ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/ForceManager.cpp
(Generate patch)

Comparing:
trunk/src/brains/ForceManager.cpp (file contents), Revision 770 by tim, Fri Dec 2 15:38:03 2005 UTC vs.
branches/development/src/brains/ForceManager.cpp (file contents), Revision 1575 by gezelter, Fri Jun 3 21:39:49 2011 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42   /**
# Line 49 | Line 49
49  
50   #include "brains/ForceManager.hpp"
51   #include "primitives/Molecule.hpp"
52 < #include "UseTheForce/doForces_interface.h"
53 < #define __C
54 < #include "UseTheForce/DarkSide/fInteractionMap.h"
52 > #define __OPENMD_C
53   #include "utils/simError.h"
54 + #include "primitives/Bond.hpp"
55   #include "primitives/Bend.hpp"
56 < #include "primitives/Bend.hpp"
57 < namespace oopse {
56 > #include "primitives/Torsion.hpp"
57 > #include "primitives/Inversion.hpp"
58 > #include "nonbonded/NonBondedInteraction.hpp"
59 > #include "parallel/ForceMatrixDecomposition.hpp"
60  
61 < /*
62 <  struct BendOrderStruct {
63 <    Bend* bend;
64 <    BendDataSet dataSet;
64 <  };
65 <  struct TorsionOrderStruct {
66 <    Torsion* torsion;
67 <    TorsionDataSet dataSet;
68 <  };
61 > using namespace std;
62 > namespace OpenMD {
63 >  
64 >  ForceManager::ForceManager(SimInfo * info) : info_(info) {
65  
66 <  bool  BendSortFunctor(const BendOrderStruct& b1, const BendOrderStruct& b2) {
71 <    return b1.dataSet.deltaV < b2.dataSet.deltaV;
66 >    fDecomp_ = new ForceMatrixDecomposition(info_);
67    }
68 <
69 <  bool  TorsionSortFunctor(const TorsionOrderStruct& t1, const TorsionOrderStruct& t2) {
70 <    return t1.dataSet.deltaV < t2.dataSet.deltaV;
71 <  }
77 <  */
78 <  void ForceManager::calcForces(bool needPotential, bool needStress) {
79 <
80 <    if (!info_->isFortranInitialized()) {
68 >  
69 >  void ForceManager::calcForces() {
70 >    
71 >    if (!info_->isTopologyDone()) {
72        info_->update();
73 +      interactionMan_->setSimInfo(info_);
74 +      interactionMan_->initialize();
75 +      swfun_ = interactionMan_->getSwitchingFunction();
76 +      info_->prepareTopology();
77 +      fDecomp_->distributeInitialData();
78      }
83
84    preCalculation();
79      
80 <    calcShortRangeInteraction();
81 <
82 <    calcLongRangeInteraction(needPotential, needStress);
89 <
80 >    preCalculation();  
81 >    shortRangeInteractions();
82 >    longRangeInteractions();
83      postCalculation();
91
92 /*
93    std::vector<BendOrderStruct> bendOrderStruct;
94    for(std::map<Bend*, BendDataSet>::iterator i = bendDataSets.begin(); i != bendDataSets.end(); ++i) {
95        BendOrderStruct tmp;
96        tmp.bend= const_cast<Bend*>(i->first);
97        tmp.dataSet = i->second;
98        bendOrderStruct.push_back(tmp);
99    }
100
101    std::vector<TorsionOrderStruct> torsionOrderStruct;
102    for(std::map<Torsion*, TorsionDataSet>::iterator j = torsionDataSets.begin(); j != torsionDataSets.end(); ++j) {
103        TorsionOrderStruct tmp;
104        tmp.torsion = const_cast<Torsion*>(j->first);
105        tmp.dataSet = j->second;
106        torsionOrderStruct.push_back(tmp);
107    }
84      
109    std::sort(bendOrderStruct.begin(), bendOrderStruct.end(), std::ptr_fun(BendSortFunctor));
110    std::sort(torsionOrderStruct.begin(), torsionOrderStruct.end(), std::ptr_fun(TorsionSortFunctor));
111    std::cout << "bend" << std::endl;
112    for (std::vector<BendOrderStruct>::iterator k = bendOrderStruct.begin(); k != bendOrderStruct.end(); ++k) {
113        Bend* bend = k->bend;
114        std::cout << "atom1=" <<bend->getAtomA()->getGlobalIndex() << ",atom2 = "<< bend->getAtomB()->getGlobalIndex() << ",atom3="<<bend->getAtomC()->getGlobalIndex() << " ";
115        std::cout << "deltaV=" << k->dataSet.deltaV << ",p_theta=" << k->dataSet.prev.angle <<",p_pot=" << k->dataSet.prev.potential<< ",c_theta=" << k->dataSet.curr.angle << ", c_pot = " << k->dataSet.curr.potential <<std::endl;
116    }
117    std::cout << "torsio" << std::endl;
118    for (std::vector<TorsionOrderStruct>::iterator l = torsionOrderStruct.begin(); l != torsionOrderStruct.end(); ++l) {
119        Torsion* torsion = l->torsion;
120        std::cout << "atom1=" <<torsion->getAtomA()->getGlobalIndex() << ",atom2 = "<< torsion->getAtomB()->getGlobalIndex() << ",atom3="<<torsion->getAtomC()->getGlobalIndex() << ",atom4="<<torsion->getAtomD()->getGlobalIndex()<< " ";
121        std::cout << "deltaV=" << l->dataSet.deltaV << ",p_theta=" << l->dataSet.prev.angle <<",p_pot=" << l->dataSet.prev.potential<< ",c_theta=" << l->dataSet.curr.angle << ", c_pot = " << l->dataSet.curr.potential <<std::endl;
122    }
123   */
85    }
86 <
86 >  
87    void ForceManager::preCalculation() {
88      SimInfo::MoleculeIterator mi;
89      Molecule* mol;
# Line 130 | Line 91 | namespace oopse {
91      Atom* atom;
92      Molecule::RigidBodyIterator rbIter;
93      RigidBody* rb;
94 +    Molecule::CutoffGroupIterator ci;
95 +    CutoffGroup* cg;
96      
97      // forces are zeroed here, before any are accumulated.
98 <    // NOTE: do not rezero the forces in Fortran.
99 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
98 >    
99 >    for (mol = info_->beginMolecule(mi); mol != NULL;
100 >         mol = info_->nextMolecule(mi)) {
101        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
102          atom->zeroForcesAndTorques();
103        }
104 <        
104 >          
105        //change the positions of atoms which belong to the rigidbodies
106 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
106 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
107 >           rb = mol->nextRigidBody(rbIter)) {
108          rb->zeroForcesAndTorques();
109        }        
110 +
111 +      if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){
112 +        for(cg = mol->beginCutoffGroup(ci); cg != NULL;
113 +            cg = mol->nextCutoffGroup(ci)) {
114 +          //calculate the center of mass of cutoff group
115 +          cg->updateCOM();
116 +        }
117 +      }      
118      }
119 +  
120 +    // Zero out the stress tensor
121 +    tau *= 0.0;
122      
123    }
124 <
125 <  void ForceManager::calcShortRangeInteraction() {
124 >  
125 >  void ForceManager::shortRangeInteractions() {
126      Molecule* mol;
127      RigidBody* rb;
128      Bond* bond;
129      Bend* bend;
130      Torsion* torsion;
131 +    Inversion* inversion;
132      SimInfo::MoleculeIterator mi;
133      Molecule::RigidBodyIterator rbIter;
134      Molecule::BondIterator bondIter;;
135      Molecule::BendIterator  bendIter;
136      Molecule::TorsionIterator  torsionIter;
137 <    double bondPotential = 0.0;
138 <    double bendPotential = 0.0;
139 <    double torsionPotential = 0.0;
137 >    Molecule::InversionIterator  inversionIter;
138 >    RealType bondPotential = 0.0;
139 >    RealType bendPotential = 0.0;
140 >    RealType torsionPotential = 0.0;
141 >    RealType inversionPotential = 0.0;
142  
143      //calculate short range interactions    
144 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
144 >    for (mol = info_->beginMolecule(mi); mol != NULL;
145 >         mol = info_->nextMolecule(mi)) {
146  
147        //change the positions of atoms which belong to the rigidbodies
148 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
149 <          rb->updateAtoms();
148 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
149 >           rb = mol->nextRigidBody(rbIter)) {
150 >        rb->updateAtoms();
151        }
152  
153 <      for (bond = mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
153 >      for (bond = mol->beginBond(bondIter); bond != NULL;
154 >           bond = mol->nextBond(bondIter)) {
155          bond->calcForce();
156          bondPotential += bond->getPotential();
157        }
158  
159 <
160 <      for (bend = mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
161 <
162 <          double angle;
163 <            bend->calcForce(angle);
164 <          double currBendPot = bend->getPotential();          
165 <            bendPotential += bend->getPotential();
166 <          std::map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend);
167 <          if (i == bendDataSets.end()) {
168 <            BendDataSet dataSet;
169 <            dataSet.prev.angle = dataSet.curr.angle = angle;
170 <            dataSet.prev.potential = dataSet.curr.potential = currBendPot;
171 <            dataSet.deltaV = 0.0;
172 <            bendDataSets.insert(std::map<Bend*, BendDataSet>::value_type(bend, dataSet));
173 <          }else {
174 <            i->second.prev.angle = i->second.curr.angle;
175 <            i->second.prev.potential = i->second.curr.potential;
176 <            i->second.curr.angle = angle;
177 <            i->second.curr.potential = currBendPot;
178 <            i->second.deltaV =  fabs(i->second.curr.potential -  i->second.prev.potential);
179 <          }
159 >      for (bend = mol->beginBend(bendIter); bend != NULL;
160 >           bend = mol->nextBend(bendIter)) {
161 >        
162 >        RealType angle;
163 >        bend->calcForce(angle);
164 >        RealType currBendPot = bend->getPotential();          
165 >        
166 >        bendPotential += bend->getPotential();
167 >        map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend);
168 >        if (i == bendDataSets.end()) {
169 >          BendDataSet dataSet;
170 >          dataSet.prev.angle = dataSet.curr.angle = angle;
171 >          dataSet.prev.potential = dataSet.curr.potential = currBendPot;
172 >          dataSet.deltaV = 0.0;
173 >          bendDataSets.insert(map<Bend*, BendDataSet>::value_type(bend, dataSet));
174 >        }else {
175 >          i->second.prev.angle = i->second.curr.angle;
176 >          i->second.prev.potential = i->second.curr.potential;
177 >          i->second.curr.angle = angle;
178 >          i->second.curr.potential = currBendPot;
179 >          i->second.deltaV =  fabs(i->second.curr.potential -  
180 >                                   i->second.prev.potential);
181 >        }
182        }
183 <
184 <      for (torsion = mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
185 <        double angle;
186 <          torsion->calcForce(angle);
187 <        double currTorsionPot = torsion->getPotential();
188 <          torsionPotential += torsion->getPotential();
189 <          std::map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion);
190 <          if (i == torsionDataSets.end()) {
191 <            TorsionDataSet dataSet;
192 <            dataSet.prev.angle = dataSet.curr.angle = angle;
193 <            dataSet.prev.potential = dataSet.curr.potential = currTorsionPot;
194 <            dataSet.deltaV = 0.0;
195 <            torsionDataSets.insert(std::map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet));
196 <          }else {
197 <            i->second.prev.angle = i->second.curr.angle;
198 <            i->second.prev.potential = i->second.curr.potential;
199 <            i->second.curr.angle = angle;
200 <            i->second.curr.potential = currTorsionPot;
201 <            i->second.deltaV =  fabs(i->second.curr.potential -  i->second.prev.potential);
202 <          }      
203 <      }
204 <
183 >      
184 >      for (torsion = mol->beginTorsion(torsionIter); torsion != NULL;
185 >           torsion = mol->nextTorsion(torsionIter)) {
186 >        RealType angle;
187 >        torsion->calcForce(angle);
188 >        RealType currTorsionPot = torsion->getPotential();
189 >        torsionPotential += torsion->getPotential();
190 >        map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion);
191 >        if (i == torsionDataSets.end()) {
192 >          TorsionDataSet dataSet;
193 >          dataSet.prev.angle = dataSet.curr.angle = angle;
194 >          dataSet.prev.potential = dataSet.curr.potential = currTorsionPot;
195 >          dataSet.deltaV = 0.0;
196 >          torsionDataSets.insert(map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet));
197 >        }else {
198 >          i->second.prev.angle = i->second.curr.angle;
199 >          i->second.prev.potential = i->second.curr.potential;
200 >          i->second.curr.angle = angle;
201 >          i->second.curr.potential = currTorsionPot;
202 >          i->second.deltaV =  fabs(i->second.curr.potential -  
203 >                                   i->second.prev.potential);
204 >        }      
205 >      }      
206 >      
207 >      for (inversion = mol->beginInversion(inversionIter);
208 >           inversion != NULL;
209 >           inversion = mol->nextInversion(inversionIter)) {
210 >        RealType angle;
211 >        inversion->calcForce(angle);
212 >        RealType currInversionPot = inversion->getPotential();
213 >        inversionPotential += inversion->getPotential();
214 >        map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion);
215 >        if (i == inversionDataSets.end()) {
216 >          InversionDataSet dataSet;
217 >          dataSet.prev.angle = dataSet.curr.angle = angle;
218 >          dataSet.prev.potential = dataSet.curr.potential = currInversionPot;
219 >          dataSet.deltaV = 0.0;
220 >          inversionDataSets.insert(map<Inversion*, InversionDataSet>::value_type(inversion, dataSet));
221 >        }else {
222 >          i->second.prev.angle = i->second.curr.angle;
223 >          i->second.prev.potential = i->second.curr.potential;
224 >          i->second.curr.angle = angle;
225 >          i->second.curr.potential = currInversionPot;
226 >          i->second.deltaV =  fabs(i->second.curr.potential -  
227 >                                   i->second.prev.potential);
228 >        }      
229 >      }      
230      }
231      
232 <    double  shortRangePotential = bondPotential + bendPotential + torsionPotential;    
232 >    RealType  shortRangePotential = bondPotential + bendPotential +
233 >      torsionPotential +  inversionPotential;    
234      Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
235      curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential;
236      curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential;
237      curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential;
238      curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential;
239 <    
239 >    curSnapshot->statData[Stats::INVERSION_POTENTIAL] = inversionPotential;    
240    }
241 +  
242 +  void ForceManager::longRangeInteractions() {
243  
244 <  void ForceManager::calcLongRangeInteraction(bool needPotential, bool needStress) {
245 <    Snapshot* curSnapshot;
246 <    DataStorage* config;
247 <    double* frc;
248 <    double* pos;
249 <    double* trq;
250 <    double* A;
251 <    double* electroFrame;
252 <    double* rc;
253 <    
254 <    //get current snapshot from SimInfo
243 <    curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
244 <
245 <    //get array pointers
246 <    config = &(curSnapshot->atomData);
247 <    frc = config->getArrayPointer(DataStorage::dslForce);
248 <    pos = config->getArrayPointer(DataStorage::dslPosition);
249 <    trq = config->getArrayPointer(DataStorage::dslTorque);
250 <    A   = config->getArrayPointer(DataStorage::dslAmat);
251 <    electroFrame = config->getArrayPointer(DataStorage::dslElectroFrame);
244 >    // some of this initial stuff will go away:
245 >    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
246 >    DataStorage* config = &(curSnapshot->atomData);
247 >    DataStorage* cgConfig = &(curSnapshot->cgData);
248 >    RealType* frc = config->getArrayPointer(DataStorage::dslForce);
249 >    RealType* pos = config->getArrayPointer(DataStorage::dslPosition);
250 >    RealType* trq = config->getArrayPointer(DataStorage::dslTorque);
251 >    RealType* A = config->getArrayPointer(DataStorage::dslAmat);
252 >    RealType* electroFrame = config->getArrayPointer(DataStorage::dslElectroFrame);
253 >    RealType* particlePot = config->getArrayPointer(DataStorage::dslParticlePot);
254 >    RealType* rc;    
255  
256 <    //calculate the center of mass of cutoff group
257 <    SimInfo::MoleculeIterator mi;
255 <    Molecule* mol;
256 <    Molecule::CutoffGroupIterator ci;
257 <    CutoffGroup* cg;
258 <    Vector3d com;
259 <    std::vector<Vector3d> rcGroup;
260 <
261 <    if(info_->getNCutoffGroups() > 0){
262 <
263 <      for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
264 <        for(cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
265 <          cg->getCOM(com);
266 <          rcGroup.push_back(com);
267 <        }
268 <      }// end for (mol)
269 <      
270 <      rc = rcGroup[0].getArrayPointer();
256 >    if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){
257 >      rc = cgConfig->getArrayPointer(DataStorage::dslPosition);
258      } else {
259 <      // center of mass of the group is the same as position of the atom  if cutoff group does not exist
259 >      // center of mass of the group is the same as position of the atom  
260 >      // if cutoff group does not exist
261        rc = pos;
262      }
275  
276    //initialize data before passing to fortran
277    double longRangePotential[LR_POT_TYPES];
278    double lrPot = 0.0;
263      
264 <    Mat3x3d tau;
265 <    short int passedCalcPot = needPotential;
266 <    short int passedCalcStress = needStress;
267 <    int isError = 0;
264 >    // new stuff starts here:
265 >    fDecomp_->zeroWorkArrays();
266 >    fDecomp_->distributeData();
267 >
268 >    int cg1, cg2, atom1, atom2;
269 >    Vector3d d_grp, dag;
270 >    RealType rgrpsq, rgrp;
271 >    RealType vij;
272 >    Vector3d fij, fg;
273 >    pair<int, int> gtypes;
274 >    RealType rCutSq;
275 >    bool in_switching_region;
276 >    RealType sw, dswdr, swderiv;
277 >    vector<int> atomListColumn, atomListRow, atomListLocal;
278 >    InteractionData idat;
279 >    SelfData sdat;
280 >    RealType mf;
281 >    potVec pot(0.0);
282 >    potVec longRangePotential(0.0);
283 >    RealType lrPot;
284  
285 <    for (int i=0; i<LR_POT_TYPES;i++){
286 <      longRangePotential[i]=0.0; //Initialize array
285 >    int loopStart, loopEnd;
286 >
287 >    loopEnd = PAIR_LOOP;
288 >    if (info_->requiresPrepair() ) {
289 >      loopStart = PREPAIR_LOOP;
290 >    } else {
291 >      loopStart = PAIR_LOOP;
292      }
293  
294 <    doForceLoop( pos,
295 <                 rc,
296 <                 A,
297 <                 electroFrame,
298 <                 frc,
299 <                 trq,
300 <                 tau.getArrayPointer(),
296 <                 longRangePotential,
297 <                 &passedCalcPot,
298 <                 &passedCalcStress,
299 <                 &isError );
294 >    for (int iLoop = loopStart; iLoop < loopEnd; iLoop++) {
295 >      
296 >      if (iLoop == loopStart) {
297 >        bool update_nlist = fDecomp_->checkNeighborList();
298 >        if (update_nlist)
299 >          neighborList = fDecomp_->buildNeighborList();
300 >      }
301  
302 <    if( isError ){
303 <      sprintf( painCave.errMsg,
304 <               "Error returned from the fortran force calculation.\n" );
305 <      painCave.isFatal = 1;
306 <      simError();
302 >      for (vector<pair<int, int> >::iterator it = neighborList.begin();
303 >             it != neighborList.end(); ++it) {
304 >        
305 >        cg1 = (*it).first;
306 >        cg2 = (*it).second;
307 >
308 >        gtypes = fDecomp_->getGroupTypes(cg1, cg2);
309 >        d_grp  = fDecomp_->getIntergroupVector(cg1, cg2);
310 >        curSnapshot->wrapVector(d_grp);        
311 >        rgrpsq = d_grp.lengthSquare();
312 >        rCutSq = groupCutoffMap[gtypes].first;
313 >
314 >        if (rgrpsq < rCutSq) {
315 >          *(idat.rcut) = groupCutoffMap[gtypes].second;
316 >          if (iLoop == PAIR_LOOP) {
317 >            vij *= 0.0;
318 >            fij = V3Zero;
319 >          }
320 >          
321 >          in_switching_region = swfun_->getSwitch(rgrpsq, *(idat.sw), dswdr,
322 >                                                  rgrp);              
323 >          atomListRow = fDecomp_->getAtomsInGroupRow(cg1);
324 >          atomListColumn = fDecomp_->getAtomsInGroupColumn(cg2);
325 >
326 >          for (vector<int>::iterator ia = atomListRow.begin();
327 >               ia != atomListRow.end(); ++ia) {            
328 >            atom1 = (*ia);
329 >            
330 >            for (vector<int>::iterator jb = atomListColumn.begin();
331 >                 jb != atomListColumn.end(); ++jb) {              
332 >              atom2 = (*jb);
333 >              
334 >              if (!fDecomp_->skipAtomPair(atom1, atom2)) {
335 >                
336 >                pot *= 0.0;
337 >
338 >                idat = fDecomp_->fillInteractionData(atom1, atom2);
339 >                *(idat.pot) = pot;
340 >
341 >                if (atomListRow.size() == 1 && atomListColumn.size() == 1) {
342 >                  *(idat.d) = d_grp;
343 >                  *(idat.r2) = rgrpsq;
344 >                } else {
345 >                  *(idat.d) = fDecomp_->getInteratomicVector(atom1, atom2);
346 >                  curSnapshot->wrapVector( *(idat.d) );
347 >                  *(idat.r2) = idat.d->lengthSquare();
348 >                }
349 >                
350 >                *(idat.rij) = sqrt( *(idat.r2) );
351 >              
352 >                if (iLoop == PREPAIR_LOOP) {
353 >                  interactionMan_->doPrePair(idat);
354 >                } else {
355 >                  interactionMan_->doPair(idat);
356 >                  fDecomp_->unpackInteractionData(idat, atom1, atom2);
357 >                  vij += *(idat.vpair);
358 >                  fij += *(idat.f1);
359 >                  tau -= outProduct( *(idat.d), *(idat.f1));
360 >                }
361 >              }
362 >            }
363 >          }
364 >
365 >          if (iLoop == PAIR_LOOP) {
366 >            if (in_switching_region) {
367 >              swderiv = vij * dswdr / rgrp;
368 >              fg = swderiv * d_grp;
369 >
370 >              fij += fg;
371 >
372 >              if (atomListRow.size() == 1 && atomListColumn.size() == 1) {
373 >                tau -= outProduct( *(idat.d), fg);
374 >              }
375 >          
376 >              for (vector<int>::iterator ia = atomListRow.begin();
377 >                   ia != atomListRow.end(); ++ia) {            
378 >                atom1 = (*ia);                
379 >                mf = fDecomp_->getMassFactorRow(atom1);
380 >                // fg is the force on atom ia due to cutoff group's
381 >                // presence in switching region
382 >                fg = swderiv * d_grp * mf;
383 >                fDecomp_->addForceToAtomRow(atom1, fg);
384 >
385 >                if (atomListRow.size() > 1) {
386 >                  if (info_->usesAtomicVirial()) {
387 >                    // find the distance between the atom
388 >                    // and the center of the cutoff group:
389 >                    dag = fDecomp_->getAtomToGroupVectorRow(atom1, cg1);
390 >                    tau -= outProduct(dag, fg);
391 >                  }
392 >                }
393 >              }
394 >              for (vector<int>::iterator jb = atomListColumn.begin();
395 >                   jb != atomListColumn.end(); ++jb) {              
396 >                atom2 = (*jb);
397 >                mf = fDecomp_->getMassFactorColumn(atom2);
398 >                // fg is the force on atom jb due to cutoff group's
399 >                // presence in switching region
400 >                fg = -swderiv * d_grp * mf;
401 >                fDecomp_->addForceToAtomColumn(atom2, fg);
402 >
403 >                if (atomListColumn.size() > 1) {
404 >                  if (info_->usesAtomicVirial()) {
405 >                    // find the distance between the atom
406 >                    // and the center of the cutoff group:
407 >                    dag = fDecomp_->getAtomToGroupVectorColumn(atom2, cg2);
408 >                    tau -= outProduct(dag, fg);
409 >                  }
410 >                }
411 >              }
412 >            }
413 >            //if (!SIM_uses_AtomicVirial) {
414 >            //  tau -= outProduct(d_grp, fij);
415 >            //}
416 >          }
417 >        }
418 >      }
419 >
420 >      if (iLoop == PREPAIR_LOOP) {
421 >        if (info_->requiresPrepair()) {            
422 >          fDecomp_->collectIntermediateData();
423 >
424 >          for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) {
425 >            sdat = fDecomp_->fillSelfData(atom1);
426 >            interactionMan_->doPreForce(sdat);
427 >          }
428 >
429 >          fDecomp_->distributeIntermediateData();        
430 >        }
431 >      }
432 >
433      }
434 <    for (int i=0; i<LR_POT_TYPES;i++){
435 <      lrPot += longRangePotential[i]; //Quick hack
434 >    
435 >    fDecomp_->collectData();
436 >    
437 >    if ( info_->requiresSkipCorrection() ) {
438 >      
439 >      for (int atom1 = 0; atom1 < fDecomp_->getNAtomsInRow(); atom1++) {
440 >
441 >        vector<int> skipList = fDecomp_->getSkipsForRowAtom( atom1 );
442 >        
443 >        for (vector<int>::iterator jb = skipList.begin();
444 >             jb != skipList.end(); ++jb) {        
445 >    
446 >          atom2 = (*jb);
447 >          idat = fDecomp_->fillSkipData(atom1, atom2);
448 >          interactionMan_->doSkipCorrection(idat);
449 >
450 >        }
451 >      }
452      }
453 +    
454 +    if (info_->requiresSelfCorrection()) {
455  
456 +      for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) {          
457 +        sdat = fDecomp_->fillSelfData(atom1);
458 +        interactionMan_->doSelfCorrection(sdat);
459 +      }
460 +
461 +    }
462 +
463 +    longRangePotential = fDecomp_->getLongRangePotential();
464 +    lrPot = longRangePotential.sum();
465 +
466      //store the tau and long range potential    
467      curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot;
468 <    curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VDW_POT];
469 <    curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_POT];
315 <
316 <    curSnapshot->statData.setTau(tau);
468 >    curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VANDERWAALS_FAMILY];
469 >    curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_FAMILY];
470    }
471  
472 <
472 >  
473    void ForceManager::postCalculation() {
474      SimInfo::MoleculeIterator mi;
475      Molecule* mol;
476      Molecule::RigidBodyIterator rbIter;
477      RigidBody* rb;
478 +    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
479      
480      // collect the atomic forces onto rigid bodies
481 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
482 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
483 <        rb->calcForcesAndTorques();
481 >    
482 >    for (mol = info_->beginMolecule(mi); mol != NULL;
483 >         mol = info_->nextMolecule(mi)) {
484 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
485 >           rb = mol->nextRigidBody(rbIter)) {
486 >        Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial();
487 >        tau += rbTau;
488        }
489      }
490 <
490 >    
491 > #ifdef IS_MPI
492 >    Mat3x3d tmpTau(tau);
493 >    MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(),
494 >                  9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
495 > #endif
496 >    curSnapshot->statData.setTau(tau);
497    }
498  
499 < } //end namespace oopse
499 > } //end namespace OpenMD

Comparing:
trunk/src/brains/ForceManager.cpp (property svn:keywords), Revision 770 by tim, Fri Dec 2 15:38:03 2005 UTC vs.
branches/development/src/brains/ForceManager.cpp (property svn:keywords), Revision 1575 by gezelter, Fri Jun 3 21:39:49 2011 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines