ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/ForceManager.cpp
(Generate patch)

Comparing:
trunk/src/brains/ForceManager.cpp (file contents), Revision 963 by tim, Wed May 17 21:51:42 2006 UTC vs.
branches/development/src/brains/ForceManager.cpp (file contents), Revision 1544 by gezelter, Fri Mar 18 19:31:52 2011 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42   /**
# Line 50 | Line 50
50   #include "brains/ForceManager.hpp"
51   #include "primitives/Molecule.hpp"
52   #include "UseTheForce/doForces_interface.h"
53 < #define __C
53 > #define __OPENMD_C
54   #include "UseTheForce/DarkSide/fInteractionMap.h"
55   #include "utils/simError.h"
56 + #include "primitives/Bond.hpp"
57   #include "primitives/Bend.hpp"
58 < #include "primitives/Bend.hpp"
59 < namespace oopse {
58 > #include "primitives/Torsion.hpp"
59 > #include "primitives/Inversion.hpp"
60 > #include "parallel/ForceDecomposition.hpp"
61 > //#include "parallel/SerialDecomposition.hpp"
62  
63 < /*
64 <  struct BendOrderStruct {
65 <    Bend* bend;
66 <    BendDataSet dataSet;
67 <  };
68 <  struct TorsionOrderStruct {
69 <    Torsion* torsion;
70 <    TorsionDataSet dataSet;
71 <  };
69 <
70 <  bool  BendSortFunctor(const BendOrderStruct& b1, const BendOrderStruct& b2) {
71 <    return b1.dataSet.deltaV < b2.dataSet.deltaV;
63 > namespace OpenMD {
64 >  
65 >  ForceManager::ForceManager(SimInfo * info) : info_(info),
66 >                                               NBforcesInitialized_(false) {
67 > #ifdef IS_MPI
68 >    decomp_ = new ForceDecomposition(info_);
69 > #else
70 >    //  decomp_ = new SerialDecomposition(info);
71 > #endif
72    }
73 +
74 +  void ForceManager::calcForces() {
75 +    
76  
74  bool  TorsionSortFunctor(const TorsionOrderStruct& t1, const TorsionOrderStruct& t2) {
75    return t1.dataSet.deltaV < t2.dataSet.deltaV;
76  }
77  */
78  void ForceManager::calcForces(bool needPotential, bool needStress) {
79
77      if (!info_->isFortranInitialized()) {
78        info_->update();
79 +      nbiMan_->setSimInfo(info_);
80 +      nbiMan_->initialize();
81 +      decomp_->distributeInitialData();
82 +      info_->setupFortran();
83      }
83
84    preCalculation();
84      
85 +    preCalculation();  
86      calcShortRangeInteraction();
87 <
88 <    calcLongRangeInteraction(needPotential, needStress);
89 <
87 >    calcLongRangeInteraction();
88      postCalculation();
91
92 /*
93    std::vector<BendOrderStruct> bendOrderStruct;
94    for(std::map<Bend*, BendDataSet>::iterator i = bendDataSets.begin(); i != bendDataSets.end(); ++i) {
95        BendOrderStruct tmp;
96        tmp.bend= const_cast<Bend*>(i->first);
97        tmp.dataSet = i->second;
98        bendOrderStruct.push_back(tmp);
99    }
100
101    std::vector<TorsionOrderStruct> torsionOrderStruct;
102    for(std::map<Torsion*, TorsionDataSet>::iterator j = torsionDataSets.begin(); j != torsionDataSets.end(); ++j) {
103        TorsionOrderStruct tmp;
104        tmp.torsion = const_cast<Torsion*>(j->first);
105        tmp.dataSet = j->second;
106        torsionOrderStruct.push_back(tmp);
107    }
89      
109    std::sort(bendOrderStruct.begin(), bendOrderStruct.end(), std::ptr_fun(BendSortFunctor));
110    std::sort(torsionOrderStruct.begin(), torsionOrderStruct.end(), std::ptr_fun(TorsionSortFunctor));
111    for (std::vector<BendOrderStruct>::iterator k = bendOrderStruct.begin(); k != bendOrderStruct.end(); ++k) {
112        Bend* bend = k->bend;
113        std::cout << "Bend: atom1=" <<bend->getAtomA()->getGlobalIndex() << ",atom2 = "<< bend->getAtomB()->getGlobalIndex() << ",atom3="<<bend->getAtomC()->getGlobalIndex() << " ";
114        std::cout << "deltaV=" << k->dataSet.deltaV << ",p_theta=" << k->dataSet.prev.angle <<",p_pot=" << k->dataSet.prev.potential<< ",c_theta=" << k->dataSet.curr.angle << ", c_pot = " << k->dataSet.curr.potential <<std::endl;
115    }
116    for (std::vector<TorsionOrderStruct>::iterator l = torsionOrderStruct.begin(); l != torsionOrderStruct.end(); ++l) {
117        Torsion* torsion = l->torsion;
118        std::cout << "Torsion: atom1=" <<torsion->getAtomA()->getGlobalIndex() << ",atom2 = "<< torsion->getAtomB()->getGlobalIndex() << ",atom3="<<torsion->getAtomC()->getGlobalIndex() << ",atom4="<<torsion->getAtomD()->getGlobalIndex()<< " ";
119        std::cout << "deltaV=" << l->dataSet.deltaV << ",p_theta=" << l->dataSet.prev.angle <<",p_pot=" << l->dataSet.prev.potential<< ",c_theta=" << l->dataSet.curr.angle << ", c_pot = " << l->dataSet.curr.potential <<std::endl;
120    }
121   */
90    }
91 <
91 >  
92    void ForceManager::preCalculation() {
93      SimInfo::MoleculeIterator mi;
94      Molecule* mol;
# Line 128 | Line 96 | namespace oopse {
96      Atom* atom;
97      Molecule::RigidBodyIterator rbIter;
98      RigidBody* rb;
99 +    Molecule::CutoffGroupIterator ci;
100 +    CutoffGroup* cg;
101      
102      // forces are zeroed here, before any are accumulated.
103      // NOTE: do not rezero the forces in Fortran.
104 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
104 >    
105 >    for (mol = info_->beginMolecule(mi); mol != NULL;
106 >         mol = info_->nextMolecule(mi)) {
107        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
108          atom->zeroForcesAndTorques();
109        }
110 <        
110 >          
111        //change the positions of atoms which belong to the rigidbodies
112 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
112 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
113 >           rb = mol->nextRigidBody(rbIter)) {
114          rb->zeroForcesAndTorques();
115        }        
116 +
117 +      if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){
118 +        std::cerr << "should not see me \n";
119 +        for(cg = mol->beginCutoffGroup(ci); cg != NULL;
120 +            cg = mol->nextCutoffGroup(ci)) {
121 +          //calculate the center of mass of cutoff group
122 +          cg->updateCOM();
123 +        }
124 +      }      
125      }
126 +  
127 +    // Zero out the stress tensor
128 +    tau *= 0.0;
129      
130    }
131 <
131 >  
132    void ForceManager::calcShortRangeInteraction() {
133      Molecule* mol;
134      RigidBody* rb;
135      Bond* bond;
136      Bend* bend;
137      Torsion* torsion;
138 +    Inversion* inversion;
139      SimInfo::MoleculeIterator mi;
140      Molecule::RigidBodyIterator rbIter;
141      Molecule::BondIterator bondIter;;
142      Molecule::BendIterator  bendIter;
143      Molecule::TorsionIterator  torsionIter;
144 +    Molecule::InversionIterator  inversionIter;
145      RealType bondPotential = 0.0;
146      RealType bendPotential = 0.0;
147      RealType torsionPotential = 0.0;
148 +    RealType inversionPotential = 0.0;
149  
150      //calculate short range interactions    
151 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
151 >    for (mol = info_->beginMolecule(mi); mol != NULL;
152 >         mol = info_->nextMolecule(mi)) {
153  
154        //change the positions of atoms which belong to the rigidbodies
155 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
156 <          rb->updateAtoms();
155 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
156 >           rb = mol->nextRigidBody(rbIter)) {
157 >        rb->updateAtoms();
158        }
159  
160 <      for (bond = mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
160 >      for (bond = mol->beginBond(bondIter); bond != NULL;
161 >           bond = mol->nextBond(bondIter)) {
162          bond->calcForce();
163          bondPotential += bond->getPotential();
164        }
165  
166 <
167 <      for (bend = mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
168 <
178 <          RealType angle;
179 <            bend->calcForce(angle);
180 <          RealType currBendPot = bend->getPotential();          
181 <            bendPotential += bend->getPotential();
182 <          std::map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend);
183 <          if (i == bendDataSets.end()) {
184 <            BendDataSet dataSet;
185 <            dataSet.prev.angle = dataSet.curr.angle = angle;
186 <            dataSet.prev.potential = dataSet.curr.potential = currBendPot;
187 <            dataSet.deltaV = 0.0;
188 <            bendDataSets.insert(std::map<Bend*, BendDataSet>::value_type(bend, dataSet));
189 <          }else {
190 <            i->second.prev.angle = i->second.curr.angle;
191 <            i->second.prev.potential = i->second.curr.potential;
192 <            i->second.curr.angle = angle;
193 <            i->second.curr.potential = currBendPot;
194 <            i->second.deltaV =  fabs(i->second.curr.potential -  i->second.prev.potential);
195 <          }
196 <      }
197 <
198 <      for (torsion = mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
166 >      for (bend = mol->beginBend(bendIter); bend != NULL;
167 >           bend = mol->nextBend(bendIter)) {
168 >        
169          RealType angle;
170 <          torsion->calcForce(angle);
171 <        RealType currTorsionPot = torsion->getPotential();
172 <          torsionPotential += torsion->getPotential();
173 <          std::map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion);
174 <          if (i == torsionDataSets.end()) {
175 <            TorsionDataSet dataSet;
176 <            dataSet.prev.angle = dataSet.curr.angle = angle;
177 <            dataSet.prev.potential = dataSet.curr.potential = currTorsionPot;
178 <            dataSet.deltaV = 0.0;
179 <            torsionDataSets.insert(std::map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet));
180 <          }else {
181 <            i->second.prev.angle = i->second.curr.angle;
182 <            i->second.prev.potential = i->second.curr.potential;
183 <            i->second.curr.angle = angle;
184 <            i->second.curr.potential = currTorsionPot;
185 <            i->second.deltaV =  fabs(i->second.curr.potential -  i->second.prev.potential);
186 <          }      
170 >        bend->calcForce(angle);
171 >        RealType currBendPot = bend->getPotential();          
172 >        
173 >        bendPotential += bend->getPotential();
174 >        std::map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend);
175 >        if (i == bendDataSets.end()) {
176 >          BendDataSet dataSet;
177 >          dataSet.prev.angle = dataSet.curr.angle = angle;
178 >          dataSet.prev.potential = dataSet.curr.potential = currBendPot;
179 >          dataSet.deltaV = 0.0;
180 >          bendDataSets.insert(std::map<Bend*, BendDataSet>::value_type(bend, dataSet));
181 >        }else {
182 >          i->second.prev.angle = i->second.curr.angle;
183 >          i->second.prev.potential = i->second.curr.potential;
184 >          i->second.curr.angle = angle;
185 >          i->second.curr.potential = currBendPot;
186 >          i->second.deltaV =  fabs(i->second.curr.potential -  
187 >                                   i->second.prev.potential);
188 >        }
189        }
190 +      
191 +      for (torsion = mol->beginTorsion(torsionIter); torsion != NULL;
192 +           torsion = mol->nextTorsion(torsionIter)) {
193 +        RealType angle;
194 +        torsion->calcForce(angle);
195 +        RealType currTorsionPot = torsion->getPotential();
196 +        torsionPotential += torsion->getPotential();
197 +        std::map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion);
198 +        if (i == torsionDataSets.end()) {
199 +          TorsionDataSet dataSet;
200 +          dataSet.prev.angle = dataSet.curr.angle = angle;
201 +          dataSet.prev.potential = dataSet.curr.potential = currTorsionPot;
202 +          dataSet.deltaV = 0.0;
203 +          torsionDataSets.insert(std::map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet));
204 +        }else {
205 +          i->second.prev.angle = i->second.curr.angle;
206 +          i->second.prev.potential = i->second.curr.potential;
207 +          i->second.curr.angle = angle;
208 +          i->second.curr.potential = currTorsionPot;
209 +          i->second.deltaV =  fabs(i->second.curr.potential -  
210 +                                   i->second.prev.potential);
211 +        }      
212 +      }      
213  
214 +      for (inversion = mol->beginInversion(inversionIter);
215 +           inversion != NULL;
216 +           inversion = mol->nextInversion(inversionIter)) {
217 +        RealType angle;
218 +        inversion->calcForce(angle);
219 +        RealType currInversionPot = inversion->getPotential();
220 +        inversionPotential += inversion->getPotential();
221 +        std::map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion);
222 +        if (i == inversionDataSets.end()) {
223 +          InversionDataSet dataSet;
224 +          dataSet.prev.angle = dataSet.curr.angle = angle;
225 +          dataSet.prev.potential = dataSet.curr.potential = currInversionPot;
226 +          dataSet.deltaV = 0.0;
227 +          inversionDataSets.insert(std::map<Inversion*, InversionDataSet>::value_type(inversion, dataSet));
228 +        }else {
229 +          i->second.prev.angle = i->second.curr.angle;
230 +          i->second.prev.potential = i->second.curr.potential;
231 +          i->second.curr.angle = angle;
232 +          i->second.curr.potential = currInversionPot;
233 +          i->second.deltaV =  fabs(i->second.curr.potential -  
234 +                                   i->second.prev.potential);
235 +        }      
236 +      }      
237      }
238      
239 <    RealType  shortRangePotential = bondPotential + bendPotential + torsionPotential;    
239 >    RealType  shortRangePotential = bondPotential + bendPotential +
240 >      torsionPotential +  inversionPotential;    
241      Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
242      curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential;
243      curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential;
244      curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential;
245      curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential;
246 +    curSnapshot->statData[Stats::INVERSION_POTENTIAL] = inversionPotential;
247      
248    }
249 <
250 <  void ForceManager::calcLongRangeInteraction(bool needPotential, bool needStress) {
249 >  
250 >  void ForceManager::calcLongRangeInteraction() {
251      Snapshot* curSnapshot;
252      DataStorage* config;
253 +    DataStorage* cgConfig;
254      RealType* frc;
255      RealType* pos;
256      RealType* trq;
257      RealType* A;
258      RealType* electroFrame;
259      RealType* rc;
260 +    RealType* particlePot;
261      
262      //get current snapshot from SimInfo
263      curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
264 <
264 >    
265      //get array pointers
266      config = &(curSnapshot->atomData);
267 +    cgConfig = &(curSnapshot->cgData);
268      frc = config->getArrayPointer(DataStorage::dslForce);
269      pos = config->getArrayPointer(DataStorage::dslPosition);
270      trq = config->getArrayPointer(DataStorage::dslTorque);
271      A   = config->getArrayPointer(DataStorage::dslAmat);
272      electroFrame = config->getArrayPointer(DataStorage::dslElectroFrame);
273 +    particlePot = config->getArrayPointer(DataStorage::dslParticlePot);
274  
275 <    //calculate the center of mass of cutoff group
276 <    SimInfo::MoleculeIterator mi;
277 <    Molecule* mol;
254 <    Molecule::CutoffGroupIterator ci;
255 <    CutoffGroup* cg;
256 <    Vector3d com;
257 <    std::vector<Vector3d> rcGroup;
258 <
259 <    if(info_->getNCutoffGroups() > 0){
260 <
261 <      for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
262 <        for(cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
263 <          cg->getCOM(com);
264 <          rcGroup.push_back(com);
265 <        }
266 <      }// end for (mol)
267 <      
268 <      rc = rcGroup[0].getArrayPointer();
275 >    if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){
276 >      std::cerr << "should not see me \n";
277 >      rc = cgConfig->getArrayPointer(DataStorage::dslPosition);
278      } else {
279 <      // center of mass of the group is the same as position of the atom  if cutoff group does not exist
279 >      // center of mass of the group is the same as position of the atom  
280 >      // if cutoff group does not exist
281        rc = pos;
282      }
283 <  
283 >    
284      //initialize data before passing to fortran
285      RealType longRangePotential[LR_POT_TYPES];
286      RealType lrPot = 0.0;
277    
278    Mat3x3d tau;
279    short int passedCalcPot = needPotential;
280    short int passedCalcStress = needStress;
287      int isError = 0;
288  
289      for (int i=0; i<LR_POT_TYPES;i++){
290        longRangePotential[i]=0.0; //Initialize array
291      }
292 +    
293 +    decomp_->distributeData();
294  
295 <    doForceLoop( pos,
296 <                 rc,
297 <                 A,
298 <                 electroFrame,
299 <                 frc,
300 <                 trq,
301 <                 tau.getArrayPointer(),
302 <                 longRangePotential,
303 <                 &passedCalcPot,
304 <                 &passedCalcStress,
305 <                 &isError );
295 >    int nLoops = 1;
296 >    for (int iLoop = 0; iLoop < nLoops; iLoop++) {
297 >      doForceLoop(pos,
298 >                  rc,
299 >                  A,
300 >                  electroFrame,
301 >                  frc,
302 >                  trq,
303 >                  tau.getArrayPointer(),
304 >                  longRangePotential,
305 >                  particlePot,
306 >                  &isError );  
307  
308 +      if (nLoops > 1) {
309 +        decomp_->collectIntermediateData();
310 +        decomp_->distributeIntermediateData();
311 +      }
312 +    }
313 +  
314 +    decomp_->collectData();
315 +
316      if( isError ){
317        sprintf( painCave.errMsg,
318                 "Error returned from the fortran force calculation.\n" );
# Line 305 | Line 322 | namespace oopse {
322      for (int i=0; i<LR_POT_TYPES;i++){
323        lrPot += longRangePotential[i]; //Quick hack
324      }
325 <
325 >        
326      //store the tau and long range potential    
327      curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot;
328      curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VDW_POT];
329      curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_POT];
313
314    curSnapshot->statData.setTau(tau);
330    }
331  
332 <
332 >  
333    void ForceManager::postCalculation() {
334      SimInfo::MoleculeIterator mi;
335      Molecule* mol;
336      Molecule::RigidBodyIterator rbIter;
337      RigidBody* rb;
338 +    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
339      
340      // collect the atomic forces onto rigid bodies
341 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
342 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
343 <        rb->calcForcesAndTorques();
341 >    
342 >    for (mol = info_->beginMolecule(mi); mol != NULL;
343 >         mol = info_->nextMolecule(mi)) {
344 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
345 >           rb = mol->nextRigidBody(rbIter)) {
346 >        Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial();
347 >        tau += rbTau;
348        }
349      }
350 <
350 >    
351 > #ifdef IS_MPI
352 >    Mat3x3d tmpTau(tau);
353 >    MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(),
354 >                  9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
355 > #endif
356 >    curSnapshot->statData.setTau(tau);
357    }
358  
359 < } //end namespace oopse
359 > } //end namespace OpenMD

Comparing:
trunk/src/brains/ForceManager.cpp (property svn:keywords), Revision 963 by tim, Wed May 17 21:51:42 2006 UTC vs.
branches/development/src/brains/ForceManager.cpp (property svn:keywords), Revision 1544 by gezelter, Fri Mar 18 19:31:52 2011 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines