before passing to fortran
505 <    double longRangePotential[LR_POT_TYPES];
276 <    double lrPot = 0.0;
503 >
504 >    fDecomp_->zeroWorkArrays();
505 >    fDecomp_->distributeData();
506      
507 <    Mat3x3d tau;
508 <    short int passedCalcPot = needPotential;
509 <    short int passedCalcStress = needStress;
510 <    int isError = 0;
507 >    int cg1, cg2, atom1, atom2, topoDist;
508 >    Vector3d d_grp, dag, d;
509 >    RealType rgrpsq, rgrp, r2, r;
510 >    RealType electroMult, vdwMult;
511 >    RealType vij;
512 >    Vector3d fij, fg, f1;
513 >    tuple3<RealType, RealType, RealType> cuts;
514 >    RealType rCutSq;
515 >    bool in_switching_region;
516 >    RealType sw, dswdr, swderiv;
517 >    vector<int> atomListColumn, atomListRow, atomListLocal;
518 >    InteractionData idat;
519 >    SelfData sdat;
520 >    RealType mf;
521 >    potVec pot(0.0);
522 >    potVec longRangePotential(0.0);
523 >    RealType lrPot;
524 >    RealType vpair;
525  
526 <    for (int i=0; i<LR_POT_TYPES;i++){
527 <      longRangePotential[i]=0.0; //Initialize array
526 >    int loopStart, loopEnd;
527 >
528 >    idat.vdwMult = &vdwMult;
529 >    idat.electroMult = &electroMult;
530 >    idat.pot = &pot;
531 >    idat.vpair = &vpair;
532 >    idat.f1 = &f1;
533 >    idat.sw = &sw;
534 >
535 >    loopEnd = PAIR_LOOP;
536 >    if (info_->requiresPrepair() ) {
537 >      loopStart = PREPAIR_LOOP;
538 >    } else {
539 >      loopStart = PAIR_LOOP;
540      }
541 +    
542 +    for (int iLoop = loopStart; iLoop <= loopEnd; iLoop++) {
543 +    
544 +      if (iLoop == loopStart) {
545 +        bool update_nlist = fDecomp_->checkNeighborList();
546 +        if (update_nlist)
547 +          neighborList = fDecomp_->buildNeighborList();
548 +      }      
549 +        
550 +      for (vector<pair<int, int> >::iterator it = neighborList.begin();
551 +             it != neighborList.end(); ++it) {
552 +                
553 +        cg1 = (*it).first;
554 +        cg2 = (*it).second;
555 +        
556 +        cuts = fDecomp_->getGroupCutoffs(cg1, cg2);
557  
558 <    doForceLoop( pos,
559 <                 rc,
560 <                 A,
290 <                 electroFrame,
291 <                 frc,
292 <                 trq,
293 <                 tau.getArrayPointer(),
294 <                 longRangePotential,
295 <                 &passedCalcPot,
296 <                 &passedCalcStress,
297 <                 &isError );
558 >        d_grp  = fDecomp_->getIntergroupVector(cg1, cg2);
559 >        curSnapshot->wrapVector(d_grp);        
560 >        rgrpsq = d_grp.lengthSquare();
561  
562 <    if( isError ){
563 <      sprintf( painCave.errMsg,
564 <               "Error returned from the fortran force calculation.\n" );
565 <      painCave.isFatal = 1;
566 <      simError();
562 >        rCutSq = cuts.second;
563 >
564 >        if (rgrpsq < rCutSq) {
565 >          idat.rcut = &cuts.first;
566 >          if (iLoop == PAIR_LOOP) {
567 >            vij *= 0.0;
568 >            fij = V3Zero;
569 >          }
570 >          
571 >          in_switching_region = switcher_->getSwitch(rgrpsq, sw, dswdr,
572 >                                                     rgrp);
573 >              
574 >          atomListRow = fDecomp_->getAtomsInGroupRow(cg1);
575 >          atomListColumn = fDecomp_->getAtomsInGroupColumn(cg2);
576 >
577 >          for (vector<int>::iterator ia = atomListRow.begin();
578 >               ia != atomListRow.end(); ++ia) {            
579 >            atom1 = (*ia);
580 >            
581 >            for (vector<int>::iterator jb = atomListColumn.begin();
582 >                 jb != atomListColumn.end(); ++jb) {              
583 >              atom2 = (*jb);
584 >              
585 >              if (!fDecomp_->skipAtomPair(atom1, atom2)) {
586 >                
587 >                vpair = 0.0;
588 >                f1 = V3Zero;
589 >
590 >                fDecomp_->fillInteractionData(idat, atom1, atom2);
591 >                
592 >                topoDist = fDecomp_->getTopologicalDistance(atom1, atom2);
593 >                vdwMult = vdwScale_[topoDist];
594 >                electroMult = electrostaticScale_[topoDist];
595 >
596 >                if (atomListRow.size() == 1 && atomListColumn.size() == 1) {
597 >                  idat.d = &d_grp;
598 >                  idat.r2 = &rgrpsq;
599 >                } else {
600 >                  d = fDecomp_->getInteratomicVector(atom1, atom2);
601 >                  curSnapshot->wrapVector( d );
602 >                  r2 = d.lengthSquare();
603 >                  idat.d = &d;
604 >                  idat.r2 = &r2;
605 >                }
606 >                
607 >                r = sqrt( *(idat.r2) );
608 >                idat.rij = &r;
609 >              
610 >                if (iLoop == PREPAIR_LOOP) {
611 >                  interactionMan_->doPrePair(idat);
612 >                } else {
613 >                  interactionMan_->doPair(idat);
614 >                  fDecomp_->unpackInteractionData(idat, atom1, atom2);
615 >                  vij += vpair;
616 >                  fij += f1;
617 >                  tau -= outProduct( *(idat.d), f1);
618 >                }
619 >              }
620 >            }
621 >          }
622 >
623 >          if (iLoop == PAIR_LOOP) {
624 >            if (in_switching_region) {
625 >              swderiv = vij * dswdr / rgrp;
626 >              fg = swderiv * d_grp;
627 >
628 >              fij += fg;
629 >
630 >              if (atomListRow.size() == 1 && atomListColumn.size() == 1) {
631 >                tau -= outProduct( *(idat.d), fg);
632 >              }
633 >          
634 >              for (vector<int>::iterator ia = atomListRow.begin();
635 >                   ia != atomListRow.end(); ++ia) {            
636 >                atom1 = (*ia);                
637 >                mf = fDecomp_->getMassFactorRow(atom1);
638 >                // fg is the force on atom ia due to cutoff group's
639 >                // presence in switching region
640 >                fg = swderiv * d_grp * mf;
641 >                fDecomp_->addForceToAtomRow(atom1, fg);
642 >
643 >                if (atomListRow.size() > 1) {
644 >                  if (info_->usesAtomicVirial()) {
645 >                    // find the distance between the atom
646 >                    // and the center of the cutoff group:
647 >                    dag = fDecomp_->getAtomToGroupVectorRow(atom1, cg1);
648 >                    tau -= outProduct(dag, fg);
649 >                  }
650 >                }
651 >              }
652 >              for (vector<int>::iterator jb = atomListColumn.begin();
653 >                   jb != atomListColumn.end(); ++jb) {              
654 >                atom2 = (*jb);
655 >                mf = fDecomp_->getMassFactorColumn(atom2);
656 >                // fg is the force on atom jb due to cutoff group's
657 >                // presence in switching region
658 >                fg = -swderiv * d_grp * mf;
659 >                fDecomp_->addForceToAtomColumn(atom2, fg);
660 >
661 >                if (atomListColumn.size() > 1) {
662 >                  if (info_->usesAtomicVirial()) {
663 >                    // find the distance between the atom
664 >                    // and the center of the cutoff group:
665 >                    dag = fDecomp_->getAtomToGroupVectorColumn(atom2, cg2);
666 >                    tau -= outProduct(dag, fg);
667 >                  }
668 >                }
669 >              }
670 >            }
671 >            //if (!SIM_uses_AtomicVirial) {
672 >            //  tau -= outProduct(d_grp, fij);
673 >            //}
674 >          }
675 >        }
676 >      }
677 >
678 >      if (iLoop == PREPAIR_LOOP) {
679 >        if (info_->requiresPrepair()) {            
680 >          fDecomp_->collectIntermediateData();
681 >
682 >          for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) {
683 >            fDecomp_->fillSelfData(sdat, atom1);
684 >            interactionMan_->doPreForce(sdat);
685 >          }
686 >
687 >          fDecomp_->distributeIntermediateData();        
688 >        }
689 >      }
690 >
691      }
692 <    for (int i=0; i<LR_POT_TYPES;i++){
693 <      lrPot += longRangePotential[i]; //Quick hack
692 >    
693 >    fDecomp_->collectData();
694 >    
695 >    if ( info_->requiresSkipCorrection() ) {
696 >      
697 >      for (int atom1 = 0; atom1 < fDecomp_->getNAtomsInRow(); atom1++) {
698 >
699 >        vector<int> skipList = fDecomp_->getSkipsForAtom( atom1 );
700 >        
701 >        for (vector<int>::iterator jb = skipList.begin();
702 >             jb != skipList.end(); ++jb) {        
703 >    
704 >          atom2 = (*jb);
705 >          fDecomp_->fillSkipData(idat, atom1, atom2);
706 >          interactionMan_->doSkipCorrection(idat);
707 >
708 >        }
709 >      }
710      }
711 +    
712 +    if (info_->requiresSelfCorrection()) {
713  
714 +      for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) {          
715 +        fDecomp_->fillSelfData(sdat, atom1);
716 +        interactionMan_->doSelfCorrection(sdat);
717 +      }
718 +
719 +    }
720 +
721 +    longRangePotential = fDecomp_->getLongRangePotential();
722 +    lrPot = longRangePotential.sum();
723 +
724      //store the tau and long range potential    
725      curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot;
726 <    curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VDW_POT];
727 <    curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_POT];
313 <
314 <    curSnapshot->statData.setTau(tau);
726 >    curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VANDERWAALS_FAMILY];
727 >    curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_FAMILY];
728    }
729  
730 <
730 >  
731    void ForceManager::postCalculation() {
732      SimInfo::MoleculeIterator mi;
733      Molecule* mol;
734      Molecule::RigidBodyIterator rbIter;
735      RigidBody* rb;
736 +    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
737      
738      // collect the atomic forces onto rigid bodies
739 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
740 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
741 <        rb->calcForcesAndTorques();
739 >    
740 >    for (mol = info_->beginMolecule(mi); mol != NULL;
741 >         mol = info_->nextMolecule(mi)) {
742 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
743 >           rb = mol->nextRigidBody(rbIter)) {
744 >        Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial();
745 >        tau += rbTau;
746        }
747      }
748 <
748 >    
749 > #ifdef IS_MPI
750 >    Mat3x3d tmpTau(tau);
751 >    MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(),
752 >                  9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
753 > #endif
754 >    curSnapshot->statData.setTau(tau);
755    }
756  
757 < } //end namespace oopse
757 > } //end namespace OpenMD

Comparing:
trunk/src/brains/ForceManager.cpp (property svn:keywords), Revision 749 by tim, Wed Nov 16 23:10:02 2005 UTC vs.
branches/development/src/brains/ForceManager.cpp (property svn:keywords), Revision 1581 by gezelter, Mon Jun 13 22:13:12 2011 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines