ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/ForceManager.cpp
(Generate patch)

Comparing:
trunk/src/brains/ForceManager.cpp (file contents), Revision 770 by tim, Fri Dec 2 15:38:03 2005 UTC vs.
branches/development/src/brains/ForceManager.cpp (file contents), Revision 1480 by gezelter, Mon Jul 26 19:50:53 2010 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42   /**
# Line 50 | Line 50
50   #include "brains/ForceManager.hpp"
51   #include "primitives/Molecule.hpp"
52   #include "UseTheForce/doForces_interface.h"
53 < #define __C
53 > #define __OPENMD_C
54   #include "UseTheForce/DarkSide/fInteractionMap.h"
55   #include "utils/simError.h"
56 + #include "primitives/Bond.hpp"
57   #include "primitives/Bend.hpp"
58 < #include "primitives/Bend.hpp"
59 < namespace oopse {
58 > #include "primitives/Torsion.hpp"
59 > #include "primitives/Inversion.hpp"
60  
61 < /*
62 <  struct BendOrderStruct {
63 <    Bend* bend;
64 <    BendDataSet dataSet;
65 <  };
66 <  struct TorsionOrderStruct {
66 <    Torsion* torsion;
67 <    TorsionDataSet dataSet;
68 <  };
61 > namespace OpenMD {
62 >  
63 >  ForceManager::ForceManager(SimInfo * info) : info_(info),
64 >                                               NBforcesInitialized_(false) {
65 >    lj_ = LJ::Instance();
66 >    lj_->setForceField(info_->getForceField());
67  
68 <  bool  BendSortFunctor(const BendOrderStruct& b1, const BendOrderStruct& b2) {
69 <    return b1.dataSet.deltaV < b2.dataSet.deltaV;
68 >    eam_ = EAM::Instance();
69 >    eam_->setForceField(info_->getForceField());
70    }
71 <
72 <  bool  TorsionSortFunctor(const TorsionOrderStruct& t1, const TorsionOrderStruct& t2) {
73 <    return t1.dataSet.deltaV < t2.dataSet.deltaV;
76 <  }
77 <  */
78 <  void ForceManager::calcForces(bool needPotential, bool needStress) {
79 <
71 >
72 >  void ForceManager::calcForces() {
73 >    
74      if (!info_->isFortranInitialized()) {
75        info_->update();
76      }
77 <
77 >    
78      preCalculation();
79      
80      calcShortRangeInteraction();
81  
82 <    calcLongRangeInteraction(needPotential, needStress);
82 >    calcLongRangeInteraction();
83  
84      postCalculation();
91
92 /*
93    std::vector<BendOrderStruct> bendOrderStruct;
94    for(std::map<Bend*, BendDataSet>::iterator i = bendDataSets.begin(); i != bendDataSets.end(); ++i) {
95        BendOrderStruct tmp;
96        tmp.bend= const_cast<Bend*>(i->first);
97        tmp.dataSet = i->second;
98        bendOrderStruct.push_back(tmp);
99    }
100
101    std::vector<TorsionOrderStruct> torsionOrderStruct;
102    for(std::map<Torsion*, TorsionDataSet>::iterator j = torsionDataSets.begin(); j != torsionDataSets.end(); ++j) {
103        TorsionOrderStruct tmp;
104        tmp.torsion = const_cast<Torsion*>(j->first);
105        tmp.dataSet = j->second;
106        torsionOrderStruct.push_back(tmp);
107    }
85      
109    std::sort(bendOrderStruct.begin(), bendOrderStruct.end(), std::ptr_fun(BendSortFunctor));
110    std::sort(torsionOrderStruct.begin(), torsionOrderStruct.end(), std::ptr_fun(TorsionSortFunctor));
111    std::cout << "bend" << std::endl;
112    for (std::vector<BendOrderStruct>::iterator k = bendOrderStruct.begin(); k != bendOrderStruct.end(); ++k) {
113        Bend* bend = k->bend;
114        std::cout << "atom1=" <<bend->getAtomA()->getGlobalIndex() << ",atom2 = "<< bend->getAtomB()->getGlobalIndex() << ",atom3="<<bend->getAtomC()->getGlobalIndex() << " ";
115        std::cout << "deltaV=" << k->dataSet.deltaV << ",p_theta=" << k->dataSet.prev.angle <<",p_pot=" << k->dataSet.prev.potential<< ",c_theta=" << k->dataSet.curr.angle << ", c_pot = " << k->dataSet.curr.potential <<std::endl;
116    }
117    std::cout << "torsio" << std::endl;
118    for (std::vector<TorsionOrderStruct>::iterator l = torsionOrderStruct.begin(); l != torsionOrderStruct.end(); ++l) {
119        Torsion* torsion = l->torsion;
120        std::cout << "atom1=" <<torsion->getAtomA()->getGlobalIndex() << ",atom2 = "<< torsion->getAtomB()->getGlobalIndex() << ",atom3="<<torsion->getAtomC()->getGlobalIndex() << ",atom4="<<torsion->getAtomD()->getGlobalIndex()<< " ";
121        std::cout << "deltaV=" << l->dataSet.deltaV << ",p_theta=" << l->dataSet.prev.angle <<",p_pot=" << l->dataSet.prev.potential<< ",c_theta=" << l->dataSet.curr.angle << ", c_pot = " << l->dataSet.curr.potential <<std::endl;
122    }
123   */
86    }
87 <
87 >  
88    void ForceManager::preCalculation() {
89      SimInfo::MoleculeIterator mi;
90      Molecule* mol;
# Line 133 | Line 95 | namespace oopse {
95      
96      // forces are zeroed here, before any are accumulated.
97      // NOTE: do not rezero the forces in Fortran.
98 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
98 >    
99 >    for (mol = info_->beginMolecule(mi); mol != NULL;
100 >         mol = info_->nextMolecule(mi)) {
101        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
102          atom->zeroForcesAndTorques();
103        }
104 <        
104 >          
105        //change the positions of atoms which belong to the rigidbodies
106 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
106 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
107 >           rb = mol->nextRigidBody(rbIter)) {
108          rb->zeroForcesAndTorques();
109        }        
110 +          
111      }
112      
113 +    // Zero out the stress tensor
114 +    tau *= 0.0;
115 +    
116    }
117 <
117 >  
118    void ForceManager::calcShortRangeInteraction() {
119      Molecule* mol;
120      RigidBody* rb;
121      Bond* bond;
122      Bend* bend;
123      Torsion* torsion;
124 +    Inversion* inversion;
125      SimInfo::MoleculeIterator mi;
126      Molecule::RigidBodyIterator rbIter;
127      Molecule::BondIterator bondIter;;
128      Molecule::BendIterator  bendIter;
129      Molecule::TorsionIterator  torsionIter;
130 <    double bondPotential = 0.0;
131 <    double bendPotential = 0.0;
132 <    double torsionPotential = 0.0;
130 >    Molecule::InversionIterator  inversionIter;
131 >    RealType bondPotential = 0.0;
132 >    RealType bendPotential = 0.0;
133 >    RealType torsionPotential = 0.0;
134 >    RealType inversionPotential = 0.0;
135  
136      //calculate short range interactions    
137 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
137 >    for (mol = info_->beginMolecule(mi); mol != NULL;
138 >         mol = info_->nextMolecule(mi)) {
139  
140        //change the positions of atoms which belong to the rigidbodies
141 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
142 <          rb->updateAtoms();
141 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
142 >           rb = mol->nextRigidBody(rbIter)) {
143 >        rb->updateAtoms();
144        }
145  
146 <      for (bond = mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
146 >      for (bond = mol->beginBond(bondIter); bond != NULL;
147 >           bond = mol->nextBond(bondIter)) {
148          bond->calcForce();
149          bondPotential += bond->getPotential();
150        }
151  
152 <
153 <      for (bend = mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
154 <
155 <          double angle;
156 <            bend->calcForce(angle);
157 <          double currBendPot = bend->getPotential();          
158 <            bendPotential += bend->getPotential();
159 <          std::map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend);
160 <          if (i == bendDataSets.end()) {
161 <            BendDataSet dataSet;
162 <            dataSet.prev.angle = dataSet.curr.angle = angle;
163 <            dataSet.prev.potential = dataSet.curr.potential = currBendPot;
164 <            dataSet.deltaV = 0.0;
165 <            bendDataSets.insert(std::map<Bend*, BendDataSet>::value_type(bend, dataSet));
166 <          }else {
167 <            i->second.prev.angle = i->second.curr.angle;
168 <            i->second.prev.potential = i->second.curr.potential;
169 <            i->second.curr.angle = angle;
170 <            i->second.curr.potential = currBendPot;
171 <            i->second.deltaV =  fabs(i->second.curr.potential -  i->second.prev.potential);
172 <          }
173 <      }
174 <
200 <      for (torsion = mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
201 <        double angle;
202 <          torsion->calcForce(angle);
203 <        double currTorsionPot = torsion->getPotential();
204 <          torsionPotential += torsion->getPotential();
205 <          std::map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion);
206 <          if (i == torsionDataSets.end()) {
207 <            TorsionDataSet dataSet;
208 <            dataSet.prev.angle = dataSet.curr.angle = angle;
209 <            dataSet.prev.potential = dataSet.curr.potential = currTorsionPot;
210 <            dataSet.deltaV = 0.0;
211 <            torsionDataSets.insert(std::map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet));
212 <          }else {
213 <            i->second.prev.angle = i->second.curr.angle;
214 <            i->second.prev.potential = i->second.curr.potential;
215 <            i->second.curr.angle = angle;
216 <            i->second.curr.potential = currTorsionPot;
217 <            i->second.deltaV =  fabs(i->second.curr.potential -  i->second.prev.potential);
218 <          }      
152 >      for (bend = mol->beginBend(bendIter); bend != NULL;
153 >           bend = mol->nextBend(bendIter)) {
154 >        
155 >        RealType angle;
156 >        bend->calcForce(angle);
157 >        RealType currBendPot = bend->getPotential();          
158 >        
159 >        bendPotential += bend->getPotential();
160 >        std::map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend);
161 >        if (i == bendDataSets.end()) {
162 >          BendDataSet dataSet;
163 >          dataSet.prev.angle = dataSet.curr.angle = angle;
164 >          dataSet.prev.potential = dataSet.curr.potential = currBendPot;
165 >          dataSet.deltaV = 0.0;
166 >          bendDataSets.insert(std::map<Bend*, BendDataSet>::value_type(bend, dataSet));
167 >        }else {
168 >          i->second.prev.angle = i->second.curr.angle;
169 >          i->second.prev.potential = i->second.curr.potential;
170 >          i->second.curr.angle = angle;
171 >          i->second.curr.potential = currBendPot;
172 >          i->second.deltaV =  fabs(i->second.curr.potential -  
173 >                                   i->second.prev.potential);
174 >        }
175        }
176 +      
177 +      for (torsion = mol->beginTorsion(torsionIter); torsion != NULL;
178 +           torsion = mol->nextTorsion(torsionIter)) {
179 +        RealType angle;
180 +        torsion->calcForce(angle);
181 +        RealType currTorsionPot = torsion->getPotential();
182 +        torsionPotential += torsion->getPotential();
183 +        std::map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion);
184 +        if (i == torsionDataSets.end()) {
185 +          TorsionDataSet dataSet;
186 +          dataSet.prev.angle = dataSet.curr.angle = angle;
187 +          dataSet.prev.potential = dataSet.curr.potential = currTorsionPot;
188 +          dataSet.deltaV = 0.0;
189 +          torsionDataSets.insert(std::map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet));
190 +        }else {
191 +          i->second.prev.angle = i->second.curr.angle;
192 +          i->second.prev.potential = i->second.curr.potential;
193 +          i->second.curr.angle = angle;
194 +          i->second.curr.potential = currTorsionPot;
195 +          i->second.deltaV =  fabs(i->second.curr.potential -  
196 +                                   i->second.prev.potential);
197 +        }      
198 +      }      
199  
200 +      for (inversion = mol->beginInversion(inversionIter);
201 +           inversion != NULL;
202 +           inversion = mol->nextInversion(inversionIter)) {
203 +        RealType angle;
204 +        inversion->calcForce(angle);
205 +        RealType currInversionPot = inversion->getPotential();
206 +        inversionPotential += inversion->getPotential();
207 +        std::map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion);
208 +        if (i == inversionDataSets.end()) {
209 +          InversionDataSet dataSet;
210 +          dataSet.prev.angle = dataSet.curr.angle = angle;
211 +          dataSet.prev.potential = dataSet.curr.potential = currInversionPot;
212 +          dataSet.deltaV = 0.0;
213 +          inversionDataSets.insert(std::map<Inversion*, InversionDataSet>::value_type(inversion, dataSet));
214 +        }else {
215 +          i->second.prev.angle = i->second.curr.angle;
216 +          i->second.prev.potential = i->second.curr.potential;
217 +          i->second.curr.angle = angle;
218 +          i->second.curr.potential = currInversionPot;
219 +          i->second.deltaV =  fabs(i->second.curr.potential -  
220 +                                   i->second.prev.potential);
221 +        }      
222 +      }      
223      }
224      
225 <    double  shortRangePotential = bondPotential + bendPotential + torsionPotential;    
225 >    RealType  shortRangePotential = bondPotential + bendPotential +
226 >      torsionPotential +  inversionPotential;    
227      Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
228      curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential;
229      curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential;
230      curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential;
231      curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential;
232 +    curSnapshot->statData[Stats::INVERSION_POTENTIAL] = inversionPotential;
233      
234    }
235 <
236 <  void ForceManager::calcLongRangeInteraction(bool needPotential, bool needStress) {
235 >  
236 >  void ForceManager::calcLongRangeInteraction() {
237      Snapshot* curSnapshot;
238      DataStorage* config;
239 <    double* frc;
240 <    double* pos;
241 <    double* trq;
242 <    double* A;
243 <    double* electroFrame;
244 <    double* rc;
239 >    RealType* frc;
240 >    RealType* pos;
241 >    RealType* trq;
242 >    RealType* A;
243 >    RealType* electroFrame;
244 >    RealType* rc;
245 >    RealType* particlePot;
246      
247      //get current snapshot from SimInfo
248      curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
249 <
249 >    
250      //get array pointers
251      config = &(curSnapshot->atomData);
252      frc = config->getArrayPointer(DataStorage::dslForce);
# Line 249 | Line 254 | namespace oopse {
254      trq = config->getArrayPointer(DataStorage::dslTorque);
255      A   = config->getArrayPointer(DataStorage::dslAmat);
256      electroFrame = config->getArrayPointer(DataStorage::dslElectroFrame);
257 +    particlePot = config->getArrayPointer(DataStorage::dslParticlePot);
258  
259      //calculate the center of mass of cutoff group
260      SimInfo::MoleculeIterator mi;
# Line 257 | Line 263 | namespace oopse {
263      CutoffGroup* cg;
264      Vector3d com;
265      std::vector<Vector3d> rcGroup;
266 <
266 >    
267      if(info_->getNCutoffGroups() > 0){
268 <
269 <      for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
270 <        for(cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
268 >      
269 >      for (mol = info_->beginMolecule(mi); mol != NULL;
270 >           mol = info_->nextMolecule(mi)) {
271 >        for(cg = mol->beginCutoffGroup(ci); cg != NULL;
272 >            cg = mol->nextCutoffGroup(ci)) {
273            cg->getCOM(com);
274            rcGroup.push_back(com);
275          }
# Line 269 | Line 277 | namespace oopse {
277        
278        rc = rcGroup[0].getArrayPointer();
279      } else {
280 <      // center of mass of the group is the same as position of the atom  if cutoff group does not exist
280 >      // center of mass of the group is the same as position of the atom  
281 >      // if cutoff group does not exist
282        rc = pos;
283      }
275  
276    //initialize data before passing to fortran
277    double longRangePotential[LR_POT_TYPES];
278    double lrPot = 0.0;
284      
285 <    Mat3x3d tau;
286 <    short int passedCalcPot = needPotential;
287 <    short int passedCalcStress = needStress;
285 >    //initialize data before passing to fortran
286 >    RealType longRangePotential[LR_POT_TYPES];
287 >    RealType lrPot = 0.0;
288 >    Vector3d totalDipole;
289      int isError = 0;
290  
291      for (int i=0; i<LR_POT_TYPES;i++){
292        longRangePotential[i]=0.0; //Initialize array
293      }
294 <
295 <    doForceLoop( pos,
296 <                 rc,
297 <                 A,
298 <                 electroFrame,
299 <                 frc,
300 <                 trq,
301 <                 tau.getArrayPointer(),
302 <                 longRangePotential,
303 <                 &passedCalcPot,
304 <                 &passedCalcStress,
305 <                 &isError );
300 <
294 >    
295 >    doForceLoop(pos,
296 >                rc,
297 >                A,
298 >                electroFrame,
299 >                frc,
300 >                trq,
301 >                tau.getArrayPointer(),
302 >                longRangePotential,
303 >                particlePot,
304 >                &isError );
305 >    
306      if( isError ){
307        sprintf( painCave.errMsg,
308                 "Error returned from the fortran force calculation.\n" );
# Line 307 | Line 312 | namespace oopse {
312      for (int i=0; i<LR_POT_TYPES;i++){
313        lrPot += longRangePotential[i]; //Quick hack
314      }
315 <
315 >    
316 >    // grab the simulation box dipole moment if specified
317 >    if (info_->getCalcBoxDipole()){
318 >      getAccumulatedBoxDipole(totalDipole.getArrayPointer());
319 >      
320 >      curSnapshot->statData[Stats::BOX_DIPOLE_X] = totalDipole(0);
321 >      curSnapshot->statData[Stats::BOX_DIPOLE_Y] = totalDipole(1);
322 >      curSnapshot->statData[Stats::BOX_DIPOLE_Z] = totalDipole(2);
323 >    }
324 >    
325      //store the tau and long range potential    
326      curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot;
327      curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VDW_POT];
328      curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_POT];
315
316    curSnapshot->statData.setTau(tau);
329    }
330  
331 <
331 >  
332    void ForceManager::postCalculation() {
333      SimInfo::MoleculeIterator mi;
334      Molecule* mol;
335      Molecule::RigidBodyIterator rbIter;
336      RigidBody* rb;
337 +    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
338      
339      // collect the atomic forces onto rigid bodies
340 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
341 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
342 <        rb->calcForcesAndTorques();
340 >    
341 >    for (mol = info_->beginMolecule(mi); mol != NULL;
342 >         mol = info_->nextMolecule(mi)) {
343 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
344 >           rb = mol->nextRigidBody(rbIter)) {
345 >        Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial();
346 >        tau += rbTau;
347        }
348      }
349 <
349 >    
350 > #ifdef IS_MPI
351 >    Mat3x3d tmpTau(tau);
352 >    MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(),
353 >                  9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
354 > #endif
355 >    curSnapshot->statData.setTau(tau);
356    }
357  
358 < } //end namespace oopse
358 > } //end namespace OpenMD

Comparing:
trunk/src/brains/ForceManager.cpp (property svn:keywords), Revision 770 by tim, Fri Dec 2 15:38:03 2005 UTC vs.
branches/development/src/brains/ForceManager.cpp (property svn:keywords), Revision 1480 by gezelter, Mon Jul 26 19:50:53 2010 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines