ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/ForceManager.cpp
(Generate patch)

Comparing:
trunk/src/brains/ForceManager.cpp (file contents), Revision 963 by tim, Wed May 17 21:51:42 2006 UTC vs.
branches/development/src/brains/ForceManager.cpp (file contents), Revision 1551 by gezelter, Thu Apr 28 18:38:21 2011 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42   /**
# Line 49 | Line 49
49  
50   #include "brains/ForceManager.hpp"
51   #include "primitives/Molecule.hpp"
52 < #include "UseTheForce/doForces_interface.h"
53 < #define __C
54 < #include "UseTheForce/DarkSide/fInteractionMap.h"
52 > #define __OPENMD_C
53   #include "utils/simError.h"
54 + #include "primitives/Bond.hpp"
55   #include "primitives/Bend.hpp"
56 < #include "primitives/Bend.hpp"
57 < namespace oopse {
56 > #include "primitives/Torsion.hpp"
57 > #include "primitives/Inversion.hpp"
58 > #include "nonbonded/NonBondedInteraction.hpp"
59 > #include "parallel/ForceMatrixDecomposition.hpp"
60  
61 < /*
62 <  struct BendOrderStruct {
63 <    Bend* bend;
64 <    BendDataSet dataSet;
64 <  };
65 <  struct TorsionOrderStruct {
66 <    Torsion* torsion;
67 <    TorsionDataSet dataSet;
68 <  };
61 > using namespace std;
62 > namespace OpenMD {
63 >  
64 >  ForceManager::ForceManager(SimInfo * info) : info_(info) {
65  
66 <  bool  BendSortFunctor(const BendOrderStruct& b1, const BendOrderStruct& b2) {
67 <    return b1.dataSet.deltaV < b2.dataSet.deltaV;
66 > #ifdef IS_MPI
67 >    fDecomp_ = new ForceMatrixDecomposition(info_);
68 > #else
69 >    // fDecomp_ = new ForceSerialDecomposition(info);
70 > #endif
71    }
72 <
73 <  bool  TorsionSortFunctor(const TorsionOrderStruct& t1, const TorsionOrderStruct& t2) {
74 <    return t1.dataSet.deltaV < t2.dataSet.deltaV;
76 <  }
77 <  */
78 <  void ForceManager::calcForces(bool needPotential, bool needStress) {
79 <
72 >  
73 >  void ForceManager::calcForces() {
74 >    
75      if (!info_->isFortranInitialized()) {
76        info_->update();
77 +      interactionMan_->setSimInfo(info_);
78 +      interactionMan_->initialize();
79 +      swfun_ = interactionMan_->getSwitchingFunction();
80 +      fDecomp_->distributeInitialData();
81 +      info_->setupFortran();
82      }
83
84    preCalculation();
83      
84 <    calcShortRangeInteraction();
85 <
86 <    calcLongRangeInteraction(needPotential, needStress);
89 <
84 >    preCalculation();  
85 >    shortRangeInteractions();
86 >    longRangeInteractions();
87      postCalculation();
91
92 /*
93    std::vector<BendOrderStruct> bendOrderStruct;
94    for(std::map<Bend*, BendDataSet>::iterator i = bendDataSets.begin(); i != bendDataSets.end(); ++i) {
95        BendOrderStruct tmp;
96        tmp.bend= const_cast<Bend*>(i->first);
97        tmp.dataSet = i->second;
98        bendOrderStruct.push_back(tmp);
99    }
100
101    std::vector<TorsionOrderStruct> torsionOrderStruct;
102    for(std::map<Torsion*, TorsionDataSet>::iterator j = torsionDataSets.begin(); j != torsionDataSets.end(); ++j) {
103        TorsionOrderStruct tmp;
104        tmp.torsion = const_cast<Torsion*>(j->first);
105        tmp.dataSet = j->second;
106        torsionOrderStruct.push_back(tmp);
107    }
88      
109    std::sort(bendOrderStruct.begin(), bendOrderStruct.end(), std::ptr_fun(BendSortFunctor));
110    std::sort(torsionOrderStruct.begin(), torsionOrderStruct.end(), std::ptr_fun(TorsionSortFunctor));
111    for (std::vector<BendOrderStruct>::iterator k = bendOrderStruct.begin(); k != bendOrderStruct.end(); ++k) {
112        Bend* bend = k->bend;
113        std::cout << "Bend: atom1=" <<bend->getAtomA()->getGlobalIndex() << ",atom2 = "<< bend->getAtomB()->getGlobalIndex() << ",atom3="<<bend->getAtomC()->getGlobalIndex() << " ";
114        std::cout << "deltaV=" << k->dataSet.deltaV << ",p_theta=" << k->dataSet.prev.angle <<",p_pot=" << k->dataSet.prev.potential<< ",c_theta=" << k->dataSet.curr.angle << ", c_pot = " << k->dataSet.curr.potential <<std::endl;
115    }
116    for (std::vector<TorsionOrderStruct>::iterator l = torsionOrderStruct.begin(); l != torsionOrderStruct.end(); ++l) {
117        Torsion* torsion = l->torsion;
118        std::cout << "Torsion: atom1=" <<torsion->getAtomA()->getGlobalIndex() << ",atom2 = "<< torsion->getAtomB()->getGlobalIndex() << ",atom3="<<torsion->getAtomC()->getGlobalIndex() << ",atom4="<<torsion->getAtomD()->getGlobalIndex()<< " ";
119        std::cout << "deltaV=" << l->dataSet.deltaV << ",p_theta=" << l->dataSet.prev.angle <<",p_pot=" << l->dataSet.prev.potential<< ",c_theta=" << l->dataSet.curr.angle << ", c_pot = " << l->dataSet.curr.potential <<std::endl;
120    }
121   */
89    }
90 <
90 >  
91    void ForceManager::preCalculation() {
92      SimInfo::MoleculeIterator mi;
93      Molecule* mol;
# Line 128 | Line 95 | namespace oopse {
95      Atom* atom;
96      Molecule::RigidBodyIterator rbIter;
97      RigidBody* rb;
98 +    Molecule::CutoffGroupIterator ci;
99 +    CutoffGroup* cg;
100      
101      // forces are zeroed here, before any are accumulated.
102 <    // NOTE: do not rezero the forces in Fortran.
103 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
102 >    
103 >    for (mol = info_->beginMolecule(mi); mol != NULL;
104 >         mol = info_->nextMolecule(mi)) {
105        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
106          atom->zeroForcesAndTorques();
107        }
108 <        
108 >          
109        //change the positions of atoms which belong to the rigidbodies
110 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
110 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
111 >           rb = mol->nextRigidBody(rbIter)) {
112          rb->zeroForcesAndTorques();
113        }        
114 +
115 +      if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){
116 +        for(cg = mol->beginCutoffGroup(ci); cg != NULL;
117 +            cg = mol->nextCutoffGroup(ci)) {
118 +          //calculate the center of mass of cutoff group
119 +          cg->updateCOM();
120 +        }
121 +      }      
122      }
123 +  
124 +    // Zero out the stress tensor
125 +    tau *= 0.0;
126      
127    }
128 <
129 <  void ForceManager::calcShortRangeInteraction() {
128 >  
129 >  void ForceManager::shortRangeInteractions() {
130      Molecule* mol;
131      RigidBody* rb;
132      Bond* bond;
133      Bend* bend;
134      Torsion* torsion;
135 +    Inversion* inversion;
136      SimInfo::MoleculeIterator mi;
137      Molecule::RigidBodyIterator rbIter;
138      Molecule::BondIterator bondIter;;
139      Molecule::BendIterator  bendIter;
140      Molecule::TorsionIterator  torsionIter;
141 +    Molecule::InversionIterator  inversionIter;
142      RealType bondPotential = 0.0;
143      RealType bendPotential = 0.0;
144      RealType torsionPotential = 0.0;
145 +    RealType inversionPotential = 0.0;
146  
147      //calculate short range interactions    
148 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
148 >    for (mol = info_->beginMolecule(mi); mol != NULL;
149 >         mol = info_->nextMolecule(mi)) {
150  
151        //change the positions of atoms which belong to the rigidbodies
152 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
153 <          rb->updateAtoms();
152 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
153 >           rb = mol->nextRigidBody(rbIter)) {
154 >        rb->updateAtoms();
155        }
156  
157 <      for (bond = mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
157 >      for (bond = mol->beginBond(bondIter); bond != NULL;
158 >           bond = mol->nextBond(bondIter)) {
159          bond->calcForce();
160          bondPotential += bond->getPotential();
161        }
162  
163 <
164 <      for (bend = mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
165 <
166 <          RealType angle;
167 <            bend->calcForce(angle);
168 <          RealType currBendPot = bend->getPotential();          
169 <            bendPotential += bend->getPotential();
170 <          std::map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend);
171 <          if (i == bendDataSets.end()) {
172 <            BendDataSet dataSet;
173 <            dataSet.prev.angle = dataSet.curr.angle = angle;
174 <            dataSet.prev.potential = dataSet.curr.potential = currBendPot;
175 <            dataSet.deltaV = 0.0;
176 <            bendDataSets.insert(std::map<Bend*, BendDataSet>::value_type(bend, dataSet));
177 <          }else {
178 <            i->second.prev.angle = i->second.curr.angle;
179 <            i->second.prev.potential = i->second.curr.potential;
180 <            i->second.curr.angle = angle;
181 <            i->second.curr.potential = currBendPot;
182 <            i->second.deltaV =  fabs(i->second.curr.potential -  i->second.prev.potential);
183 <          }
163 >      for (bend = mol->beginBend(bendIter); bend != NULL;
164 >           bend = mol->nextBend(bendIter)) {
165 >        
166 >        RealType angle;
167 >        bend->calcForce(angle);
168 >        RealType currBendPot = bend->getPotential();          
169 >        
170 >        bendPotential += bend->getPotential();
171 >        map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend);
172 >        if (i == bendDataSets.end()) {
173 >          BendDataSet dataSet;
174 >          dataSet.prev.angle = dataSet.curr.angle = angle;
175 >          dataSet.prev.potential = dataSet.curr.potential = currBendPot;
176 >          dataSet.deltaV = 0.0;
177 >          bendDataSets.insert(map<Bend*, BendDataSet>::value_type(bend, dataSet));
178 >        }else {
179 >          i->second.prev.angle = i->second.curr.angle;
180 >          i->second.prev.potential = i->second.curr.potential;
181 >          i->second.curr.angle = angle;
182 >          i->second.curr.potential = currBendPot;
183 >          i->second.deltaV =  fabs(i->second.curr.potential -  
184 >                                   i->second.prev.potential);
185 >        }
186        }
187 <
188 <      for (torsion = mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
187 >      
188 >      for (torsion = mol->beginTorsion(torsionIter); torsion != NULL;
189 >           torsion = mol->nextTorsion(torsionIter)) {
190          RealType angle;
191 <          torsion->calcForce(angle);
191 >        torsion->calcForce(angle);
192          RealType currTorsionPot = torsion->getPotential();
193 <          torsionPotential += torsion->getPotential();
194 <          std::map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion);
195 <          if (i == torsionDataSets.end()) {
196 <            TorsionDataSet dataSet;
197 <            dataSet.prev.angle = dataSet.curr.angle = angle;
198 <            dataSet.prev.potential = dataSet.curr.potential = currTorsionPot;
199 <            dataSet.deltaV = 0.0;
200 <            torsionDataSets.insert(std::map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet));
201 <          }else {
202 <            i->second.prev.angle = i->second.curr.angle;
203 <            i->second.prev.potential = i->second.curr.potential;
204 <            i->second.curr.angle = angle;
205 <            i->second.curr.potential = currTorsionPot;
206 <            i->second.deltaV =  fabs(i->second.curr.potential -  i->second.prev.potential);
207 <          }      
208 <      }
209 <
193 >        torsionPotential += torsion->getPotential();
194 >        map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion);
195 >        if (i == torsionDataSets.end()) {
196 >          TorsionDataSet dataSet;
197 >          dataSet.prev.angle = dataSet.curr.angle = angle;
198 >          dataSet.prev.potential = dataSet.curr.potential = currTorsionPot;
199 >          dataSet.deltaV = 0.0;
200 >          torsionDataSets.insert(map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet));
201 >        }else {
202 >          i->second.prev.angle = i->second.curr.angle;
203 >          i->second.prev.potential = i->second.curr.potential;
204 >          i->second.curr.angle = angle;
205 >          i->second.curr.potential = currTorsionPot;
206 >          i->second.deltaV =  fabs(i->second.curr.potential -  
207 >                                   i->second.prev.potential);
208 >        }      
209 >      }      
210 >      
211 >      for (inversion = mol->beginInversion(inversionIter);
212 >           inversion != NULL;
213 >           inversion = mol->nextInversion(inversionIter)) {
214 >        RealType angle;
215 >        inversion->calcForce(angle);
216 >        RealType currInversionPot = inversion->getPotential();
217 >        inversionPotential += inversion->getPotential();
218 >        map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion);
219 >        if (i == inversionDataSets.end()) {
220 >          InversionDataSet dataSet;
221 >          dataSet.prev.angle = dataSet.curr.angle = angle;
222 >          dataSet.prev.potential = dataSet.curr.potential = currInversionPot;
223 >          dataSet.deltaV = 0.0;
224 >          inversionDataSets.insert(map<Inversion*, InversionDataSet>::value_type(inversion, dataSet));
225 >        }else {
226 >          i->second.prev.angle = i->second.curr.angle;
227 >          i->second.prev.potential = i->second.curr.potential;
228 >          i->second.curr.angle = angle;
229 >          i->second.curr.potential = currInversionPot;
230 >          i->second.deltaV =  fabs(i->second.curr.potential -  
231 >                                   i->second.prev.potential);
232 >        }      
233 >      }      
234      }
235      
236 <    RealType  shortRangePotential = bondPotential + bendPotential + torsionPotential;    
236 >    RealType  shortRangePotential = bondPotential + bendPotential +
237 >      torsionPotential +  inversionPotential;    
238      Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
239      curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential;
240      curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential;
241      curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential;
242      curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential;
243 <    
243 >    curSnapshot->statData[Stats::INVERSION_POTENTIAL] = inversionPotential;    
244    }
245 +  
246 +  void ForceManager::longRangeInteractions() {
247  
248 <  void ForceManager::calcLongRangeInteraction(bool needPotential, bool needStress) {
249 <    Snapshot* curSnapshot;
250 <    DataStorage* config;
251 <    RealType* frc;
252 <    RealType* pos;
253 <    RealType* trq;
254 <    RealType* A;
255 <    RealType* electroFrame;
256 <    RealType* rc;
257 <    
258 <    //get current snapshot from SimInfo
241 <    curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
242 <
243 <    //get array pointers
244 <    config = &(curSnapshot->atomData);
245 <    frc = config->getArrayPointer(DataStorage::dslForce);
246 <    pos = config->getArrayPointer(DataStorage::dslPosition);
247 <    trq = config->getArrayPointer(DataStorage::dslTorque);
248 <    A   = config->getArrayPointer(DataStorage::dslAmat);
249 <    electroFrame = config->getArrayPointer(DataStorage::dslElectroFrame);
248 >    // some of this initial stuff will go away:
249 >    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
250 >    DataStorage* config = &(curSnapshot->atomData);
251 >    DataStorage* cgConfig = &(curSnapshot->cgData);
252 >    RealType* frc = config->getArrayPointer(DataStorage::dslForce);
253 >    RealType* pos = config->getArrayPointer(DataStorage::dslPosition);
254 >    RealType* trq = config->getArrayPointer(DataStorage::dslTorque);
255 >    RealType* A = config->getArrayPointer(DataStorage::dslAmat);
256 >    RealType* electroFrame = config->getArrayPointer(DataStorage::dslElectroFrame);
257 >    RealType* particlePot = config->getArrayPointer(DataStorage::dslParticlePot);
258 >    RealType* rc;    
259  
260 <    //calculate the center of mass of cutoff group
261 <    SimInfo::MoleculeIterator mi;
253 <    Molecule* mol;
254 <    Molecule::CutoffGroupIterator ci;
255 <    CutoffGroup* cg;
256 <    Vector3d com;
257 <    std::vector<Vector3d> rcGroup;
258 <
259 <    if(info_->getNCutoffGroups() > 0){
260 <
261 <      for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
262 <        for(cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
263 <          cg->getCOM(com);
264 <          rcGroup.push_back(com);
265 <        }
266 <      }// end for (mol)
267 <      
268 <      rc = rcGroup[0].getArrayPointer();
260 >    if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){
261 >      rc = cgConfig->getArrayPointer(DataStorage::dslPosition);
262      } else {
263 <      // center of mass of the group is the same as position of the atom  if cutoff group does not exist
263 >      // center of mass of the group is the same as position of the atom  
264 >      // if cutoff group does not exist
265        rc = pos;
266      }
267 <  
267 >    
268      //initialize data before passing to fortran
269 <    RealType longRangePotential[LR_POT_TYPES];
269 >    RealType longRangePotential[N_INTERACTION_FAMILIES];
270      RealType lrPot = 0.0;
277    
278    Mat3x3d tau;
279    short int passedCalcPot = needPotential;
280    short int passedCalcStress = needStress;
271      int isError = 0;
272  
273 <    for (int i=0; i<LR_POT_TYPES;i++){
273 >    // dangerous to iterate over enums, but we'll live on the edge:
274 >    for (int i = NO_FAMILY; i != N_INTERACTION_FAMILIES; ++i){
275        longRangePotential[i]=0.0; //Initialize array
276      }
277  
278 <    doForceLoop( pos,
288 <                 rc,
289 <                 A,
290 <                 electroFrame,
291 <                 frc,
292 <                 trq,
293 <                 tau.getArrayPointer(),
294 <                 longRangePotential,
295 <                 &passedCalcPot,
296 <                 &passedCalcStress,
297 <                 &isError );
278 >    // new stuff starts here:
279  
280 <    if( isError ){
281 <      sprintf( painCave.errMsg,
282 <               "Error returned from the fortran force calculation.\n" );
283 <      painCave.isFatal = 1;
284 <      simError();
280 >    fDecomp_->distributeData();
281 >
282 >    int cg1, cg2, atom1, atom2;
283 >    Vector3d d_grp, dag;
284 >    RealType rgrpsq, rgrp;
285 >    RealType vij;
286 >    Vector3d fij, fg;
287 >    pair<int, int> gtypes;
288 >    RealType rCutSq;
289 >    bool in_switching_region;
290 >    RealType sw, dswdr, swderiv;
291 >    vector<int> atomListColumn, atomListRow, atomListLocal;
292 >    InteractionData idat;
293 >    SelfData sdat;
294 >    RealType mf;
295 >
296 >    int loopStart, loopEnd;
297 >
298 >    loopEnd = PAIR_LOOP;
299 >    if (info_->requiresPrepair() ) {
300 >      loopStart = PREPAIR_LOOP;
301 >    } else {
302 >      loopStart = PAIR_LOOP;
303      }
304 <    for (int i=0; i<LR_POT_TYPES;i++){
305 <      lrPot += longRangePotential[i]; //Quick hack
304 >
305 >    for (int iLoop = loopStart; iLoop < loopEnd; iLoop++) {
306 >      
307 >      if (iLoop == loopStart) {
308 >        bool update_nlist = fDecomp_->checkNeighborList();
309 >        if (update_nlist)
310 >          neighborList = fDecomp_->buildNeighborList();
311 >      }
312 >
313 >      for (vector<pair<int, int> >::iterator it = neighborList.begin();
314 >             it != neighborList.end(); ++it) {
315 >        
316 >        cg1 = (*it).first;
317 >        cg2 = (*it).second;
318 >
319 >        gtypes = fDecomp_->getGroupTypes(cg1, cg2);
320 >        d_grp  = fDecomp_->getIntergroupVector(cg1, cg2);
321 >        curSnapshot->wrapVector(d_grp);        
322 >        rgrpsq = d_grp.lengthSquare();
323 >        rCutSq = groupCutoffMap[gtypes].first;
324 >
325 >        if (rgrpsq < rCutSq) {
326 >          idat.rcut = groupCutoffMap[gtypes].second;
327 >          if (iLoop == PAIR_LOOP) {
328 >            vij *= 0.0;
329 >            fij = V3Zero;
330 >          }
331 >          
332 >          in_switching_region = swfun_->getSwitch(rgrpsq, idat.sw, dswdr, rgrp);              
333 >          atomListRow = fDecomp_->getAtomsInGroupRow(cg1);
334 >          atomListColumn = fDecomp_->getAtomsInGroupColumn(cg2);
335 >
336 >          for (vector<int>::iterator ia = atomListRow.begin();
337 >               ia != atomListRow.end(); ++ia) {            
338 >            atom1 = (*ia);
339 >            
340 >            for (vector<int>::iterator jb = atomListColumn.begin();
341 >                 jb != atomListColumn.end(); ++jb) {              
342 >              atom2 = (*jb);
343 >              
344 >              if (!fDecomp_->skipAtomPair(atom1, atom2)) {
345 >                
346 >                idat = fDecomp_->fillInteractionData(atom1, atom2);
347 >
348 >                if (atomListRow.size() == 1 && atomListColumn.size() == 1) {
349 >                  idat.d = d_grp;
350 >                  idat.r2 = rgrpsq;
351 >                } else {
352 >                  idat.d = fDecomp_->getInteratomicVector(atom1, atom2);
353 >                  curSnapshot->wrapVector(idat.d);
354 >                  idat.r2 = idat.d.lengthSquare();
355 >                }
356 >                
357 >                idat.rij = sqrt(idat.r2);
358 >              
359 >                if (iLoop == PREPAIR_LOOP) {
360 >                  interactionMan_->doPrePair(idat);
361 >                } else {
362 >                  interactionMan_->doPair(idat);
363 >                  vij += idat.vpair;
364 >                  fij += idat.f1;
365 >                  tau -= outProduct(idat.d, idat.f1);
366 >                }
367 >              }
368 >            }
369 >          }
370 >
371 >          if (iLoop == PAIR_LOOP) {
372 >            if (in_switching_region) {
373 >              swderiv = vij * dswdr / rgrp;
374 >              fg = swderiv * d_grp;
375 >
376 >              fij += fg;
377 >
378 >              if (atomListRow.size() == 1 && atomListColumn.size() == 1) {
379 >                tau -= outProduct(idat.d, fg);
380 >              }
381 >          
382 >              for (vector<int>::iterator ia = atomListRow.begin();
383 >                   ia != atomListRow.end(); ++ia) {            
384 >                atom1 = (*ia);                
385 >                mf = fDecomp_->getMfactRow(atom1);
386 >                // fg is the force on atom ia due to cutoff group's
387 >                // presence in switching region
388 >                fg = swderiv * d_grp * mf;
389 >                fDecomp_->addForceToAtomRow(atom1, fg);
390 >
391 >                if (atomListRow.size() > 1) {
392 >                  if (info_->usesAtomicVirial()) {
393 >                    // find the distance between the atom
394 >                    // and the center of the cutoff group:
395 >                    dag = fDecomp_->getAtomToGroupVectorRow(atom1, cg1);
396 >                    tau -= outProduct(dag, fg);
397 >                  }
398 >                }
399 >              }
400 >              for (vector<int>::iterator jb = atomListColumn.begin();
401 >                   jb != atomListColumn.end(); ++jb) {              
402 >                atom2 = (*jb);
403 >                mf = fDecomp_->getMfactColumn(atom2);
404 >                // fg is the force on atom jb due to cutoff group's
405 >                // presence in switching region
406 >                fg = -swderiv * d_grp * mf;
407 >                fDecomp_->addForceToAtomColumn(atom2, fg);
408 >
409 >                if (atomListColumn.size() > 1) {
410 >                  if (info_->usesAtomicVirial()) {
411 >                    // find the distance between the atom
412 >                    // and the center of the cutoff group:
413 >                    dag = fDecomp_->getAtomToGroupVectorColumn(atom2, cg2);
414 >                    tau -= outProduct(dag, fg);
415 >                  }
416 >                }
417 >              }
418 >            }
419 >            //if (!SIM_uses_AtomicVirial) {
420 >            //  tau -= outProduct(d_grp, fij);
421 >            //}
422 >          }
423 >        }
424 >      }
425 >
426 >      if (iLoop == PREPAIR_LOOP) {
427 >        if (info_->requiresPrepair()) {            
428 >          fDecomp_->collectIntermediateData();
429 >          atomListLocal = fDecomp_->getAtomList();
430 >          for (vector<int>::iterator ia = atomListLocal.begin();
431 >               ia != atomListLocal.end(); ++ia) {              
432 >            atom1 = (*ia);            
433 >            sdat = fDecomp_->fillSelfData(atom1);
434 >            interactionMan_->doPreForce(sdat);
435 >          }
436 >          fDecomp_->distributeIntermediateData();        
437 >        }
438 >      }
439 >
440      }
441 +    
442 +    fDecomp_->collectData();
443 +    
444 +    if (info_->requiresSkipCorrection() || info_->requiresSelfCorrection()) {
445 +      atomListLocal = fDecomp_->getAtomList();
446 +      for (vector<int>::iterator ia = atomListLocal.begin();
447 +           ia != atomListLocal.end(); ++ia) {              
448 +        atom1 = (*ia);    
449  
450 +        if (info_->requiresSkipCorrection()) {
451 +          vector<int> skipList = fDecomp_->getSkipsForAtom(atom1);
452 +          for (vector<int>::iterator jb = skipList.begin();
453 +               jb != skipList.end(); ++jb) {              
454 +            atom2 = (*jb);
455 +            idat = fDecomp_->fillSkipData(atom1, atom2);
456 +            interactionMan_->doSkipCorrection(idat);
457 +          }
458 +        }
459 +          
460 +        if (info_->requiresSelfCorrection()) {
461 +          sdat = fDecomp_->fillSelfData(atom1);
462 +          interactionMan_->doSelfCorrection(sdat);
463 +        }
464 +      }
465 +    }
466 +
467 +    // dangerous to iterate over enums, but we'll live on the edge:
468 +    for (int i = NO_FAMILY; i != N_INTERACTION_FAMILIES; ++i){
469 +      lrPot += longRangePotential[i]; //Quick hack
470 +    }
471 +        
472      //store the tau and long range potential    
473      curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot;
474 <    curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VDW_POT];
475 <    curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_POT];
313 <
314 <    curSnapshot->statData.setTau(tau);
474 >    curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VANDERWAALS_FAMILY];
475 >    curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_FAMILY];
476    }
477  
478 <
478 >  
479    void ForceManager::postCalculation() {
480      SimInfo::MoleculeIterator mi;
481      Molecule* mol;
482      Molecule::RigidBodyIterator rbIter;
483      RigidBody* rb;
484 +    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
485      
486      // collect the atomic forces onto rigid bodies
487 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
488 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
489 <        rb->calcForcesAndTorques();
487 >    
488 >    for (mol = info_->beginMolecule(mi); mol != NULL;
489 >         mol = info_->nextMolecule(mi)) {
490 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
491 >           rb = mol->nextRigidBody(rbIter)) {
492 >        Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial();
493 >        tau += rbTau;
494        }
495      }
496 <
496 >    
497 > #ifdef IS_MPI
498 >    Mat3x3d tmpTau(tau);
499 >    MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(),
500 >                  9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
501 > #endif
502 >    curSnapshot->statData.setTau(tau);
503    }
504  
505 < } //end namespace oopse
505 > } //end namespace OpenMD

Comparing:
trunk/src/brains/ForceManager.cpp (property svn:keywords), Revision 963 by tim, Wed May 17 21:51:42 2006 UTC vs.
branches/development/src/brains/ForceManager.cpp (property svn:keywords), Revision 1551 by gezelter, Thu Apr 28 18:38:21 2011 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines