ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/ForceManager.cpp
(Generate patch)

Comparing:
trunk/src/brains/ForceManager.cpp (file contents), Revision 770 by tim, Fri Dec 2 15:38:03 2005 UTC vs.
branches/development/src/brains/ForceManager.cpp (file contents), Revision 1849 by gezelter, Wed Feb 20 13:52:51 2013 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
44   * @file ForceManager.cpp
45   * @author tlin
46   * @date 11/09/2004
46 * @time 10:39am
47   * @version 1.0
48   */
49  
50 +
51   #include "brains/ForceManager.hpp"
52   #include "primitives/Molecule.hpp"
53 < #include "UseTheForce/doForces_interface.h"
53 < #define __C
54 < #include "UseTheForce/DarkSide/fInteractionMap.h"
53 > #define __OPENMD_C
54   #include "utils/simError.h"
55 + #include "primitives/Bond.hpp"
56   #include "primitives/Bend.hpp"
57 < #include "primitives/Bend.hpp"
58 < namespace oopse {
57 > #include "primitives/Torsion.hpp"
58 > #include "primitives/Inversion.hpp"
59 > #include "nonbonded/NonBondedInteraction.hpp"
60 > #include "perturbations/ElectricField.hpp"
61 > #include "parallel/ForceMatrixDecomposition.hpp"
62  
63 < /*
64 <  struct BendOrderStruct {
65 <    Bend* bend;
63 <    BendDataSet dataSet;
64 <  };
65 <  struct TorsionOrderStruct {
66 <    Torsion* torsion;
67 <    TorsionDataSet dataSet;
68 <  };
63 > #include <cstdio>
64 > #include <iostream>
65 > #include <iomanip>
66  
67 <  bool  BendSortFunctor(const BendOrderStruct& b1, const BendOrderStruct& b2) {
68 <    return b1.dataSet.deltaV < b2.dataSet.deltaV;
67 > using namespace std;
68 > namespace OpenMD {
69 >  
70 >  ForceManager::ForceManager(SimInfo * info) : info_(info) {
71 >    forceField_ = info_->getForceField();
72 >    interactionMan_ = new InteractionManager();
73 >    fDecomp_ = new ForceMatrixDecomposition(info_, interactionMan_);
74    }
75  
76 <  bool  TorsionSortFunctor(const TorsionOrderStruct& t1, const TorsionOrderStruct& t2) {
77 <    return t1.dataSet.deltaV < t2.dataSet.deltaV;
78 <  }
79 <  */
80 <  void ForceManager::calcForces(bool needPotential, bool needStress) {
76 >  /**
77 >   * setupCutoffs
78 >   *
79 >   * Sets the values of cutoffRadius, switchingRadius, cutoffMethod,
80 >   * and cutoffPolicy
81 >   *
82 >   * cutoffRadius : realType
83 >   *  If the cutoffRadius was explicitly set, use that value.
84 >   *  If the cutoffRadius was not explicitly set:
85 >   *      Are there electrostatic atoms?  Use 12.0 Angstroms.
86 >   *      No electrostatic atoms?  Poll the atom types present in the
87 >   *      simulation for suggested cutoff values (e.g. 2.5 * sigma).
88 >   *      Use the maximum suggested value that was found.
89 >   *
90 >   * cutoffMethod : (one of HARD, SWITCHED, SHIFTED_FORCE,
91 >   *                        or SHIFTED_POTENTIAL)
92 >   *      If cutoffMethod was explicitly set, use that choice.
93 >   *      If cutoffMethod was not explicitly set, use SHIFTED_FORCE
94 >   *
95 >   * cutoffPolicy : (one of MIX, MAX, TRADITIONAL)
96 >   *      If cutoffPolicy was explicitly set, use that choice.
97 >   *      If cutoffPolicy was not explicitly set, use TRADITIONAL
98 >   *
99 >   * switchingRadius : realType
100 >   *  If the cutoffMethod was set to SWITCHED:
101 >   *      If the switchingRadius was explicitly set, use that value
102 >   *          (but do a sanity check first).
103 >   *      If the switchingRadius was not explicitly set: use 0.85 *
104 >   *      cutoffRadius_
105 >   *  If the cutoffMethod was not set to SWITCHED:
106 >   *      Set switchingRadius equal to cutoffRadius for safety.
107 >   */
108 >  void ForceManager::setupCutoffs() {
109 >    
110 >    Globals* simParams_ = info_->getSimParams();
111 >    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
112 >    int mdFileVersion;
113 >    rCut_ = 0.0; //Needs a value for a later max() call;  
114 >    
115 >    if (simParams_->haveMDfileVersion())
116 >      mdFileVersion = simParams_->getMDfileVersion();
117 >    else
118 >      mdFileVersion = 0;
119 >  
120 >    // We need the list of simulated atom types to figure out cutoffs
121 >    // as well as long range corrections.
122  
123 <    if (!info_->isFortranInitialized()) {
124 <      info_->update();
123 >    set<AtomType*>::iterator i;
124 >    set<AtomType*> atomTypes_;
125 >    atomTypes_ = info_->getSimulatedAtomTypes();
126 >
127 >    if (simParams_->haveCutoffRadius()) {
128 >      rCut_ = simParams_->getCutoffRadius();
129 >    } else {      
130 >      if (info_->usesElectrostaticAtoms()) {
131 >        sprintf(painCave.errMsg,
132 >                "ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n"
133 >                "\tOpenMD will use a default value of 12.0 angstroms"
134 >                "\tfor the cutoffRadius.\n");
135 >        painCave.isFatal = 0;
136 >        painCave.severity = OPENMD_INFO;
137 >        simError();
138 >        rCut_ = 12.0;
139 >      } else {
140 >        RealType thisCut;
141 >        for (i = atomTypes_.begin(); i != atomTypes_.end(); ++i) {
142 >          thisCut = interactionMan_->getSuggestedCutoffRadius((*i));
143 >          rCut_ = max(thisCut, rCut_);
144 >        }
145 >        sprintf(painCave.errMsg,
146 >                "ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n"
147 >                "\tOpenMD will use %lf angstroms.\n",
148 >                rCut_);
149 >        painCave.isFatal = 0;
150 >        painCave.severity = OPENMD_INFO;
151 >        simError();
152 >      }
153      }
154  
155 <    preCalculation();
156 <    
86 <    calcShortRangeInteraction();
155 >    fDecomp_->setUserCutoff(rCut_);
156 >    interactionMan_->setCutoffRadius(rCut_);
157  
158 <    calcLongRangeInteraction(needPotential, needStress);
158 >    map<string, CutoffMethod> stringToCutoffMethod;
159 >    stringToCutoffMethod["HARD"] = HARD;
160 >    stringToCutoffMethod["SWITCHED"] = SWITCHED;
161 >    stringToCutoffMethod["SHIFTED_POTENTIAL"] = SHIFTED_POTENTIAL;    
162 >    stringToCutoffMethod["SHIFTED_FORCE"] = SHIFTED_FORCE;
163 >  
164 >    if (simParams_->haveCutoffMethod()) {
165 >      string cutMeth = toUpperCopy(simParams_->getCutoffMethod());
166 >      map<string, CutoffMethod>::iterator i;
167 >      i = stringToCutoffMethod.find(cutMeth);
168 >      if (i == stringToCutoffMethod.end()) {
169 >        sprintf(painCave.errMsg,
170 >                "ForceManager::setupCutoffs: Could not find chosen cutoffMethod %s\n"
171 >                "\tShould be one of: "
172 >                "HARD, SWITCHED, SHIFTED_POTENTIAL, or SHIFTED_FORCE\n",
173 >                cutMeth.c_str());
174 >        painCave.isFatal = 1;
175 >        painCave.severity = OPENMD_ERROR;
176 >        simError();
177 >      } else {
178 >        cutoffMethod_ = i->second;
179 >      }
180 >    } else {
181 >      if (mdFileVersion > 1) {
182 >        sprintf(painCave.errMsg,
183 >                "ForceManager::setupCutoffs: No value was set for the cutoffMethod.\n"
184 >                "\tOpenMD will use SHIFTED_FORCE.\n");
185 >        painCave.isFatal = 0;
186 >        painCave.severity = OPENMD_INFO;
187 >        simError();
188 >        cutoffMethod_ = SHIFTED_FORCE;        
189 >      } else {
190 >        // handle the case where the old file version was in play
191 >        // (there should be no cutoffMethod, so we have to deduce it
192 >        // from other data).        
193  
194 <    postCalculation();
194 >        sprintf(painCave.errMsg,
195 >                "ForceManager::setupCutoffs : DEPRECATED FILE FORMAT!\n"
196 >                "\tOpenMD found a file which does not set a cutoffMethod.\n"
197 >                "\tOpenMD will attempt to deduce a cutoffMethod using the\n"
198 >                "\tbehavior of the older (version 1) code.  To remove this\n"
199 >                "\twarning, add an explicit cutoffMethod and change the top\n"
200 >                "\tof the file so that it begins with <OpenMD version=2>\n");
201 >        painCave.isFatal = 0;
202 >        painCave.severity = OPENMD_WARNING;
203 >        simError();            
204 >                
205 >        // The old file version tethered the shifting behavior to the
206 >        // electrostaticSummationMethod keyword.
207 >        
208 >        if (simParams_->haveElectrostaticSummationMethod()) {
209 >          string myMethod = simParams_->getElectrostaticSummationMethod();
210 >          toUpper(myMethod);
211 >        
212 >          if (myMethod == "SHIFTED_POTENTIAL") {
213 >            cutoffMethod_ = SHIFTED_POTENTIAL;
214 >          } else if (myMethod == "SHIFTED_FORCE") {
215 >            cutoffMethod_ = SHIFTED_FORCE;
216 >          }
217 >        
218 >          if (simParams_->haveSwitchingRadius())
219 >            rSwitch_ = simParams_->getSwitchingRadius();
220  
221 < /*
222 <    std::vector<BendOrderStruct> bendOrderStruct;
223 <    for(std::map<Bend*, BendDataSet>::iterator i = bendDataSets.begin(); i != bendDataSets.end(); ++i) {
224 <        BendOrderStruct tmp;
225 <        tmp.bend= const_cast<Bend*>(i->first);
226 <        tmp.dataSet = i->second;
227 <        bendOrderStruct.push_back(tmp);
221 >          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
222 >            if (simParams_->haveSwitchingRadius()){
223 >              sprintf(painCave.errMsg,
224 >                      "ForceManager::setupCutoffs : DEPRECATED ERROR MESSAGE\n"
225 >                      "\tA value was set for the switchingRadius\n"
226 >                      "\teven though the electrostaticSummationMethod was\n"
227 >                      "\tset to %s\n", myMethod.c_str());
228 >              painCave.severity = OPENMD_WARNING;
229 >              painCave.isFatal = 1;
230 >              simError();            
231 >            }
232 >          }
233 >          if (abs(rCut_ - rSwitch_) < 0.0001) {
234 >            if (cutoffMethod_ == SHIFTED_FORCE) {              
235 >              sprintf(painCave.errMsg,
236 >                      "ForceManager::setupCutoffs : DEPRECATED BEHAVIOR\n"
237 >                      "\tcutoffRadius and switchingRadius are set to the\n"
238 >                      "\tsame value.  OpenMD will use shifted force\n"
239 >                      "\tpotentials instead of switching functions.\n");
240 >              painCave.isFatal = 0;
241 >              painCave.severity = OPENMD_WARNING;
242 >              simError();            
243 >            } else {
244 >              cutoffMethod_ = SHIFTED_POTENTIAL;
245 >              sprintf(painCave.errMsg,
246 >                      "ForceManager::setupCutoffs : DEPRECATED BEHAVIOR\n"
247 >                      "\tcutoffRadius and switchingRadius are set to the\n"
248 >                      "\tsame value.  OpenMD will use shifted potentials\n"
249 >                      "\tinstead of switching functions.\n");
250 >              painCave.isFatal = 0;
251 >              painCave.severity = OPENMD_WARNING;
252 >              simError();            
253 >            }
254 >          }
255 >        }
256 >      }
257      }
258  
259 <    std::vector<TorsionOrderStruct> torsionOrderStruct;
260 <    for(std::map<Torsion*, TorsionDataSet>::iterator j = torsionDataSets.begin(); j != torsionDataSets.end(); ++j) {
261 <        TorsionOrderStruct tmp;
262 <        tmp.torsion = const_cast<Torsion*>(j->first);
263 <        tmp.dataSet = j->second;
264 <        torsionOrderStruct.push_back(tmp);
265 <    }
266 <    
267 <    std::sort(bendOrderStruct.begin(), bendOrderStruct.end(), std::ptr_fun(BendSortFunctor));
268 <    std::sort(torsionOrderStruct.begin(), torsionOrderStruct.end(), std::ptr_fun(TorsionSortFunctor));
269 <    std::cout << "bend" << std::endl;
270 <    for (std::vector<BendOrderStruct>::iterator k = bendOrderStruct.begin(); k != bendOrderStruct.end(); ++k) {
271 <        Bend* bend = k->bend;
272 <        std::cout << "atom1=" <<bend->getAtomA()->getGlobalIndex() << ",atom2 = "<< bend->getAtomB()->getGlobalIndex() << ",atom3="<<bend->getAtomC()->getGlobalIndex() << " ";
273 <        std::cout << "deltaV=" << k->dataSet.deltaV << ",p_theta=" << k->dataSet.prev.angle <<",p_pot=" << k->dataSet.prev.potential<< ",c_theta=" << k->dataSet.curr.angle << ", c_pot = " << k->dataSet.curr.potential <<std::endl;
274 <    }
275 <    std::cout << "torsio" << std::endl;
276 <    for (std::vector<TorsionOrderStruct>::iterator l = torsionOrderStruct.begin(); l != torsionOrderStruct.end(); ++l) {
277 <        Torsion* torsion = l->torsion;
278 <        std::cout << "atom1=" <<torsion->getAtomA()->getGlobalIndex() << ",atom2 = "<< torsion->getAtomB()->getGlobalIndex() << ",atom3="<<torsion->getAtomC()->getGlobalIndex() << ",atom4="<<torsion->getAtomD()->getGlobalIndex()<< " ";
279 <        std::cout << "deltaV=" << l->dataSet.deltaV << ",p_theta=" << l->dataSet.prev.angle <<",p_pot=" << l->dataSet.prev.potential<< ",c_theta=" << l->dataSet.curr.angle << ", c_pot = " << l->dataSet.curr.potential <<std::endl;
280 <    }
281 <   */
259 >    map<string, CutoffPolicy> stringToCutoffPolicy;
260 >    stringToCutoffPolicy["MIX"] = MIX;
261 >    stringToCutoffPolicy["MAX"] = MAX;
262 >    stringToCutoffPolicy["TRADITIONAL"] = TRADITIONAL;    
263 >
264 >    string cutPolicy;
265 >    if (forceFieldOptions_.haveCutoffPolicy()){
266 >      cutPolicy = forceFieldOptions_.getCutoffPolicy();
267 >    }else if (simParams_->haveCutoffPolicy()) {
268 >      cutPolicy = simParams_->getCutoffPolicy();
269 >    }
270 >
271 >    if (!cutPolicy.empty()){
272 >      toUpper(cutPolicy);
273 >      map<string, CutoffPolicy>::iterator i;
274 >      i = stringToCutoffPolicy.find(cutPolicy);
275 >
276 >      if (i == stringToCutoffPolicy.end()) {
277 >        sprintf(painCave.errMsg,
278 >                "ForceManager::setupCutoffs: Could not find chosen cutoffPolicy %s\n"
279 >                "\tShould be one of: "
280 >                "MIX, MAX, or TRADITIONAL\n",
281 >                cutPolicy.c_str());
282 >        painCave.isFatal = 1;
283 >        painCave.severity = OPENMD_ERROR;
284 >        simError();
285 >      } else {
286 >        cutoffPolicy_ = i->second;
287 >      }
288 >    } else {
289 >      sprintf(painCave.errMsg,
290 >              "ForceManager::setupCutoffs: No value was set for the cutoffPolicy.\n"
291 >              "\tOpenMD will use TRADITIONAL.\n");
292 >      painCave.isFatal = 0;
293 >      painCave.severity = OPENMD_INFO;
294 >      simError();
295 >      cutoffPolicy_ = TRADITIONAL;        
296 >    }
297 >
298 >    fDecomp_->setCutoffPolicy(cutoffPolicy_);
299 >        
300 >    // create the switching function object:
301 >
302 >    switcher_ = new SwitchingFunction();
303 >  
304 >    if (cutoffMethod_ == SWITCHED) {
305 >      if (simParams_->haveSwitchingRadius()) {
306 >        rSwitch_ = simParams_->getSwitchingRadius();
307 >        if (rSwitch_ > rCut_) {        
308 >          sprintf(painCave.errMsg,
309 >                  "ForceManager::setupCutoffs: switchingRadius (%f) is larger "
310 >                  "than the cutoffRadius(%f)\n", rSwitch_, rCut_);
311 >          painCave.isFatal = 1;
312 >          painCave.severity = OPENMD_ERROR;
313 >          simError();
314 >        }
315 >      } else {      
316 >        rSwitch_ = 0.85 * rCut_;
317 >        sprintf(painCave.errMsg,
318 >                "ForceManager::setupCutoffs: No value was set for the switchingRadius.\n"
319 >                "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n"
320 >                "\tswitchingRadius = %f. for this simulation\n", rSwitch_);
321 >        painCave.isFatal = 0;
322 >        painCave.severity = OPENMD_WARNING;
323 >        simError();
324 >      }
325 >    } else {
326 >      if (mdFileVersion > 1) {
327 >        // throw an error if we define a switching radius and don't need one.
328 >        // older file versions should not do this.
329 >        if (simParams_->haveSwitchingRadius()) {
330 >          map<string, CutoffMethod>::const_iterator it;
331 >          string theMeth;
332 >          for (it = stringToCutoffMethod.begin();
333 >               it != stringToCutoffMethod.end(); ++it) {
334 >            if (it->second == cutoffMethod_) {
335 >              theMeth = it->first;
336 >              break;
337 >            }
338 >          }
339 >          sprintf(painCave.errMsg,
340 >                  "ForceManager::setupCutoffs: the cutoffMethod (%s)\n"
341 >                  "\tis not set to SWITCHED, so switchingRadius value\n"
342 >                  "\twill be ignored for this simulation\n", theMeth.c_str());
343 >          painCave.isFatal = 0;
344 >          painCave.severity = OPENMD_WARNING;
345 >          simError();
346 >        }
347 >      }
348 >      rSwitch_ = rCut_;
349 >    }
350 >    
351 >    // Default to cubic switching function.
352 >    sft_ = cubic;
353 >    if (simParams_->haveSwitchingFunctionType()) {
354 >      string funcType = simParams_->getSwitchingFunctionType();
355 >      toUpper(funcType);
356 >      if (funcType == "CUBIC") {
357 >        sft_ = cubic;
358 >      } else {
359 >        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
360 >          sft_ = fifth_order_poly;
361 >        } else {
362 >          // throw error        
363 >          sprintf( painCave.errMsg,
364 >                   "ForceManager::setupSwitching : Unknown switchingFunctionType. (Input file specified %s .)\n"
365 >                   "\tswitchingFunctionType must be one of: "
366 >                   "\"cubic\" or \"fifth_order_polynomial\".",
367 >                   funcType.c_str() );
368 >          painCave.isFatal = 1;
369 >          painCave.severity = OPENMD_ERROR;
370 >          simError();
371 >        }          
372 >      }
373 >    }
374 >    switcher_->setSwitchType(sft_);
375 >    switcher_->setSwitch(rSwitch_, rCut_);
376    }
377  
378 +
379 +
380 +  
381 +  void ForceManager::initialize() {
382 +
383 +    if (!info_->isTopologyDone()) {
384 +
385 +      info_->update();
386 +      interactionMan_->setSimInfo(info_);
387 +      interactionMan_->initialize();
388 +
389 +      // We want to delay the cutoffs until after the interaction
390 +      // manager has set up the atom-atom interactions so that we can
391 +      // query them for suggested cutoff values
392 +      setupCutoffs();
393 +
394 +      info_->prepareTopology();      
395 +
396 +      doParticlePot_ = info_->getSimParams()->getOutputParticlePotential();
397 +      doHeatFlux_ = info_->getSimParams()->getPrintHeatFlux();
398 +      if (doHeatFlux_) doParticlePot_ = true;
399 +
400 +      doElectricField_ = info_->getSimParams()->getOutputElectricField();
401 +  
402 +    }
403 +
404 +    ForceFieldOptions& fopts = forceField_->getForceFieldOptions();
405 +    
406 +    // Force fields can set options on how to scale van der Waals and
407 +    // electrostatic interactions for atoms connected via bonds, bends
408 +    // and torsions in this case the topological distance between
409 +    // atoms is:
410 +    // 0 = topologically unconnected
411 +    // 1 = bonded together
412 +    // 2 = connected via a bend
413 +    // 3 = connected via a torsion
414 +    
415 +    vdwScale_.reserve(4);
416 +    fill(vdwScale_.begin(), vdwScale_.end(), 0.0);
417 +
418 +    electrostaticScale_.reserve(4);
419 +    fill(electrostaticScale_.begin(), electrostaticScale_.end(), 0.0);
420 +
421 +    vdwScale_[0] = 1.0;
422 +    vdwScale_[1] = fopts.getvdw12scale();
423 +    vdwScale_[2] = fopts.getvdw13scale();
424 +    vdwScale_[3] = fopts.getvdw14scale();
425 +    
426 +    electrostaticScale_[0] = 1.0;
427 +    electrostaticScale_[1] = fopts.getelectrostatic12scale();
428 +    electrostaticScale_[2] = fopts.getelectrostatic13scale();
429 +    electrostaticScale_[3] = fopts.getelectrostatic14scale();    
430 +    
431 +    if (info_->getSimParams()->haveElectricField()) {
432 +      ElectricField* eField = new ElectricField(info_);
433 +      perturbations_.push_back(eField);
434 +    }
435 +
436 +    fDecomp_->distributeInitialData();
437 +
438 +    initialized_ = true;
439 +
440 +  }
441 +
442 +  void ForceManager::calcForces() {
443 +    
444 +    if (!initialized_) initialize();
445 +
446 +    preCalculation();  
447 +    shortRangeInteractions();
448 +    longRangeInteractions();
449 +    postCalculation();    
450 +  }
451 +  
452    void ForceManager::preCalculation() {
453      SimInfo::MoleculeIterator mi;
454      Molecule* mol;
# Line 130 | Line 456 | namespace oopse {
456      Atom* atom;
457      Molecule::RigidBodyIterator rbIter;
458      RigidBody* rb;
459 +    Molecule::CutoffGroupIterator ci;
460 +    CutoffGroup* cg;
461      
462 <    // forces are zeroed here, before any are accumulated.
463 <    // NOTE: do not rezero the forces in Fortran.
464 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
465 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
462 >    // forces and potentials are zeroed here, before any are
463 >    // accumulated.
464 >    
465 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
466 >
467 >    snap->setBondPotential(0.0);
468 >    snap->setBendPotential(0.0);
469 >    snap->setTorsionPotential(0.0);
470 >    snap->setInversionPotential(0.0);
471 >
472 >    potVec zeroPot(0.0);
473 >    snap->setLongRangePotential(zeroPot);
474 >    snap->setExcludedPotentials(zeroPot);
475 >
476 >    snap->setRestraintPotential(0.0);
477 >    snap->setRawPotential(0.0);
478 >
479 >    for (mol = info_->beginMolecule(mi); mol != NULL;
480 >         mol = info_->nextMolecule(mi)) {
481 >      for(atom = mol->beginAtom(ai); atom != NULL;
482 >          atom = mol->nextAtom(ai)) {
483          atom->zeroForcesAndTorques();
484        }
485 <        
485 >      
486        //change the positions of atoms which belong to the rigidbodies
487 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
487 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
488 >           rb = mol->nextRigidBody(rbIter)) {
489          rb->zeroForcesAndTorques();
490        }        
491 +      
492 +      if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){
493 +        for(cg = mol->beginCutoffGroup(ci); cg != NULL;
494 +            cg = mol->nextCutoffGroup(ci)) {
495 +          //calculate the center of mass of cutoff group
496 +          cg->updateCOM();
497 +        }
498 +      }      
499      }
500      
501 +    // Zero out the stress tensor
502 +    stressTensor *= 0.0;
503 +    // Zero out the heatFlux
504 +    fDecomp_->setHeatFlux( Vector3d(0.0) );    
505    }
506 <
507 <  void ForceManager::calcShortRangeInteraction() {
506 >  
507 >  void ForceManager::shortRangeInteractions() {
508      Molecule* mol;
509      RigidBody* rb;
510      Bond* bond;
511      Bend* bend;
512      Torsion* torsion;
513 +    Inversion* inversion;
514      SimInfo::MoleculeIterator mi;
515      Molecule::RigidBodyIterator rbIter;
516      Molecule::BondIterator bondIter;;
517      Molecule::BendIterator  bendIter;
518      Molecule::TorsionIterator  torsionIter;
519 <    double bondPotential = 0.0;
520 <    double bendPotential = 0.0;
521 <    double torsionPotential = 0.0;
519 >    Molecule::InversionIterator  inversionIter;
520 >    RealType bondPotential = 0.0;
521 >    RealType bendPotential = 0.0;
522 >    RealType torsionPotential = 0.0;
523 >    RealType inversionPotential = 0.0;
524  
525      //calculate short range interactions    
526 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
526 >    for (mol = info_->beginMolecule(mi); mol != NULL;
527 >         mol = info_->nextMolecule(mi)) {
528  
529        //change the positions of atoms which belong to the rigidbodies
530 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
531 <          rb->updateAtoms();
530 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
531 >           rb = mol->nextRigidBody(rbIter)) {
532 >        rb->updateAtoms();
533        }
534  
535 <      for (bond = mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
536 <        bond->calcForce();
535 >      for (bond = mol->beginBond(bondIter); bond != NULL;
536 >           bond = mol->nextBond(bondIter)) {
537 >        bond->calcForce(doParticlePot_);
538          bondPotential += bond->getPotential();
539        }
540  
541 <
542 <      for (bend = mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
543 <
544 <          double angle;
545 <            bend->calcForce(angle);
546 <          double currBendPot = bend->getPotential();          
547 <            bendPotential += bend->getPotential();
548 <          std::map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend);
549 <          if (i == bendDataSets.end()) {
550 <            BendDataSet dataSet;
551 <            dataSet.prev.angle = dataSet.curr.angle = angle;
552 <            dataSet.prev.potential = dataSet.curr.potential = currBendPot;
553 <            dataSet.deltaV = 0.0;
554 <            bendDataSets.insert(std::map<Bend*, BendDataSet>::value_type(bend, dataSet));
555 <          }else {
556 <            i->second.prev.angle = i->second.curr.angle;
557 <            i->second.prev.potential = i->second.curr.potential;
558 <            i->second.curr.angle = angle;
559 <            i->second.curr.potential = currBendPot;
560 <            i->second.deltaV =  fabs(i->second.curr.potential -  i->second.prev.potential);
561 <          }
562 <      }
563 <
564 <      for (torsion = mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
201 <        double angle;
202 <          torsion->calcForce(angle);
203 <        double currTorsionPot = torsion->getPotential();
204 <          torsionPotential += torsion->getPotential();
205 <          std::map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion);
206 <          if (i == torsionDataSets.end()) {
207 <            TorsionDataSet dataSet;
208 <            dataSet.prev.angle = dataSet.curr.angle = angle;
209 <            dataSet.prev.potential = dataSet.curr.potential = currTorsionPot;
210 <            dataSet.deltaV = 0.0;
211 <            torsionDataSets.insert(std::map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet));
212 <          }else {
213 <            i->second.prev.angle = i->second.curr.angle;
214 <            i->second.prev.potential = i->second.curr.potential;
215 <            i->second.curr.angle = angle;
216 <            i->second.curr.potential = currTorsionPot;
217 <            i->second.deltaV =  fabs(i->second.curr.potential -  i->second.prev.potential);
218 <          }      
541 >      for (bend = mol->beginBend(bendIter); bend != NULL;
542 >           bend = mol->nextBend(bendIter)) {
543 >        
544 >        RealType angle;
545 >        bend->calcForce(angle, doParticlePot_);
546 >        RealType currBendPot = bend->getPotential();          
547 >        
548 >        bendPotential += bend->getPotential();
549 >        map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend);
550 >        if (i == bendDataSets.end()) {
551 >          BendDataSet dataSet;
552 >          dataSet.prev.angle = dataSet.curr.angle = angle;
553 >          dataSet.prev.potential = dataSet.curr.potential = currBendPot;
554 >          dataSet.deltaV = 0.0;
555 >          bendDataSets.insert(map<Bend*, BendDataSet>::value_type(bend,
556 >                                                                  dataSet));
557 >        }else {
558 >          i->second.prev.angle = i->second.curr.angle;
559 >          i->second.prev.potential = i->second.curr.potential;
560 >          i->second.curr.angle = angle;
561 >          i->second.curr.potential = currBendPot;
562 >          i->second.deltaV =  fabs(i->second.curr.potential -  
563 >                                   i->second.prev.potential);
564 >        }
565        }
566 <
566 >      
567 >      for (torsion = mol->beginTorsion(torsionIter); torsion != NULL;
568 >           torsion = mol->nextTorsion(torsionIter)) {
569 >        RealType angle;
570 >        torsion->calcForce(angle, doParticlePot_);
571 >        RealType currTorsionPot = torsion->getPotential();
572 >        torsionPotential += torsion->getPotential();
573 >        map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion);
574 >        if (i == torsionDataSets.end()) {
575 >          TorsionDataSet dataSet;
576 >          dataSet.prev.angle = dataSet.curr.angle = angle;
577 >          dataSet.prev.potential = dataSet.curr.potential = currTorsionPot;
578 >          dataSet.deltaV = 0.0;
579 >          torsionDataSets.insert(map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet));
580 >        }else {
581 >          i->second.prev.angle = i->second.curr.angle;
582 >          i->second.prev.potential = i->second.curr.potential;
583 >          i->second.curr.angle = angle;
584 >          i->second.curr.potential = currTorsionPot;
585 >          i->second.deltaV =  fabs(i->second.curr.potential -  
586 >                                   i->second.prev.potential);
587 >        }      
588 >      }      
589 >      
590 >      for (inversion = mol->beginInversion(inversionIter);
591 >           inversion != NULL;
592 >           inversion = mol->nextInversion(inversionIter)) {
593 >        RealType angle;
594 >        inversion->calcForce(angle, doParticlePot_);
595 >        RealType currInversionPot = inversion->getPotential();
596 >        inversionPotential += inversion->getPotential();
597 >        map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion);
598 >        if (i == inversionDataSets.end()) {
599 >          InversionDataSet dataSet;
600 >          dataSet.prev.angle = dataSet.curr.angle = angle;
601 >          dataSet.prev.potential = dataSet.curr.potential = currInversionPot;
602 >          dataSet.deltaV = 0.0;
603 >          inversionDataSets.insert(map<Inversion*, InversionDataSet>::value_type(inversion, dataSet));
604 >        }else {
605 >          i->second.prev.angle = i->second.curr.angle;
606 >          i->second.prev.potential = i->second.curr.potential;
607 >          i->second.curr.angle = angle;
608 >          i->second.curr.potential = currInversionPot;
609 >          i->second.deltaV =  fabs(i->second.curr.potential -  
610 >                                   i->second.prev.potential);
611 >        }      
612 >      }      
613      }
614 <    
615 <    double  shortRangePotential = bondPotential + bendPotential + torsionPotential;    
614 >
615 > #ifdef IS_MPI
616 >    // Collect from all nodes.  This should eventually be moved into a
617 >    // SystemDecomposition, but this is a better place than in
618 >    // Thermo to do the collection.
619 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &bondPotential, 1, MPI::REALTYPE,
620 >                              MPI::SUM);
621 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &bendPotential, 1, MPI::REALTYPE,
622 >                              MPI::SUM);
623 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &torsionPotential, 1,
624 >                              MPI::REALTYPE, MPI::SUM);
625 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &inversionPotential, 1,
626 >                              MPI::REALTYPE, MPI::SUM);
627 > #endif
628 >
629      Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
630 <    curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential;
631 <    curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential;
632 <    curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential;
633 <    curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential;
630 >
631 >    curSnapshot->setBondPotential(bondPotential);
632 >    curSnapshot->setBendPotential(bendPotential);
633 >    curSnapshot->setTorsionPotential(torsionPotential);
634 >    curSnapshot->setInversionPotential(inversionPotential);
635      
636 +    // RealType shortRangePotential = bondPotential + bendPotential +
637 +    //   torsionPotential +  inversionPotential;    
638 +
639 +    // curSnapshot->setShortRangePotential(shortRangePotential);
640    }
641 +  
642 +  void ForceManager::longRangeInteractions() {
643  
232  void ForceManager::calcLongRangeInteraction(bool needPotential, bool needStress) {
233    Snapshot* curSnapshot;
234    DataStorage* config;
235    double* frc;
236    double* pos;
237    double* trq;
238    double* A;
239    double* electroFrame;
240    double* rc;
241    
242    //get current snapshot from SimInfo
243    curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
644  
645 <    //get array pointers
646 <    config = &(curSnapshot->atomData);
647 <    frc = config->getArrayPointer(DataStorage::dslForce);
248 <    pos = config->getArrayPointer(DataStorage::dslPosition);
249 <    trq = config->getArrayPointer(DataStorage::dslTorque);
250 <    A   = config->getArrayPointer(DataStorage::dslAmat);
251 <    electroFrame = config->getArrayPointer(DataStorage::dslElectroFrame);
645 >    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
646 >    DataStorage* config = &(curSnapshot->atomData);
647 >    DataStorage* cgConfig = &(curSnapshot->cgData);
648  
649      //calculate the center of mass of cutoff group
650 +
651      SimInfo::MoleculeIterator mi;
652      Molecule* mol;
653      Molecule::CutoffGroupIterator ci;
654      CutoffGroup* cg;
258    Vector3d com;
259    std::vector<Vector3d> rcGroup;
655  
656 <    if(info_->getNCutoffGroups() > 0){
657 <
658 <      for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
659 <        for(cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
660 <          cg->getCOM(com);
661 <          rcGroup.push_back(com);
656 >    if(info_->getNCutoffGroups() > 0){      
657 >      for (mol = info_->beginMolecule(mi); mol != NULL;
658 >           mol = info_->nextMolecule(mi)) {
659 >        for(cg = mol->beginCutoffGroup(ci); cg != NULL;
660 >            cg = mol->nextCutoffGroup(ci)) {
661 >          cg->updateCOM();
662          }
663 <      }// end for (mol)
269 <      
270 <      rc = rcGroup[0].getArrayPointer();
663 >      }      
664      } else {
665 <      // center of mass of the group is the same as position of the atom  if cutoff group does not exist
666 <      rc = pos;
665 >      // center of mass of the group is the same as position of the atom  
666 >      // if cutoff group does not exist
667 >      cgConfig->position = config->position;
668 >      cgConfig->velocity = config->velocity;
669      }
670 <  
671 <    //initialize data before passing to fortran
672 <    double longRangePotential[LR_POT_TYPES];
278 <    double lrPot = 0.0;
670 >
671 >    fDecomp_->zeroWorkArrays();
672 >    fDecomp_->distributeData();
673      
674 <    Mat3x3d tau;
675 <    short int passedCalcPot = needPotential;
676 <    short int passedCalcStress = needStress;
677 <    int isError = 0;
674 >    int cg1, cg2, atom1, atom2, topoDist;
675 >    Vector3d d_grp, dag, d, gvel2, vel2;
676 >    RealType rgrpsq, rgrp, r2, r;
677 >    RealType electroMult, vdwMult;
678 >    RealType vij;
679 >    Vector3d fij, fg, f1;
680 >    tuple3<RealType, RealType, RealType> cuts;
681 >    RealType rCutSq;
682 >    bool in_switching_region;
683 >    RealType sw, dswdr, swderiv;
684 >    vector<int> atomListColumn, atomListRow, atomListLocal;
685 >    InteractionData idat;
686 >    SelfData sdat;
687 >    RealType mf;
688 >    RealType vpair;
689 >    RealType dVdFQ1(0.0);
690 >    RealType dVdFQ2(0.0);
691 >    potVec longRangePotential(0.0);
692 >    potVec workPot(0.0);
693 >    potVec exPot(0.0);
694 >    Vector3d eField1(0.0);
695 >    Vector3d eField2(0.0);
696 >    vector<int>::iterator ia, jb;
697  
698 <    for (int i=0; i<LR_POT_TYPES;i++){
699 <      longRangePotential[i]=0.0; //Initialize array
698 >    int loopStart, loopEnd;
699 >
700 >    idat.vdwMult = &vdwMult;
701 >    idat.electroMult = &electroMult;
702 >    idat.pot = &workPot;
703 >    idat.excludedPot = &exPot;
704 >    sdat.pot = fDecomp_->getEmbeddingPotential();
705 >    sdat.excludedPot = fDecomp_->getExcludedSelfPotential();
706 >    idat.vpair = &vpair;
707 >    idat.dVdFQ1 = &dVdFQ1;
708 >    idat.dVdFQ2 = &dVdFQ2;
709 >    idat.eField1 = &eField1;
710 >    idat.eField2 = &eField2;  
711 >    idat.f1 = &f1;
712 >    idat.sw = &sw;
713 >    idat.shiftedPot = (cutoffMethod_ == SHIFTED_POTENTIAL) ? true : false;
714 >    idat.shiftedForce = (cutoffMethod_ == SHIFTED_FORCE) ? true : false;
715 >    idat.doParticlePot = doParticlePot_;
716 >    idat.doElectricField = doElectricField_;
717 >    sdat.doParticlePot = doParticlePot_;
718 >    
719 >    loopEnd = PAIR_LOOP;
720 >    if (info_->requiresPrepair() ) {
721 >      loopStart = PREPAIR_LOOP;
722 >    } else {
723 >      loopStart = PAIR_LOOP;
724      }
725 +    for (int iLoop = loopStart; iLoop <= loopEnd; iLoop++) {
726 +    
727 +      if (iLoop == loopStart) {
728 +        bool update_nlist = fDecomp_->checkNeighborList();
729 +        if (update_nlist)
730 +          neighborList = fDecomp_->buildNeighborList();
731 +      }            
732  
733 <    doForceLoop( pos,
734 <                 rc,
735 <                 A,
736 <                 electroFrame,
737 <                 frc,
738 <                 trq,
739 <                 tau.getArrayPointer(),
740 <                 longRangePotential,
741 <                 &passedCalcPot,
742 <                 &passedCalcStress,
743 <                 &isError );
744 <
745 <    if( isError ){
746 <      sprintf( painCave.errMsg,
747 <               "Error returned from the fortran force calculation.\n" );
748 <      painCave.isFatal = 1;
749 <      simError();
733 >      for (vector<pair<int, int> >::iterator it = neighborList.begin();
734 >             it != neighborList.end(); ++it) {
735 >                
736 >        cg1 = (*it).first;
737 >        cg2 = (*it).second;
738 >        
739 >        cuts = fDecomp_->getGroupCutoffs(cg1, cg2);
740 >
741 >        d_grp  = fDecomp_->getIntergroupVector(cg1, cg2);
742 >
743 >        curSnapshot->wrapVector(d_grp);        
744 >        rgrpsq = d_grp.lengthSquare();
745 >        rCutSq = cuts.second;
746 >
747 >        if (rgrpsq < rCutSq) {
748 >          idat.rcut = &cuts.first;
749 >          if (iLoop == PAIR_LOOP) {
750 >            vij = 0.0;
751 >            fij = V3Zero;
752 >            eField1 = V3Zero;
753 >            eField2 = V3Zero;
754 >          }
755 >          
756 >          in_switching_region = switcher_->getSwitch(rgrpsq, sw, dswdr,
757 >                                                     rgrp);
758 >
759 >          atomListRow = fDecomp_->getAtomsInGroupRow(cg1);
760 >          atomListColumn = fDecomp_->getAtomsInGroupColumn(cg2);
761 >
762 >          if (doHeatFlux_)
763 >            gvel2 = fDecomp_->getGroupVelocityColumn(cg2);
764 >
765 >          for (ia = atomListRow.begin();
766 >               ia != atomListRow.end(); ++ia) {            
767 >            atom1 = (*ia);
768 >
769 >            for (jb = atomListColumn.begin();
770 >                 jb != atomListColumn.end(); ++jb) {              
771 >              atom2 = (*jb);
772 >
773 >              if (!fDecomp_->skipAtomPair(atom1, atom2, cg1, cg2)) {
774 >
775 >                vpair = 0.0;
776 >                workPot = 0.0;
777 >                exPot = 0.0;
778 >                f1 = V3Zero;
779 >                dVdFQ1 = 0.0;
780 >                dVdFQ2 = 0.0;
781 >
782 >                fDecomp_->fillInteractionData(idat, atom1, atom2);
783 >
784 >                topoDist = fDecomp_->getTopologicalDistance(atom1, atom2);
785 >                vdwMult = vdwScale_[topoDist];
786 >                electroMult = electrostaticScale_[topoDist];
787 >
788 >                if (atomListRow.size() == 1 && atomListColumn.size() == 1) {
789 >                  idat.d = &d_grp;
790 >                  idat.r2 = &rgrpsq;
791 >                  if (doHeatFlux_)
792 >                    vel2 = gvel2;
793 >                } else {
794 >                  d = fDecomp_->getInteratomicVector(atom1, atom2);
795 >                  curSnapshot->wrapVector( d );
796 >                  r2 = d.lengthSquare();
797 >                  idat.d = &d;
798 >                  idat.r2 = &r2;
799 >                  if (doHeatFlux_)
800 >                    vel2 = fDecomp_->getAtomVelocityColumn(atom2);
801 >                }
802 >              
803 >                r = sqrt( *(idat.r2) );
804 >                idat.rij = &r;
805 >              
806 >                if (iLoop == PREPAIR_LOOP) {
807 >                  interactionMan_->doPrePair(idat);
808 >                } else {
809 >                  interactionMan_->doPair(idat);
810 >                  fDecomp_->unpackInteractionData(idat, atom1, atom2);
811 >                  vij += vpair;
812 >                  fij += f1;
813 >                  stressTensor -= outProduct( *(idat.d), f1);
814 >                  if (doHeatFlux_)
815 >                    fDecomp_->addToHeatFlux(*(idat.d) * dot(f1, vel2));
816 >                }
817 >              }
818 >            }
819 >          }
820 >
821 >          if (iLoop == PAIR_LOOP) {
822 >            if (in_switching_region) {
823 >              swderiv = vij * dswdr / rgrp;
824 >              fg = swderiv * d_grp;
825 >              fij += fg;
826 >
827 >              if (atomListRow.size() == 1 && atomListColumn.size() == 1) {
828 >                if (!fDecomp_->skipAtomPair(atomListRow[0],
829 >                                            atomListColumn[0],
830 >                                            cg1, cg2)) {
831 >                  stressTensor -= outProduct( *(idat.d), fg);
832 >                  if (doHeatFlux_)
833 >                    fDecomp_->addToHeatFlux(*(idat.d) * dot(fg, vel2));
834 >                }                
835 >              }
836 >          
837 >              for (ia = atomListRow.begin();
838 >                   ia != atomListRow.end(); ++ia) {            
839 >                atom1 = (*ia);                
840 >                mf = fDecomp_->getMassFactorRow(atom1);
841 >                // fg is the force on atom ia due to cutoff group's
842 >                // presence in switching region
843 >                fg = swderiv * d_grp * mf;
844 >                fDecomp_->addForceToAtomRow(atom1, fg);
845 >                if (atomListRow.size() > 1) {
846 >                  if (info_->usesAtomicVirial()) {
847 >                    // find the distance between the atom
848 >                    // and the center of the cutoff group:
849 >                    dag = fDecomp_->getAtomToGroupVectorRow(atom1, cg1);
850 >                    stressTensor -= outProduct(dag, fg);
851 >                    if (doHeatFlux_)
852 >                      fDecomp_->addToHeatFlux( dag * dot(fg, vel2));
853 >                  }
854 >                }
855 >              }
856 >              for (jb = atomListColumn.begin();
857 >                   jb != atomListColumn.end(); ++jb) {              
858 >                atom2 = (*jb);
859 >                mf = fDecomp_->getMassFactorColumn(atom2);
860 >                // fg is the force on atom jb due to cutoff group's
861 >                // presence in switching region
862 >                fg = -swderiv * d_grp * mf;
863 >                fDecomp_->addForceToAtomColumn(atom2, fg);
864 >
865 >                if (atomListColumn.size() > 1) {
866 >                  if (info_->usesAtomicVirial()) {
867 >                    // find the distance between the atom
868 >                    // and the center of the cutoff group:
869 >                    dag = fDecomp_->getAtomToGroupVectorColumn(atom2, cg2);
870 >                    stressTensor -= outProduct(dag, fg);
871 >                    if (doHeatFlux_)
872 >                      fDecomp_->addToHeatFlux( dag * dot(fg, vel2));
873 >                  }
874 >                }
875 >              }
876 >            }
877 >            //if (!info_->usesAtomicVirial()) {
878 >            //  stressTensor -= outProduct(d_grp, fij);
879 >            //  if (doHeatFlux_)
880 >            //     fDecomp_->addToHeatFlux( d_grp * dot(fij, vel2));
881 >            //}
882 >          }
883 >        }
884 >      }
885 >
886 >      if (iLoop == PREPAIR_LOOP) {
887 >        if (info_->requiresPrepair()) {
888 >
889 >          fDecomp_->collectIntermediateData();
890 >
891 >          for (unsigned int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) {
892 >            fDecomp_->fillSelfData(sdat, atom1);
893 >            interactionMan_->doPreForce(sdat);
894 >          }
895 >
896 >          fDecomp_->distributeIntermediateData();
897 >
898 >        }
899 >      }
900      }
901 <    for (int i=0; i<LR_POT_TYPES;i++){
902 <      lrPot += longRangePotential[i]; //Quick hack
901 >    
902 >    // collects pairwise information
903 >    fDecomp_->collectData();
904 >        
905 >    if (info_->requiresSelfCorrection()) {
906 >      for (unsigned int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) {
907 >        fDecomp_->fillSelfData(sdat, atom1);
908 >        interactionMan_->doSelfCorrection(sdat);
909 >      }
910      }
911  
912 <    //store the tau and long range potential    
913 <    curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot;
313 <    curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VDW_POT];
314 <    curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_POT];
912 >    // collects single-atom information
913 >    fDecomp_->collectSelfData();
914  
915 <    curSnapshot->statData.setTau(tau);
916 <  }
915 >    longRangePotential = *(fDecomp_->getEmbeddingPotential()) +
916 >      *(fDecomp_->getPairwisePotential());
917  
918 +    curSnapshot->setLongRangePotential(longRangePotential);
919 +    
920 +    curSnapshot->setExcludedPotentials(*(fDecomp_->getExcludedSelfPotential()) +
921 +                                         *(fDecomp_->getExcludedPotential()));
922  
923 +  }
924 +
925 +  
926    void ForceManager::postCalculation() {
927 +
928 +    vector<Perturbation*>::iterator pi;
929 +    for (pi = perturbations_.begin(); pi != perturbations_.end(); ++pi) {
930 +      (*pi)->applyPerturbation();
931 +    }
932 +
933      SimInfo::MoleculeIterator mi;
934      Molecule* mol;
935      Molecule::RigidBodyIterator rbIter;
936      RigidBody* rb;
937 <    
937 >    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
938 >  
939      // collect the atomic forces onto rigid bodies
940 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
941 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
942 <        rb->calcForcesAndTorques();
940 >    
941 >    for (mol = info_->beginMolecule(mi); mol != NULL;
942 >         mol = info_->nextMolecule(mi)) {
943 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
944 >           rb = mol->nextRigidBody(rbIter)) {
945 >        Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial();
946 >        stressTensor += rbTau;
947        }
948      }
949 +    
950 + #ifdef IS_MPI
951 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, stressTensor.getArrayPointer(), 9,
952 +                              MPI::REALTYPE, MPI::SUM);
953 + #endif
954 +    curSnapshot->setStressTensor(stressTensor);
955 +    
956 +    if (info_->getSimParams()->getUseLongRangeCorrections()) {
957 +      /*
958 +      RealType vol = curSnapshot->getVolume();
959 +      RealType Elrc(0.0);
960 +      RealType Wlrc(0.0);
961  
962 <  }
962 >      set<AtomType*>::iterator i;
963 >      set<AtomType*>::iterator j;
964 >    
965 >      RealType n_i, n_j;
966 >      RealType rho_i, rho_j;
967 >      pair<RealType, RealType> LRI;
968 >      
969 >      for (i = atomTypes_.begin(); i != atomTypes_.end(); ++i) {
970 >        n_i = RealType(info_->getGlobalCountOfType(*i));
971 >        rho_i = n_i /  vol;
972 >        for (j = atomTypes_.begin(); j != atomTypes_.end(); ++j) {
973 >          n_j = RealType(info_->getGlobalCountOfType(*j));
974 >          rho_j = n_j / vol;
975 >          
976 >          LRI = interactionMan_->getLongRangeIntegrals( (*i), (*j) );
977  
978 < } //end namespace oopse
978 >          Elrc += n_i   * rho_j * LRI.first;
979 >          Wlrc -= rho_i * rho_j * LRI.second;
980 >        }
981 >      }
982 >      Elrc *= 2.0 * NumericConstant::PI;
983 >      Wlrc *= 2.0 * NumericConstant::PI;
984 >
985 >      RealType lrp = curSnapshot->getLongRangePotential();
986 >      curSnapshot->setLongRangePotential(lrp + Elrc);
987 >      stressTensor += Wlrc * SquareMatrix3<RealType>::identity();
988 >      curSnapshot->setStressTensor(stressTensor);
989 >      */
990 >    
991 >    }
992 >  }
993 > }

Comparing:
trunk/src/brains/ForceManager.cpp (property svn:keywords), Revision 770 by tim, Fri Dec 2 15:38:03 2005 UTC vs.
branches/development/src/brains/ForceManager.cpp (property svn:keywords), Revision 1849 by gezelter, Wed Feb 20 13:52:51 2013 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines