ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/ForceManager.cpp
(Generate patch)

Comparing:
trunk/src/brains/ForceManager.cpp (file contents), Revision 770 by tim, Fri Dec 2 15:38:03 2005 UTC vs.
branches/development/src/brains/ForceManager.cpp (file contents), Revision 1593 by gezelter, Fri Jul 15 21:35:14 2011 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42   /**
# Line 47 | Line 47
47   * @version 1.0
48   */
49  
50 +
51   #include "brains/ForceManager.hpp"
52   #include "primitives/Molecule.hpp"
53 < #include "UseTheForce/doForces_interface.h"
53 < #define __C
54 < #include "UseTheForce/DarkSide/fInteractionMap.h"
53 > #define __OPENMD_C
54   #include "utils/simError.h"
55 + #include "primitives/Bond.hpp"
56   #include "primitives/Bend.hpp"
57 < #include "primitives/Bend.hpp"
58 < namespace oopse {
57 > #include "primitives/Torsion.hpp"
58 > #include "primitives/Inversion.hpp"
59 > #include "nonbonded/NonBondedInteraction.hpp"
60 > #include "parallel/ForceMatrixDecomposition.hpp"
61  
62 < /*
63 <  struct BendOrderStruct {
64 <    Bend* bend;
63 <    BendDataSet dataSet;
64 <  };
65 <  struct TorsionOrderStruct {
66 <    Torsion* torsion;
67 <    TorsionDataSet dataSet;
68 <  };
62 > #include <cstdio>
63 > #include <iostream>
64 > #include <iomanip>
65  
66 <  bool  BendSortFunctor(const BendOrderStruct& b1, const BendOrderStruct& b2) {
67 <    return b1.dataSet.deltaV < b2.dataSet.deltaV;
66 > using namespace std;
67 > namespace OpenMD {
68 >  
69 >  ForceManager::ForceManager(SimInfo * info) : info_(info) {
70 >    forceField_ = info_->getForceField();
71 >    interactionMan_ = new InteractionManager();
72 >    fDecomp_ = new ForceMatrixDecomposition(info_, interactionMan_);
73    }
74  
75 <  bool  TorsionSortFunctor(const TorsionOrderStruct& t1, const TorsionOrderStruct& t2) {
76 <    return t1.dataSet.deltaV < t2.dataSet.deltaV;
77 <  }
78 <  */
79 <  void ForceManager::calcForces(bool needPotential, bool needStress) {
75 >  /**
76 >   * setupCutoffs
77 >   *
78 >   * Sets the values of cutoffRadius, switchingRadius, cutoffMethod,
79 >   * and cutoffPolicy
80 >   *
81 >   * cutoffRadius : realType
82 >   *  If the cutoffRadius was explicitly set, use that value.
83 >   *  If the cutoffRadius was not explicitly set:
84 >   *      Are there electrostatic atoms?  Use 12.0 Angstroms.
85 >   *      No electrostatic atoms?  Poll the atom types present in the
86 >   *      simulation for suggested cutoff values (e.g. 2.5 * sigma).
87 >   *      Use the maximum suggested value that was found.
88 >   *
89 >   * cutoffMethod : (one of HARD, SWITCHED, SHIFTED_FORCE,
90 >   *                        or SHIFTED_POTENTIAL)
91 >   *      If cutoffMethod was explicitly set, use that choice.
92 >   *      If cutoffMethod was not explicitly set, use SHIFTED_FORCE
93 >   *
94 >   * cutoffPolicy : (one of MIX, MAX, TRADITIONAL)
95 >   *      If cutoffPolicy was explicitly set, use that choice.
96 >   *      If cutoffPolicy was not explicitly set, use TRADITIONAL
97 >   *
98 >   * switchingRadius : realType
99 >   *  If the cutoffMethod was set to SWITCHED:
100 >   *      If the switchingRadius was explicitly set, use that value
101 >   *          (but do a sanity check first).
102 >   *      If the switchingRadius was not explicitly set: use 0.85 *
103 >   *      cutoffRadius_
104 >   *  If the cutoffMethod was not set to SWITCHED:
105 >   *      Set switchingRadius equal to cutoffRadius for safety.
106 >   */
107 >  void ForceManager::setupCutoffs() {
108 >    
109 >    Globals* simParams_ = info_->getSimParams();
110 >    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
111 >    
112 >    if (simParams_->haveCutoffRadius()) {
113 >      rCut_ = simParams_->getCutoffRadius();
114 >    } else {      
115 >      if (info_->usesElectrostaticAtoms()) {
116 >        sprintf(painCave.errMsg,
117 >                "ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n"
118 >                "\tOpenMD will use a default value of 12.0 angstroms"
119 >                "\tfor the cutoffRadius.\n");
120 >        painCave.isFatal = 0;
121 >        painCave.severity = OPENMD_INFO;
122 >        simError();
123 >        rCut_ = 12.0;
124 >      } else {
125 >        RealType thisCut;
126 >        set<AtomType*>::iterator i;
127 >        set<AtomType*> atomTypes;
128 >        atomTypes = info_->getSimulatedAtomTypes();        
129 >        for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
130 >          thisCut = interactionMan_->getSuggestedCutoffRadius((*i));
131 >          rCut_ = max(thisCut, rCut_);
132 >        }
133 >        sprintf(painCave.errMsg,
134 >                "ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n"
135 >                "\tOpenMD will use %lf angstroms.\n",
136 >                rCut_);
137 >        painCave.isFatal = 0;
138 >        painCave.severity = OPENMD_INFO;
139 >        simError();
140 >      }
141 >    }
142  
143 <    if (!info_->isFortranInitialized()) {
144 <      info_->update();
143 >    fDecomp_->setUserCutoff(rCut_);
144 >    interactionMan_->setCutoffRadius(rCut_);
145 >
146 >    map<string, CutoffMethod> stringToCutoffMethod;
147 >    stringToCutoffMethod["HARD"] = HARD;
148 >    stringToCutoffMethod["SWITCHED"] = SWITCHED;
149 >    stringToCutoffMethod["SHIFTED_POTENTIAL"] = SHIFTED_POTENTIAL;    
150 >    stringToCutoffMethod["SHIFTED_FORCE"] = SHIFTED_FORCE;
151 >  
152 >    if (simParams_->haveCutoffMethod()) {
153 >      string cutMeth = toUpperCopy(simParams_->getCutoffMethod());
154 >      map<string, CutoffMethod>::iterator i;
155 >      i = stringToCutoffMethod.find(cutMeth);
156 >      if (i == stringToCutoffMethod.end()) {
157 >        sprintf(painCave.errMsg,
158 >                "ForceManager::setupCutoffs: Could not find chosen cutoffMethod %s\n"
159 >                "\tShould be one of: "
160 >                "HARD, SWITCHED, SHIFTED_POTENTIAL, or SHIFTED_FORCE\n",
161 >                cutMeth.c_str());
162 >        painCave.isFatal = 1;
163 >        painCave.severity = OPENMD_ERROR;
164 >        simError();
165 >      } else {
166 >        cutoffMethod_ = i->second;
167 >      }
168 >    } else {
169 >      sprintf(painCave.errMsg,
170 >              "ForceManager::setupCutoffs: No value was set for the cutoffMethod.\n"
171 >              "\tOpenMD will use SHIFTED_FORCE.\n");
172 >      painCave.isFatal = 0;
173 >      painCave.severity = OPENMD_INFO;
174 >      simError();
175 >      cutoffMethod_ = SHIFTED_FORCE;        
176      }
177  
178 <    preCalculation();
179 <    
180 <    calcShortRangeInteraction();
178 >    map<string, CutoffPolicy> stringToCutoffPolicy;
179 >    stringToCutoffPolicy["MIX"] = MIX;
180 >    stringToCutoffPolicy["MAX"] = MAX;
181 >    stringToCutoffPolicy["TRADITIONAL"] = TRADITIONAL;    
182  
183 <    calcLongRangeInteraction(needPotential, needStress);
183 >    std::string cutPolicy;
184 >    if (forceFieldOptions_.haveCutoffPolicy()){
185 >      cutPolicy = forceFieldOptions_.getCutoffPolicy();
186 >    }else if (simParams_->haveCutoffPolicy()) {
187 >      cutPolicy = simParams_->getCutoffPolicy();
188 >    }
189  
190 <    postCalculation();
190 >    if (!cutPolicy.empty()){
191 >      toUpper(cutPolicy);
192 >      map<string, CutoffPolicy>::iterator i;
193 >      i = stringToCutoffPolicy.find(cutPolicy);
194  
195 < /*
196 <    std::vector<BendOrderStruct> bendOrderStruct;
197 <    for(std::map<Bend*, BendDataSet>::iterator i = bendDataSets.begin(); i != bendDataSets.end(); ++i) {
198 <        BendOrderStruct tmp;
199 <        tmp.bend= const_cast<Bend*>(i->first);
200 <        tmp.dataSet = i->second;
201 <        bendOrderStruct.push_back(tmp);
195 >      if (i == stringToCutoffPolicy.end()) {
196 >        sprintf(painCave.errMsg,
197 >                "ForceManager::setupCutoffs: Could not find chosen cutoffPolicy %s\n"
198 >                "\tShould be one of: "
199 >                "MIX, MAX, or TRADITIONAL\n",
200 >                cutPolicy.c_str());
201 >        painCave.isFatal = 1;
202 >        painCave.severity = OPENMD_ERROR;
203 >        simError();
204 >      } else {
205 >        cutoffPolicy_ = i->second;
206 >      }
207 >    } else {
208 >      sprintf(painCave.errMsg,
209 >              "ForceManager::setupCutoffs: No value was set for the cutoffPolicy.\n"
210 >              "\tOpenMD will use TRADITIONAL.\n");
211 >      painCave.isFatal = 0;
212 >      painCave.severity = OPENMD_INFO;
213 >      simError();
214 >      cutoffPolicy_ = TRADITIONAL;        
215      }
216  
217 <    std::vector<TorsionOrderStruct> torsionOrderStruct;
218 <    for(std::map<Torsion*, TorsionDataSet>::iterator j = torsionDataSets.begin(); j != torsionDataSets.end(); ++j) {
219 <        TorsionOrderStruct tmp;
220 <        tmp.torsion = const_cast<Torsion*>(j->first);
221 <        tmp.dataSet = j->second;
222 <        torsionOrderStruct.push_back(tmp);
217 >    fDecomp_->setCutoffPolicy(cutoffPolicy_);
218 >        
219 >    // create the switching function object:
220 >
221 >    switcher_ = new SwitchingFunction();
222 >  
223 >    if (cutoffMethod_ == SWITCHED) {
224 >      if (simParams_->haveSwitchingRadius()) {
225 >        rSwitch_ = simParams_->getSwitchingRadius();
226 >        if (rSwitch_ > rCut_) {        
227 >          sprintf(painCave.errMsg,
228 >                  "ForceManager::setupCutoffs: switchingRadius (%f) is larger "
229 >                  "than the cutoffRadius(%f)\n", rSwitch_, rCut_);
230 >          painCave.isFatal = 1;
231 >          painCave.severity = OPENMD_ERROR;
232 >          simError();
233 >        }
234 >      } else {      
235 >        rSwitch_ = 0.85 * rCut_;
236 >        sprintf(painCave.errMsg,
237 >                "ForceManager::setupCutoffs: No value was set for the switchingRadius.\n"
238 >                "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n"
239 >                "\tswitchingRadius = %f. for this simulation\n", rSwitch_);
240 >        painCave.isFatal = 0;
241 >        painCave.severity = OPENMD_WARNING;
242 >        simError();
243 >      }
244 >    } else {
245 >      if (simParams_->haveSwitchingRadius()) {
246 >        map<string, CutoffMethod>::const_iterator it;
247 >        string theMeth;
248 >        for (it = stringToCutoffMethod.begin();
249 >             it != stringToCutoffMethod.end(); ++it) {
250 >          if (it->second == cutoffMethod_) {
251 >            theMeth = it->first;
252 >            break;
253 >          }
254 >        }
255 >        sprintf(painCave.errMsg,
256 >                "ForceManager::setupCutoffs: the cutoffMethod (%s)\n"
257 >                "\tis not set to SWITCHED, so switchingRadius value\n"
258 >                "\twill be ignored for this simulation\n", theMeth.c_str());
259 >        painCave.isFatal = 0;
260 >        painCave.severity = OPENMD_WARNING;
261 >        simError();
262 >      }
263 >
264 >      rSwitch_ = rCut_;
265      }
266      
267 <    std::sort(bendOrderStruct.begin(), bendOrderStruct.end(), std::ptr_fun(BendSortFunctor));
268 <    std::sort(torsionOrderStruct.begin(), torsionOrderStruct.end(), std::ptr_fun(TorsionSortFunctor));
269 <    std::cout << "bend" << std::endl;
270 <    for (std::vector<BendOrderStruct>::iterator k = bendOrderStruct.begin(); k != bendOrderStruct.end(); ++k) {
271 <        Bend* bend = k->bend;
272 <        std::cout << "atom1=" <<bend->getAtomA()->getGlobalIndex() << ",atom2 = "<< bend->getAtomB()->getGlobalIndex() << ",atom3="<<bend->getAtomC()->getGlobalIndex() << " ";
273 <        std::cout << "deltaV=" << k->dataSet.deltaV << ",p_theta=" << k->dataSet.prev.angle <<",p_pot=" << k->dataSet.prev.potential<< ",c_theta=" << k->dataSet.curr.angle << ", c_pot = " << k->dataSet.curr.potential <<std::endl;
267 >    // Default to cubic switching function.
268 >    sft_ = cubic;
269 >    if (simParams_->haveSwitchingFunctionType()) {
270 >      string funcType = simParams_->getSwitchingFunctionType();
271 >      toUpper(funcType);
272 >      if (funcType == "CUBIC") {
273 >        sft_ = cubic;
274 >      } else {
275 >        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
276 >          sft_ = fifth_order_poly;
277 >        } else {
278 >          // throw error        
279 >          sprintf( painCave.errMsg,
280 >                   "ForceManager::setupSwitching : Unknown switchingFunctionType. (Input file specified %s .)\n"
281 >                   "\tswitchingFunctionType must be one of: "
282 >                   "\"cubic\" or \"fifth_order_polynomial\".",
283 >                   funcType.c_str() );
284 >          painCave.isFatal = 1;
285 >          painCave.severity = OPENMD_ERROR;
286 >          simError();
287 >        }          
288 >      }
289      }
290 <    std::cout << "torsio" << std::endl;
291 <    for (std::vector<TorsionOrderStruct>::iterator l = torsionOrderStruct.begin(); l != torsionOrderStruct.end(); ++l) {
292 <        Torsion* torsion = l->torsion;
293 <        std::cout << "atom1=" <<torsion->getAtomA()->getGlobalIndex() << ",atom2 = "<< torsion->getAtomB()->getGlobalIndex() << ",atom3="<<torsion->getAtomC()->getGlobalIndex() << ",atom4="<<torsion->getAtomD()->getGlobalIndex()<< " ";
294 <        std::cout << "deltaV=" << l->dataSet.deltaV << ",p_theta=" << l->dataSet.prev.angle <<",p_pot=" << l->dataSet.prev.potential<< ",c_theta=" << l->dataSet.curr.angle << ", c_pot = " << l->dataSet.curr.potential <<std::endl;
290 >    switcher_->setSwitchType(sft_);
291 >    switcher_->setSwitch(rSwitch_, rCut_);
292 >    interactionMan_->setSwitchingRadius(rSwitch_);
293 >  }
294 >  
295 >  void ForceManager::initialize() {
296 >
297 >    if (!info_->isTopologyDone()) {
298 >
299 >      info_->update();
300 >      interactionMan_->setSimInfo(info_);
301 >      interactionMan_->initialize();
302 >
303 >      // We want to delay the cutoffs until after the interaction
304 >      // manager has set up the atom-atom interactions so that we can
305 >      // query them for suggested cutoff values
306 >      setupCutoffs();
307 >
308 >      info_->prepareTopology();      
309      }
310 <   */
310 >
311 >    ForceFieldOptions& fopts = forceField_->getForceFieldOptions();
312 >    
313 >    // Force fields can set options on how to scale van der Waals and
314 >    // electrostatic interactions for atoms connected via bonds, bends
315 >    // and torsions in this case the topological distance between
316 >    // atoms is:
317 >    // 0 = topologically unconnected
318 >    // 1 = bonded together
319 >    // 2 = connected via a bend
320 >    // 3 = connected via a torsion
321 >    
322 >    vdwScale_.reserve(4);
323 >    fill(vdwScale_.begin(), vdwScale_.end(), 0.0);
324 >
325 >    electrostaticScale_.reserve(4);
326 >    fill(electrostaticScale_.begin(), electrostaticScale_.end(), 0.0);
327 >
328 >    vdwScale_[0] = 1.0;
329 >    vdwScale_[1] = fopts.getvdw12scale();
330 >    vdwScale_[2] = fopts.getvdw13scale();
331 >    vdwScale_[3] = fopts.getvdw14scale();
332 >    
333 >    electrostaticScale_[0] = 1.0;
334 >    electrostaticScale_[1] = fopts.getelectrostatic12scale();
335 >    electrostaticScale_[2] = fopts.getelectrostatic13scale();
336 >    electrostaticScale_[3] = fopts.getelectrostatic14scale();    
337 >    
338 >    fDecomp_->distributeInitialData();
339 >
340 >    initialized_ = true;
341 >
342    }
343  
344 +  void ForceManager::calcForces() {
345 +    
346 +    if (!initialized_) initialize();
347 +
348 +    preCalculation();  
349 +    shortRangeInteractions();
350 +    longRangeInteractions();
351 +    postCalculation();    
352 +  }
353 +  
354    void ForceManager::preCalculation() {
355      SimInfo::MoleculeIterator mi;
356      Molecule* mol;
# Line 130 | Line 358 | namespace oopse {
358      Atom* atom;
359      Molecule::RigidBodyIterator rbIter;
360      RigidBody* rb;
361 +    Molecule::CutoffGroupIterator ci;
362 +    CutoffGroup* cg;
363      
364      // forces are zeroed here, before any are accumulated.
365 <    // NOTE: do not rezero the forces in Fortran.
366 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
367 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
365 >    
366 >    for (mol = info_->beginMolecule(mi); mol != NULL;
367 >         mol = info_->nextMolecule(mi)) {
368 >      for(atom = mol->beginAtom(ai); atom != NULL;
369 >          atom = mol->nextAtom(ai)) {
370          atom->zeroForcesAndTorques();
371        }
372 <        
372 >      
373        //change the positions of atoms which belong to the rigidbodies
374 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
374 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
375 >           rb = mol->nextRigidBody(rbIter)) {
376          rb->zeroForcesAndTorques();
377        }        
378 +      
379 +      if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){
380 +        for(cg = mol->beginCutoffGroup(ci); cg != NULL;
381 +            cg = mol->nextCutoffGroup(ci)) {
382 +          //calculate the center of mass of cutoff group
383 +          cg->updateCOM();
384 +        }
385 +      }      
386      }
387      
388 +    // Zero out the stress tensor
389 +    tau *= 0.0;
390 +    
391    }
392 <
393 <  void ForceManager::calcShortRangeInteraction() {
392 >  
393 >  void ForceManager::shortRangeInteractions() {
394      Molecule* mol;
395      RigidBody* rb;
396      Bond* bond;
397      Bend* bend;
398      Torsion* torsion;
399 +    Inversion* inversion;
400      SimInfo::MoleculeIterator mi;
401      Molecule::RigidBodyIterator rbIter;
402      Molecule::BondIterator bondIter;;
403      Molecule::BendIterator  bendIter;
404      Molecule::TorsionIterator  torsionIter;
405 <    double bondPotential = 0.0;
406 <    double bendPotential = 0.0;
407 <    double torsionPotential = 0.0;
405 >    Molecule::InversionIterator  inversionIter;
406 >    RealType bondPotential = 0.0;
407 >    RealType bendPotential = 0.0;
408 >    RealType torsionPotential = 0.0;
409 >    RealType inversionPotential = 0.0;
410  
411      //calculate short range interactions    
412 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
412 >    for (mol = info_->beginMolecule(mi); mol != NULL;
413 >         mol = info_->nextMolecule(mi)) {
414  
415        //change the positions of atoms which belong to the rigidbodies
416 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
417 <          rb->updateAtoms();
416 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
417 >           rb = mol->nextRigidBody(rbIter)) {
418 >        rb->updateAtoms();
419        }
420  
421 <      for (bond = mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
421 >      for (bond = mol->beginBond(bondIter); bond != NULL;
422 >           bond = mol->nextBond(bondIter)) {
423          bond->calcForce();
424          bondPotential += bond->getPotential();
425        }
426  
427 <
428 <      for (bend = mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
429 <
430 <          double angle;
431 <            bend->calcForce(angle);
432 <          double currBendPot = bend->getPotential();          
433 <            bendPotential += bend->getPotential();
434 <          std::map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend);
435 <          if (i == bendDataSets.end()) {
436 <            BendDataSet dataSet;
437 <            dataSet.prev.angle = dataSet.curr.angle = angle;
438 <            dataSet.prev.potential = dataSet.curr.potential = currBendPot;
439 <            dataSet.deltaV = 0.0;
440 <            bendDataSets.insert(std::map<Bend*, BendDataSet>::value_type(bend, dataSet));
441 <          }else {
442 <            i->second.prev.angle = i->second.curr.angle;
443 <            i->second.prev.potential = i->second.curr.potential;
444 <            i->second.curr.angle = angle;
445 <            i->second.curr.potential = currBendPot;
446 <            i->second.deltaV =  fabs(i->second.curr.potential -  i->second.prev.potential);
447 <          }
427 >      for (bend = mol->beginBend(bendIter); bend != NULL;
428 >           bend = mol->nextBend(bendIter)) {
429 >        
430 >        RealType angle;
431 >        bend->calcForce(angle);
432 >        RealType currBendPot = bend->getPotential();          
433 >        
434 >        bendPotential += bend->getPotential();
435 >        map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend);
436 >        if (i == bendDataSets.end()) {
437 >          BendDataSet dataSet;
438 >          dataSet.prev.angle = dataSet.curr.angle = angle;
439 >          dataSet.prev.potential = dataSet.curr.potential = currBendPot;
440 >          dataSet.deltaV = 0.0;
441 >          bendDataSets.insert(map<Bend*, BendDataSet>::value_type(bend,
442 >                                                                  dataSet));
443 >        }else {
444 >          i->second.prev.angle = i->second.curr.angle;
445 >          i->second.prev.potential = i->second.curr.potential;
446 >          i->second.curr.angle = angle;
447 >          i->second.curr.potential = currBendPot;
448 >          i->second.deltaV =  fabs(i->second.curr.potential -  
449 >                                   i->second.prev.potential);
450 >        }
451        }
452 <
453 <      for (torsion = mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
454 <        double angle;
455 <          torsion->calcForce(angle);
456 <        double currTorsionPot = torsion->getPotential();
457 <          torsionPotential += torsion->getPotential();
458 <          std::map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion);
459 <          if (i == torsionDataSets.end()) {
460 <            TorsionDataSet dataSet;
461 <            dataSet.prev.angle = dataSet.curr.angle = angle;
462 <            dataSet.prev.potential = dataSet.curr.potential = currTorsionPot;
463 <            dataSet.deltaV = 0.0;
464 <            torsionDataSets.insert(std::map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet));
465 <          }else {
466 <            i->second.prev.angle = i->second.curr.angle;
467 <            i->second.prev.potential = i->second.curr.potential;
468 <            i->second.curr.angle = angle;
469 <            i->second.curr.potential = currTorsionPot;
470 <            i->second.deltaV =  fabs(i->second.curr.potential -  i->second.prev.potential);
471 <          }      
472 <      }
473 <
452 >      
453 >      for (torsion = mol->beginTorsion(torsionIter); torsion != NULL;
454 >           torsion = mol->nextTorsion(torsionIter)) {
455 >        RealType angle;
456 >        torsion->calcForce(angle);
457 >        RealType currTorsionPot = torsion->getPotential();
458 >        torsionPotential += torsion->getPotential();
459 >        map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion);
460 >        if (i == torsionDataSets.end()) {
461 >          TorsionDataSet dataSet;
462 >          dataSet.prev.angle = dataSet.curr.angle = angle;
463 >          dataSet.prev.potential = dataSet.curr.potential = currTorsionPot;
464 >          dataSet.deltaV = 0.0;
465 >          torsionDataSets.insert(map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet));
466 >        }else {
467 >          i->second.prev.angle = i->second.curr.angle;
468 >          i->second.prev.potential = i->second.curr.potential;
469 >          i->second.curr.angle = angle;
470 >          i->second.curr.potential = currTorsionPot;
471 >          i->second.deltaV =  fabs(i->second.curr.potential -  
472 >                                   i->second.prev.potential);
473 >        }      
474 >      }      
475 >      
476 >      for (inversion = mol->beginInversion(inversionIter);
477 >           inversion != NULL;
478 >           inversion = mol->nextInversion(inversionIter)) {
479 >        RealType angle;
480 >        inversion->calcForce(angle);
481 >        RealType currInversionPot = inversion->getPotential();
482 >        inversionPotential += inversion->getPotential();
483 >        map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion);
484 >        if (i == inversionDataSets.end()) {
485 >          InversionDataSet dataSet;
486 >          dataSet.prev.angle = dataSet.curr.angle = angle;
487 >          dataSet.prev.potential = dataSet.curr.potential = currInversionPot;
488 >          dataSet.deltaV = 0.0;
489 >          inversionDataSets.insert(map<Inversion*, InversionDataSet>::value_type(inversion, dataSet));
490 >        }else {
491 >          i->second.prev.angle = i->second.curr.angle;
492 >          i->second.prev.potential = i->second.curr.potential;
493 >          i->second.curr.angle = angle;
494 >          i->second.curr.potential = currInversionPot;
495 >          i->second.deltaV =  fabs(i->second.curr.potential -  
496 >                                   i->second.prev.potential);
497 >        }      
498 >      }      
499      }
500      
501 <    double  shortRangePotential = bondPotential + bendPotential + torsionPotential;    
501 >    RealType  shortRangePotential = bondPotential + bendPotential +
502 >      torsionPotential +  inversionPotential;    
503      Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
504      curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential;
505      curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential;
506      curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential;
507      curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential;
508 <    
508 >    curSnapshot->statData[Stats::INVERSION_POTENTIAL] = inversionPotential;    
509    }
510 +  
511 +  void ForceManager::longRangeInteractions() {
512  
513 <  void ForceManager::calcLongRangeInteraction(bool needPotential, bool needStress) {
514 <    Snapshot* curSnapshot;
515 <    DataStorage* config;
235 <    double* frc;
236 <    double* pos;
237 <    double* trq;
238 <    double* A;
239 <    double* electroFrame;
240 <    double* rc;
241 <    
242 <    //get current snapshot from SimInfo
243 <    curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
513 >    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
514 >    DataStorage* config = &(curSnapshot->atomData);
515 >    DataStorage* cgConfig = &(curSnapshot->cgData);
516  
245    //get array pointers
246    config = &(curSnapshot->atomData);
247    frc = config->getArrayPointer(DataStorage::dslForce);
248    pos = config->getArrayPointer(DataStorage::dslPosition);
249    trq = config->getArrayPointer(DataStorage::dslTorque);
250    A   = config->getArrayPointer(DataStorage::dslAmat);
251    electroFrame = config->getArrayPointer(DataStorage::dslElectroFrame);
252
517      //calculate the center of mass of cutoff group
518 +
519      SimInfo::MoleculeIterator mi;
520      Molecule* mol;
521      Molecule::CutoffGroupIterator ci;
522      CutoffGroup* cg;
258    Vector3d com;
259    std::vector<Vector3d> rcGroup;
523  
524 <    if(info_->getNCutoffGroups() > 0){
525 <
526 <      for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
527 <        for(cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
528 <          cg->getCOM(com);
529 <          rcGroup.push_back(com);
524 >    if(info_->getNCutoffGroups() > 0){      
525 >      for (mol = info_->beginMolecule(mi); mol != NULL;
526 >           mol = info_->nextMolecule(mi)) {
527 >        for(cg = mol->beginCutoffGroup(ci); cg != NULL;
528 >            cg = mol->nextCutoffGroup(ci)) {
529 >          cerr << "branch1\n";
530 >          cerr << "globind = " << cg->getGlobalIndex() << "\n";
531 >          cg->updateCOM();
532          }
533 <      }// end for (mol)
269 <      
270 <      rc = rcGroup[0].getArrayPointer();
533 >      }      
534      } else {
535 <      // center of mass of the group is the same as position of the atom  if cutoff group does not exist
536 <      rc = pos;
535 >      // center of mass of the group is the same as position of the atom  
536 >      // if cutoff group does not exist
537 >      cerr << "branch2\n";
538 >      cgConfig->position = config->position;
539      }
540 <  
541 <    //initialize data before passing to fortran
542 <    double longRangePotential[LR_POT_TYPES];
278 <    double lrPot = 0.0;
540 >
541 >    fDecomp_->zeroWorkArrays();
542 >    fDecomp_->distributeData();
543      
544 <    Mat3x3d tau;
545 <    short int passedCalcPot = needPotential;
546 <    short int passedCalcStress = needStress;
547 <    int isError = 0;
544 >    int cg1, cg2, atom1, atom2, topoDist;
545 >    Vector3d d_grp, dag, d;
546 >    RealType rgrpsq, rgrp, r2, r;
547 >    RealType electroMult, vdwMult;
548 >    RealType vij;
549 >    Vector3d fij, fg, f1;
550 >    tuple3<RealType, RealType, RealType> cuts;
551 >    RealType rCutSq;
552 >    bool in_switching_region;
553 >    RealType sw, dswdr, swderiv;
554 >    vector<int> atomListColumn, atomListRow, atomListLocal;
555 >    InteractionData idat;
556 >    SelfData sdat;
557 >    RealType mf;
558 >    RealType lrPot;
559 >    RealType vpair;
560 >    potVec longRangePotential(0.0);
561 >    potVec workPot(0.0);
562  
563 <    for (int i=0; i<LR_POT_TYPES;i++){
564 <      longRangePotential[i]=0.0; //Initialize array
563 >    int loopStart, loopEnd;
564 >
565 >    idat.vdwMult = &vdwMult;
566 >    idat.electroMult = &electroMult;
567 >    idat.pot = &workPot;
568 >    sdat.pot = fDecomp_->getEmbeddingPotential();
569 >    idat.vpair = &vpair;
570 >    idat.f1 = &f1;
571 >    idat.sw = &sw;
572 >    idat.shiftedPot = (cutoffMethod_ == SHIFTED_POTENTIAL) ? true : false;
573 >    idat.shiftedForce = (cutoffMethod_ == SHIFTED_FORCE) ? true : false;
574 >    
575 >    loopEnd = PAIR_LOOP;
576 >    if (info_->requiresPrepair() ) {
577 >      loopStart = PREPAIR_LOOP;
578 >    } else {
579 >      loopStart = PAIR_LOOP;
580      }
581 +  
582 +    for (int iLoop = loopStart; iLoop <= loopEnd; iLoop++) {
583 +    
584 +      if (iLoop == loopStart) {
585 +        bool update_nlist = fDecomp_->checkNeighborList();
586 +        if (update_nlist)
587 +          neighborList = fDecomp_->buildNeighborList();
588 +      }      
589 +        
590 +      for (vector<pair<int, int> >::iterator it = neighborList.begin();
591 +             it != neighborList.end(); ++it) {
592 +                
593 +        cg1 = (*it).first;
594 +        cg2 = (*it).second;
595 +        
596 +        cuts = fDecomp_->getGroupCutoffs(cg1, cg2);
597  
598 <    doForceLoop( pos,
599 <                 rc,
600 <                 A,
292 <                 electroFrame,
293 <                 frc,
294 <                 trq,
295 <                 tau.getArrayPointer(),
296 <                 longRangePotential,
297 <                 &passedCalcPot,
298 <                 &passedCalcStress,
299 <                 &isError );
598 >        d_grp  = fDecomp_->getIntergroupVector(cg1, cg2);
599 >        curSnapshot->wrapVector(d_grp);        
600 >        rgrpsq = d_grp.lengthSquare();
601  
602 <    if( isError ){
603 <      sprintf( painCave.errMsg,
604 <               "Error returned from the fortran force calculation.\n" );
605 <      painCave.isFatal = 1;
606 <      simError();
602 >        rCutSq = cuts.second;
603 >
604 >        if (rgrpsq < rCutSq) {
605 >          idat.rcut = &cuts.first;
606 >          if (iLoop == PAIR_LOOP) {
607 >            vij = 0.0;
608 >            fij = V3Zero;
609 >          }
610 >          
611 >          in_switching_region = switcher_->getSwitch(rgrpsq, sw, dswdr,
612 >                                                     rgrp);
613 >              
614 >          atomListRow = fDecomp_->getAtomsInGroupRow(cg1);
615 >          atomListColumn = fDecomp_->getAtomsInGroupColumn(cg2);
616 >
617 >          for (vector<int>::iterator ia = atomListRow.begin();
618 >               ia != atomListRow.end(); ++ia) {            
619 >            atom1 = (*ia);
620 >            
621 >            for (vector<int>::iterator jb = atomListColumn.begin();
622 >                 jb != atomListColumn.end(); ++jb) {              
623 >              atom2 = (*jb);
624 >
625 >              if (!fDecomp_->skipAtomPair(atom1, atom2)) {
626 >                vpair = 0.0;
627 >                workPot = 0.0;
628 >                f1 = V3Zero;
629 >
630 >                fDecomp_->fillInteractionData(idat, atom1, atom2);
631 >                
632 >                topoDist = fDecomp_->getTopologicalDistance(atom1, atom2);
633 >                vdwMult = vdwScale_[topoDist];
634 >                electroMult = electrostaticScale_[topoDist];
635 >
636 >                if (atomListRow.size() == 1 && atomListColumn.size() == 1) {
637 >                  idat.d = &d_grp;
638 >                  idat.r2 = &rgrpsq;
639 >                  cerr << "dgrp = " << d_grp << "\n";
640 >                } else {
641 >                  d = fDecomp_->getInteratomicVector(atom1, atom2);
642 >                  curSnapshot->wrapVector( d );
643 >                  r2 = d.lengthSquare();
644 >                  cerr << "datm = " << d<< "\n";
645 >                  idat.d = &d;
646 >                  idat.r2 = &r2;
647 >                }
648 >                
649 >                cerr << "idat.d = " << *(idat.d) << "\n";
650 >                r = sqrt( *(idat.r2) );
651 >                idat.rij = &r;
652 >              
653 >                if (iLoop == PREPAIR_LOOP) {
654 >                  interactionMan_->doPrePair(idat);
655 >                } else {
656 >                  interactionMan_->doPair(idat);
657 >                  fDecomp_->unpackInteractionData(idat, atom1, atom2);
658 >
659 >                  cerr << "d = " << *(idat.d) << "\tv=" << vpair << "\tf=" << f1 << "\n";
660 >                  vij += vpair;
661 >                  fij += f1;
662 >                  tau -= outProduct( *(idat.d), f1);
663 >                }
664 >              }
665 >            }
666 >          }
667 >
668 >          if (iLoop == PAIR_LOOP) {
669 >            if (in_switching_region) {
670 >              swderiv = vij * dswdr / rgrp;
671 >              fg = swderiv * d_grp;
672 >              fij += fg;
673 >
674 >              if (atomListRow.size() == 1 && atomListColumn.size() == 1) {
675 >                tau -= outProduct( *(idat.d), fg);
676 >              }
677 >          
678 >              for (vector<int>::iterator ia = atomListRow.begin();
679 >                   ia != atomListRow.end(); ++ia) {            
680 >                atom1 = (*ia);                
681 >                mf = fDecomp_->getMassFactorRow(atom1);
682 >                // fg is the force on atom ia due to cutoff group's
683 >                // presence in switching region
684 >                fg = swderiv * d_grp * mf;
685 >                fDecomp_->addForceToAtomRow(atom1, fg);
686 >
687 >                if (atomListRow.size() > 1) {
688 >                  if (info_->usesAtomicVirial()) {
689 >                    // find the distance between the atom
690 >                    // and the center of the cutoff group:
691 >                    dag = fDecomp_->getAtomToGroupVectorRow(atom1, cg1);
692 >                    tau -= outProduct(dag, fg);
693 >                  }
694 >                }
695 >              }
696 >              for (vector<int>::iterator jb = atomListColumn.begin();
697 >                   jb != atomListColumn.end(); ++jb) {              
698 >                atom2 = (*jb);
699 >                mf = fDecomp_->getMassFactorColumn(atom2);
700 >                // fg is the force on atom jb due to cutoff group's
701 >                // presence in switching region
702 >                fg = -swderiv * d_grp * mf;
703 >                fDecomp_->addForceToAtomColumn(atom2, fg);
704 >
705 >                if (atomListColumn.size() > 1) {
706 >                  if (info_->usesAtomicVirial()) {
707 >                    // find the distance between the atom
708 >                    // and the center of the cutoff group:
709 >                    dag = fDecomp_->getAtomToGroupVectorColumn(atom2, cg2);
710 >                    tau -= outProduct(dag, fg);
711 >                  }
712 >                }
713 >              }
714 >            }
715 >            //if (!SIM_uses_AtomicVirial) {
716 >            //  tau -= outProduct(d_grp, fij);
717 >            //}
718 >          }
719 >        }
720 >      }
721 >
722 >      if (iLoop == PREPAIR_LOOP) {
723 >        if (info_->requiresPrepair()) {
724 >
725 >          fDecomp_->collectIntermediateData();
726 >
727 >          for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) {
728 >            fDecomp_->fillSelfData(sdat, atom1);
729 >            interactionMan_->doPreForce(sdat);
730 >          }
731 >
732 >          fDecomp_->distributeIntermediateData();
733 >
734 >        }
735 >      }
736 >
737      }
738 <    for (int i=0; i<LR_POT_TYPES;i++){
739 <      lrPot += longRangePotential[i]; //Quick hack
738 >    
739 >    fDecomp_->collectData();
740 >        
741 >    if (info_->requiresSelfCorrection()) {
742 >
743 >      for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) {          
744 >        fDecomp_->fillSelfData(sdat, atom1);
745 >        interactionMan_->doSelfCorrection(sdat);
746 >      }
747 >
748      }
749  
750 +    longRangePotential = *(fDecomp_->getEmbeddingPotential()) +
751 +      *(fDecomp_->getPairwisePotential());
752 +
753 +    lrPot = longRangePotential.sum();
754 +
755      //store the tau and long range potential    
756      curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot;
757 <    curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VDW_POT];
758 <    curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_POT];
315 <
316 <    curSnapshot->statData.setTau(tau);
757 >    curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VANDERWAALS_FAMILY];
758 >    curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_FAMILY];
759    }
760  
761 <
761 >  
762    void ForceManager::postCalculation() {
763      SimInfo::MoleculeIterator mi;
764      Molecule* mol;
765      Molecule::RigidBodyIterator rbIter;
766      RigidBody* rb;
767 +    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
768      
769      // collect the atomic forces onto rigid bodies
770 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
771 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
772 <        rb->calcForcesAndTorques();
770 >    
771 >    for (mol = info_->beginMolecule(mi); mol != NULL;
772 >         mol = info_->nextMolecule(mi)) {
773 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
774 >           rb = mol->nextRigidBody(rbIter)) {
775 >        Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial();
776 >        tau += rbTau;
777        }
778      }
779 <
779 >    
780 > #ifdef IS_MPI
781 >    Mat3x3d tmpTau(tau);
782 >    MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(),
783 >                  9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
784 > #endif
785 >    curSnapshot->statData.setTau(tau);
786    }
787  
788 < } //end namespace oopse
788 > } //end namespace OpenMD

Comparing:
trunk/src/brains/ForceManager.cpp (property svn:keywords), Revision 770 by tim, Fri Dec 2 15:38:03 2005 UTC vs.
branches/development/src/brains/ForceManager.cpp (property svn:keywords), Revision 1593 by gezelter, Fri Jul 15 21:35:14 2011 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines