ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/ForceManager.cpp
(Generate patch)

Comparing:
trunk/src/brains/ForceManager.cpp (file contents), Revision 963 by tim, Wed May 17 21:51:42 2006 UTC vs.
branches/development/src/brains/ForceManager.cpp (file contents), Revision 1577 by gezelter, Wed Jun 8 20:26:56 2011 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42   /**
# Line 47 | Line 47
47   * @version 1.0
48   */
49  
50 +
51   #include "brains/ForceManager.hpp"
52   #include "primitives/Molecule.hpp"
53 < #include "UseTheForce/doForces_interface.h"
53 < #define __C
54 < #include "UseTheForce/DarkSide/fInteractionMap.h"
53 > #define __OPENMD_C
54   #include "utils/simError.h"
55 + #include "primitives/Bond.hpp"
56   #include "primitives/Bend.hpp"
57 < #include "primitives/Bend.hpp"
58 < namespace oopse {
57 > #include "primitives/Torsion.hpp"
58 > #include "primitives/Inversion.hpp"
59 > #include "nonbonded/NonBondedInteraction.hpp"
60 > #include "parallel/ForceMatrixDecomposition.hpp"
61  
62 < /*
63 <  struct BendOrderStruct {
64 <    Bend* bend;
65 <    BendDataSet dataSet;
66 <  };
67 <  struct TorsionOrderStruct {
68 <    Torsion* torsion;
67 <    TorsionDataSet dataSet;
68 <  };
69 <
70 <  bool  BendSortFunctor(const BendOrderStruct& b1, const BendOrderStruct& b2) {
71 <    return b1.dataSet.deltaV < b2.dataSet.deltaV;
62 > using namespace std;
63 > namespace OpenMD {
64 >  
65 >  ForceManager::ForceManager(SimInfo * info) : info_(info) {
66 >    forceField_ = info_->getForceField();
67 >    fDecomp_ = new ForceMatrixDecomposition(info_);
68 >    interactionMan_ = new InteractionManager();
69    }
70  
71 <  bool  TorsionSortFunctor(const TorsionOrderStruct& t1, const TorsionOrderStruct& t2) {
72 <    return t1.dataSet.deltaV < t2.dataSet.deltaV;
73 <  }
74 <  */
75 <  void ForceManager::calcForces(bool needPotential, bool needStress) {
71 >  /**
72 >   * setupCutoffs
73 >   *
74 >   * Sets the values of cutoffRadius, cutoffMethod, and cutoffPolicy
75 >   *
76 >   * cutoffRadius : realType
77 >   *  If the cutoffRadius was explicitly set, use that value.
78 >   *  If the cutoffRadius was not explicitly set:
79 >   *      Are there electrostatic atoms?  Use 12.0 Angstroms.
80 >   *      No electrostatic atoms?  Poll the atom types present in the
81 >   *      simulation for suggested cutoff values (e.g. 2.5 * sigma).
82 >   *      Use the maximum suggested value that was found.
83 >   *
84 >   * cutoffMethod : (one of HARD, SWITCHED, SHIFTED_FORCE, SHIFTED_POTENTIAL)
85 >   *      If cutoffMethod was explicitly set, use that choice.
86 >   *      If cutoffMethod was not explicitly set, use SHIFTED_FORCE
87 >   *
88 >   * cutoffPolicy : (one of MIX, MAX, TRADITIONAL)
89 >   *      If cutoffPolicy was explicitly set, use that choice.
90 >   *      If cutoffPolicy was not explicitly set, use TRADITIONAL
91 >   */
92 >  void ForceManager::setupCutoffs() {
93 >    
94 >    Globals* simParams_ = info_->getSimParams();
95 >    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
96 >    
97 >    if (simParams_->haveCutoffRadius()) {
98 >      rCut_ = simParams_->getCutoffRadius();
99 >    } else {      
100 >      if (info_->usesElectrostaticAtoms()) {
101 >        sprintf(painCave.errMsg,
102 >                "ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n"
103 >                "\tOpenMD will use a default value of 12.0 angstroms"
104 >                "\tfor the cutoffRadius.\n");
105 >        painCave.isFatal = 0;
106 >        painCave.severity = OPENMD_INFO;
107 >        simError();
108 >        rCut_ = 12.0;
109 >      } else {
110 >        RealType thisCut;
111 >        set<AtomType*>::iterator i;
112 >        set<AtomType*> atomTypes;
113 >        atomTypes = info_->getSimulatedAtomTypes();        
114 >        for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
115 >          thisCut = interactionMan_->getSuggestedCutoffRadius((*i));
116 >          rCut_ = max(thisCut, rCut_);
117 >        }
118 >        sprintf(painCave.errMsg,
119 >                "ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n"
120 >                "\tOpenMD will use %lf angstroms.\n",
121 >                rCut_);
122 >        painCave.isFatal = 0;
123 >        painCave.severity = OPENMD_INFO;
124 >        simError();
125 >      }            
126 >    }
127  
128 <    if (!info_->isFortranInitialized()) {
129 <      info_->update();
128 >    map<string, CutoffMethod> stringToCutoffMethod;
129 >    stringToCutoffMethod["HARD"] = HARD;
130 >    stringToCutoffMethod["SWITCHED"] = SWITCHED;
131 >    stringToCutoffMethod["SHIFTED_POTENTIAL"] = SHIFTED_POTENTIAL;    
132 >    stringToCutoffMethod["SHIFTED_FORCE"] = SHIFTED_FORCE;
133 >  
134 >    if (simParams_->haveCutoffMethod()) {
135 >      string cutMeth = toUpperCopy(simParams_->getCutoffMethod());
136 >      map<string, CutoffMethod>::iterator i;
137 >      i = stringToCutoffMethod.find(cutMeth);
138 >      if (i == stringToCutoffMethod.end()) {
139 >        sprintf(painCave.errMsg,
140 >                "ForceManager::setupCutoffs: Could not find chosen cutoffMethod %s\n"
141 >                "\tShould be one of: "
142 >                "HARD, SWITCHED, SHIFTED_POTENTIAL, or SHIFTED_FORCE\n",
143 >                cutMeth.c_str());
144 >        painCave.isFatal = 1;
145 >        painCave.severity = OPENMD_ERROR;
146 >        simError();
147 >      } else {
148 >        cutoffMethod_ = i->second;
149 >      }
150 >    } else {
151 >      sprintf(painCave.errMsg,
152 >              "ForceManager::setupCutoffs: No value was set for the cutoffMethod.\n"
153 >              "\tOpenMD will use SHIFTED_FORCE.\n");
154 >      painCave.isFatal = 0;
155 >      painCave.severity = OPENMD_INFO;
156 >      simError();
157 >      cutoffMethod_ = SHIFTED_FORCE;        
158      }
159  
160 <    preCalculation();
161 <    
162 <    calcShortRangeInteraction();
160 >    map<string, CutoffPolicy> stringToCutoffPolicy;
161 >    stringToCutoffPolicy["MIX"] = MIX;
162 >    stringToCutoffPolicy["MAX"] = MAX;
163 >    stringToCutoffPolicy["TRADITIONAL"] = TRADITIONAL;    
164  
165 <    calcLongRangeInteraction(needPotential, needStress);
165 >    std::string cutPolicy;
166 >    if (forceFieldOptions_.haveCutoffPolicy()){
167 >      cutPolicy = forceFieldOptions_.getCutoffPolicy();
168 >    }else if (simParams_->haveCutoffPolicy()) {
169 >      cutPolicy = simParams_->getCutoffPolicy();
170 >    }
171  
172 <    postCalculation();
172 >    if (!cutPolicy.empty()){
173 >      toUpper(cutPolicy);
174 >      map<string, CutoffPolicy>::iterator i;
175 >      i = stringToCutoffPolicy.find(cutPolicy);
176  
177 < /*
178 <    std::vector<BendOrderStruct> bendOrderStruct;
179 <    for(std::map<Bend*, BendDataSet>::iterator i = bendDataSets.begin(); i != bendDataSets.end(); ++i) {
180 <        BendOrderStruct tmp;
181 <        tmp.bend= const_cast<Bend*>(i->first);
182 <        tmp.dataSet = i->second;
183 <        bendOrderStruct.push_back(tmp);
177 >      if (i == stringToCutoffPolicy.end()) {
178 >        sprintf(painCave.errMsg,
179 >                "ForceManager::setupCutoffs: Could not find chosen cutoffPolicy %s\n"
180 >                "\tShould be one of: "
181 >                "MIX, MAX, or TRADITIONAL\n",
182 >                cutPolicy.c_str());
183 >        painCave.isFatal = 1;
184 >        painCave.severity = OPENMD_ERROR;
185 >        simError();
186 >      } else {
187 >        cutoffPolicy_ = i->second;
188 >      }
189 >    } else {
190 >      sprintf(painCave.errMsg,
191 >              "ForceManager::setupCutoffs: No value was set for the cutoffPolicy.\n"
192 >              "\tOpenMD will use TRADITIONAL.\n");
193 >      painCave.isFatal = 0;
194 >      painCave.severity = OPENMD_INFO;
195 >      simError();
196 >      cutoffPolicy_ = TRADITIONAL;        
197      }
198 +  }
199  
200 <    std::vector<TorsionOrderStruct> torsionOrderStruct;
201 <    for(std::map<Torsion*, TorsionDataSet>::iterator j = torsionDataSets.begin(); j != torsionDataSets.end(); ++j) {
202 <        TorsionOrderStruct tmp;
203 <        tmp.torsion = const_cast<Torsion*>(j->first);
204 <        tmp.dataSet = j->second;
205 <        torsionOrderStruct.push_back(tmp);
206 <    }
200 >  /**
201 >   * setupSwitching
202 >   *
203 >   * Sets the values of switchingRadius and
204 >   *  If the switchingRadius was explicitly set, use that value (but check it)
205 >   *  If the switchingRadius was not explicitly set: use 0.85 * cutoffRadius_
206 >   */
207 >  void ForceManager::setupSwitching() {
208 >    Globals* simParams_ = info_->getSimParams();
209 >
210 >    // create the switching function object:
211 >    switcher_ = new SwitchingFunction();
212      
213 <    std::sort(bendOrderStruct.begin(), bendOrderStruct.end(), std::ptr_fun(BendSortFunctor));
214 <    std::sort(torsionOrderStruct.begin(), torsionOrderStruct.end(), std::ptr_fun(TorsionSortFunctor));
215 <    for (std::vector<BendOrderStruct>::iterator k = bendOrderStruct.begin(); k != bendOrderStruct.end(); ++k) {
216 <        Bend* bend = k->bend;
217 <        std::cout << "Bend: atom1=" <<bend->getAtomA()->getGlobalIndex() << ",atom2 = "<< bend->getAtomB()->getGlobalIndex() << ",atom3="<<bend->getAtomC()->getGlobalIndex() << " ";
218 <        std::cout << "deltaV=" << k->dataSet.deltaV << ",p_theta=" << k->dataSet.prev.angle <<",p_pot=" << k->dataSet.prev.potential<< ",c_theta=" << k->dataSet.curr.angle << ", c_pot = " << k->dataSet.curr.potential <<std::endl;
213 >    if (simParams_->haveSwitchingRadius()) {
214 >      rSwitch_ = simParams_->getSwitchingRadius();
215 >      if (rSwitch_ > rCut_) {        
216 >        sprintf(painCave.errMsg,
217 >                "ForceManager::setupSwitching: switchingRadius (%f) is larger "
218 >                "than the cutoffRadius(%f)\n", rSwitch_, rCut_);
219 >        painCave.isFatal = 1;
220 >        painCave.severity = OPENMD_ERROR;
221 >        simError();
222 >      }
223 >    } else {      
224 >      rSwitch_ = 0.85 * rCut_;
225 >      sprintf(painCave.errMsg,
226 >              "ForceManager::setupSwitching: No value was set for the switchingRadius.\n"
227 >              "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n"
228 >              "\tswitchingRadius = %f. for this simulation\n", rSwitch_);
229 >      painCave.isFatal = 0;
230 >      painCave.severity = OPENMD_WARNING;
231 >      simError();
232 >    }          
233 >    
234 >    // Default to cubic switching function.
235 >    sft_ = cubic;
236 >    if (simParams_->haveSwitchingFunctionType()) {
237 >      string funcType = simParams_->getSwitchingFunctionType();
238 >      toUpper(funcType);
239 >      if (funcType == "CUBIC") {
240 >        sft_ = cubic;
241 >      } else {
242 >        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
243 >          sft_ = fifth_order_poly;
244 >        } else {
245 >          // throw error        
246 >          sprintf( painCave.errMsg,
247 >                   "ForceManager::setupSwitching : Unknown switchingFunctionType. (Input file specified %s .)\n"
248 >                   "\tswitchingFunctionType must be one of: "
249 >                   "\"cubic\" or \"fifth_order_polynomial\".",
250 >                   funcType.c_str() );
251 >          painCave.isFatal = 1;
252 >          painCave.severity = OPENMD_ERROR;
253 >          simError();
254 >        }          
255 >      }
256      }
257 <    for (std::vector<TorsionOrderStruct>::iterator l = torsionOrderStruct.begin(); l != torsionOrderStruct.end(); ++l) {
258 <        Torsion* torsion = l->torsion;
259 <        std::cout << "Torsion: atom1=" <<torsion->getAtomA()->getGlobalIndex() << ",atom2 = "<< torsion->getAtomB()->getGlobalIndex() << ",atom3="<<torsion->getAtomC()->getGlobalIndex() << ",atom4="<<torsion->getAtomD()->getGlobalIndex()<< " ";
260 <        std::cout << "deltaV=" << l->dataSet.deltaV << ",p_theta=" << l->dataSet.prev.angle <<",p_pot=" << l->dataSet.prev.potential<< ",c_theta=" << l->dataSet.curr.angle << ", c_pot = " << l->dataSet.curr.potential <<std::endl;
257 >    switcher_->setSwitchType(sft_);
258 >    switcher_->setSwitch(rSwitch_, rCut_);
259 >  }
260 >  
261 >  void ForceManager::initialize() {
262 >
263 >    if (!info_->isTopologyDone()) {
264 >      info_->update();
265 >      interactionMan_->setSimInfo(info_);
266 >      interactionMan_->initialize();
267 >
268 >      // We want to delay the cutoffs until after the interaction
269 >      // manager has set up the atom-atom interactions so that we can
270 >      // query them for suggested cutoff values
271 >
272 >      setupCutoffs();
273 >      setupSwitching();
274 >
275 >      info_->prepareTopology();      
276      }
277 <   */
277 >
278 >    ForceFieldOptions& fopts = forceField_->getForceFieldOptions();
279 >    
280 >    // Force fields can set options on how to scale van der Waals and electrostatic
281 >    // interactions for atoms connected via bonds, bends and torsions
282 >    // in this case the topological distance between atoms is:
283 >    // 0 = topologically unconnected
284 >    // 1 = bonded together
285 >    // 2 = connected via a bend
286 >    // 3 = connected via a torsion
287 >    
288 >    vdwScale_.reserve(4);
289 >    fill(vdwScale_.begin(), vdwScale_.end(), 0.0);
290 >
291 >    electrostaticScale_.reserve(4);
292 >    fill(electrostaticScale_.begin(), electrostaticScale_.end(), 0.0);
293 >
294 >    vdwScale_[0] = 1.0;
295 >    vdwScale_[1] = fopts.getvdw12scale();
296 >    vdwScale_[2] = fopts.getvdw13scale();
297 >    vdwScale_[3] = fopts.getvdw14scale();
298 >    
299 >    electrostaticScale_[0] = 1.0;
300 >    electrostaticScale_[1] = fopts.getelectrostatic12scale();
301 >    electrostaticScale_[2] = fopts.getelectrostatic13scale();
302 >    electrostaticScale_[3] = fopts.getelectrostatic14scale();    
303 >    
304 >    fDecomp_->distributeInitialData();
305 >
306 >    initialized_ = true;
307 >
308    }
309  
310 +  void ForceManager::calcForces() {
311 +    
312 +    if (!initialized_) initialize();
313 +
314 +    preCalculation();  
315 +    shortRangeInteractions();
316 +    longRangeInteractions();
317 +    postCalculation();    
318 +  }
319 +  
320    void ForceManager::preCalculation() {
321      SimInfo::MoleculeIterator mi;
322      Molecule* mol;
# Line 128 | Line 324 | namespace oopse {
324      Atom* atom;
325      Molecule::RigidBodyIterator rbIter;
326      RigidBody* rb;
327 +    Molecule::CutoffGroupIterator ci;
328 +    CutoffGroup* cg;
329      
330      // forces are zeroed here, before any are accumulated.
331 <    // NOTE: do not rezero the forces in Fortran.
332 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
331 >    
332 >    for (mol = info_->beginMolecule(mi); mol != NULL;
333 >         mol = info_->nextMolecule(mi)) {
334        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
335          atom->zeroForcesAndTorques();
336        }
337 <        
337 >          
338        //change the positions of atoms which belong to the rigidbodies
339 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
339 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
340 >           rb = mol->nextRigidBody(rbIter)) {
341          rb->zeroForcesAndTorques();
342        }        
343 +
344 +      if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){
345 +        for(cg = mol->beginCutoffGroup(ci); cg != NULL;
346 +            cg = mol->nextCutoffGroup(ci)) {
347 +          //calculate the center of mass of cutoff group
348 +          cg->updateCOM();
349 +        }
350 +      }      
351      }
352 +  
353 +    // Zero out the stress tensor
354 +    tau *= 0.0;
355      
356    }
357 <
358 <  void ForceManager::calcShortRangeInteraction() {
357 >  
358 >  void ForceManager::shortRangeInteractions() {
359      Molecule* mol;
360      RigidBody* rb;
361      Bond* bond;
362      Bend* bend;
363      Torsion* torsion;
364 +    Inversion* inversion;
365      SimInfo::MoleculeIterator mi;
366      Molecule::RigidBodyIterator rbIter;
367      Molecule::BondIterator bondIter;;
368      Molecule::BendIterator  bendIter;
369      Molecule::TorsionIterator  torsionIter;
370 +    Molecule::InversionIterator  inversionIter;
371      RealType bondPotential = 0.0;
372      RealType bendPotential = 0.0;
373      RealType torsionPotential = 0.0;
374 +    RealType inversionPotential = 0.0;
375  
376      //calculate short range interactions    
377 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
377 >    for (mol = info_->beginMolecule(mi); mol != NULL;
378 >         mol = info_->nextMolecule(mi)) {
379  
380        //change the positions of atoms which belong to the rigidbodies
381 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
382 <          rb->updateAtoms();
381 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
382 >           rb = mol->nextRigidBody(rbIter)) {
383 >        rb->updateAtoms();
384        }
385  
386 <      for (bond = mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
386 >      for (bond = mol->beginBond(bondIter); bond != NULL;
387 >           bond = mol->nextBond(bondIter)) {
388          bond->calcForce();
389          bondPotential += bond->getPotential();
390        }
391  
392 <
393 <      for (bend = mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
394 <
178 <          RealType angle;
179 <            bend->calcForce(angle);
180 <          RealType currBendPot = bend->getPotential();          
181 <            bendPotential += bend->getPotential();
182 <          std::map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend);
183 <          if (i == bendDataSets.end()) {
184 <            BendDataSet dataSet;
185 <            dataSet.prev.angle = dataSet.curr.angle = angle;
186 <            dataSet.prev.potential = dataSet.curr.potential = currBendPot;
187 <            dataSet.deltaV = 0.0;
188 <            bendDataSets.insert(std::map<Bend*, BendDataSet>::value_type(bend, dataSet));
189 <          }else {
190 <            i->second.prev.angle = i->second.curr.angle;
191 <            i->second.prev.potential = i->second.curr.potential;
192 <            i->second.curr.angle = angle;
193 <            i->second.curr.potential = currBendPot;
194 <            i->second.deltaV =  fabs(i->second.curr.potential -  i->second.prev.potential);
195 <          }
196 <      }
197 <
198 <      for (torsion = mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
392 >      for (bend = mol->beginBend(bendIter); bend != NULL;
393 >           bend = mol->nextBend(bendIter)) {
394 >        
395          RealType angle;
396 <          torsion->calcForce(angle);
397 <        RealType currTorsionPot = torsion->getPotential();
398 <          torsionPotential += torsion->getPotential();
399 <          std::map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion);
400 <          if (i == torsionDataSets.end()) {
401 <            TorsionDataSet dataSet;
402 <            dataSet.prev.angle = dataSet.curr.angle = angle;
403 <            dataSet.prev.potential = dataSet.curr.potential = currTorsionPot;
404 <            dataSet.deltaV = 0.0;
405 <            torsionDataSets.insert(std::map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet));
406 <          }else {
407 <            i->second.prev.angle = i->second.curr.angle;
408 <            i->second.prev.potential = i->second.curr.potential;
409 <            i->second.curr.angle = angle;
410 <            i->second.curr.potential = currTorsionPot;
411 <            i->second.deltaV =  fabs(i->second.curr.potential -  i->second.prev.potential);
412 <          }      
396 >        bend->calcForce(angle);
397 >        RealType currBendPot = bend->getPotential();          
398 >        
399 >        bendPotential += bend->getPotential();
400 >        map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend);
401 >        if (i == bendDataSets.end()) {
402 >          BendDataSet dataSet;
403 >          dataSet.prev.angle = dataSet.curr.angle = angle;
404 >          dataSet.prev.potential = dataSet.curr.potential = currBendPot;
405 >          dataSet.deltaV = 0.0;
406 >          bendDataSets.insert(map<Bend*, BendDataSet>::value_type(bend, dataSet));
407 >        }else {
408 >          i->second.prev.angle = i->second.curr.angle;
409 >          i->second.prev.potential = i->second.curr.potential;
410 >          i->second.curr.angle = angle;
411 >          i->second.curr.potential = currBendPot;
412 >          i->second.deltaV =  fabs(i->second.curr.potential -  
413 >                                   i->second.prev.potential);
414 >        }
415        }
416 <
416 >      
417 >      for (torsion = mol->beginTorsion(torsionIter); torsion != NULL;
418 >           torsion = mol->nextTorsion(torsionIter)) {
419 >        RealType angle;
420 >        torsion->calcForce(angle);
421 >        RealType currTorsionPot = torsion->getPotential();
422 >        torsionPotential += torsion->getPotential();
423 >        map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion);
424 >        if (i == torsionDataSets.end()) {
425 >          TorsionDataSet dataSet;
426 >          dataSet.prev.angle = dataSet.curr.angle = angle;
427 >          dataSet.prev.potential = dataSet.curr.potential = currTorsionPot;
428 >          dataSet.deltaV = 0.0;
429 >          torsionDataSets.insert(map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet));
430 >        }else {
431 >          i->second.prev.angle = i->second.curr.angle;
432 >          i->second.prev.potential = i->second.curr.potential;
433 >          i->second.curr.angle = angle;
434 >          i->second.curr.potential = currTorsionPot;
435 >          i->second.deltaV =  fabs(i->second.curr.potential -  
436 >                                   i->second.prev.potential);
437 >        }      
438 >      }      
439 >      
440 >      for (inversion = mol->beginInversion(inversionIter);
441 >           inversion != NULL;
442 >           inversion = mol->nextInversion(inversionIter)) {
443 >        RealType angle;
444 >        inversion->calcForce(angle);
445 >        RealType currInversionPot = inversion->getPotential();
446 >        inversionPotential += inversion->getPotential();
447 >        map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion);
448 >        if (i == inversionDataSets.end()) {
449 >          InversionDataSet dataSet;
450 >          dataSet.prev.angle = dataSet.curr.angle = angle;
451 >          dataSet.prev.potential = dataSet.curr.potential = currInversionPot;
452 >          dataSet.deltaV = 0.0;
453 >          inversionDataSets.insert(map<Inversion*, InversionDataSet>::value_type(inversion, dataSet));
454 >        }else {
455 >          i->second.prev.angle = i->second.curr.angle;
456 >          i->second.prev.potential = i->second.curr.potential;
457 >          i->second.curr.angle = angle;
458 >          i->second.curr.potential = currInversionPot;
459 >          i->second.deltaV =  fabs(i->second.curr.potential -  
460 >                                   i->second.prev.potential);
461 >        }      
462 >      }      
463      }
464      
465 <    RealType  shortRangePotential = bondPotential + bendPotential + torsionPotential;    
465 >    RealType  shortRangePotential = bondPotential + bendPotential +
466 >      torsionPotential +  inversionPotential;    
467      Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
468      curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential;
469      curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential;
470      curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential;
471      curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential;
472 <    
472 >    curSnapshot->statData[Stats::INVERSION_POTENTIAL] = inversionPotential;    
473    }
474 +  
475 +  void ForceManager::longRangeInteractions() {
476  
477 <  void ForceManager::calcLongRangeInteraction(bool needPotential, bool needStress) {
478 <    Snapshot* curSnapshot;
479 <    DataStorage* config;
480 <    RealType* frc;
481 <    RealType* pos;
482 <    RealType* trq;
483 <    RealType* A;
484 <    RealType* electroFrame;
485 <    RealType* rc;
477 >    // some of this initial stuff will go away:
478 >    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
479 >    DataStorage* config = &(curSnapshot->atomData);
480 >    DataStorage* cgConfig = &(curSnapshot->cgData);
481 >    RealType* frc = config->getArrayPointer(DataStorage::dslForce);
482 >    RealType* pos = config->getArrayPointer(DataStorage::dslPosition);
483 >    RealType* trq = config->getArrayPointer(DataStorage::dslTorque);
484 >    RealType* A = config->getArrayPointer(DataStorage::dslAmat);
485 >    RealType* electroFrame = config->getArrayPointer(DataStorage::dslElectroFrame);
486 >    RealType* particlePot = config->getArrayPointer(DataStorage::dslParticlePot);
487 >    RealType* rc;    
488 >
489 >    if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){
490 >      rc = cgConfig->getArrayPointer(DataStorage::dslPosition);
491 >    } else {
492 >      // center of mass of the group is the same as position of the atom  
493 >      // if cutoff group does not exist
494 >      rc = pos;
495 >    }
496      
497 <    //get current snapshot from SimInfo
498 <    curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
497 >    // new stuff starts here:
498 >    fDecomp_->zeroWorkArrays();
499 >    fDecomp_->distributeData();
500 >
501 >    int cg1, cg2, atom1, atom2;
502 >    Vector3d d_grp, dag;
503 >    RealType rgrpsq, rgrp;
504 >    RealType vij;
505 >    Vector3d fij, fg;
506 >    tuple3<RealType, RealType, RealType> cuts;
507 >    RealType rCutSq;
508 >    bool in_switching_region;
509 >    RealType sw, dswdr, swderiv;
510 >    vector<int> atomListColumn, atomListRow, atomListLocal;
511 >    InteractionData idat;
512 >    SelfData sdat;
513 >    RealType mf;
514 >    potVec pot(0.0);
515 >    potVec longRangePotential(0.0);
516 >    RealType lrPot;
517  
518 <    //get array pointers
244 <    config = &(curSnapshot->atomData);
245 <    frc = config->getArrayPointer(DataStorage::dslForce);
246 <    pos = config->getArrayPointer(DataStorage::dslPosition);
247 <    trq = config->getArrayPointer(DataStorage::dslTorque);
248 <    A   = config->getArrayPointer(DataStorage::dslAmat);
249 <    electroFrame = config->getArrayPointer(DataStorage::dslElectroFrame);
518 >    int loopStart, loopEnd;
519  
520 <    //calculate the center of mass of cutoff group
521 <    SimInfo::MoleculeIterator mi;
522 <    Molecule* mol;
523 <    Molecule::CutoffGroupIterator ci;
524 <    CutoffGroup* cg;
525 <    Vector3d com;
257 <    std::vector<Vector3d> rcGroup;
520 >    loopEnd = PAIR_LOOP;
521 >    if (info_->requiresPrepair() ) {
522 >      loopStart = PREPAIR_LOOP;
523 >    } else {
524 >      loopStart = PAIR_LOOP;
525 >    }
526  
527 <    if(info_->getNCutoffGroups() > 0){
528 <
529 <      for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
530 <        for(cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
531 <          cg->getCOM(com);
532 <          rcGroup.push_back(com);
527 >    for (int iLoop = loopStart; iLoop < loopEnd; iLoop++) {
528 >      
529 >      if (iLoop == loopStart) {
530 >        bool update_nlist = fDecomp_->checkNeighborList();
531 >        if (update_nlist)
532 >          neighborList = fDecomp_->buildNeighborList();
533 >      }
534 >
535 >      for (vector<pair<int, int> >::iterator it = neighborList.begin();
536 >             it != neighborList.end(); ++it) {
537 >        
538 >        cg1 = (*it).first;
539 >        cg2 = (*it).second;
540 >        
541 >        cuts = fDecomp_->getGroupCutoffs(cg1, cg2);
542 >
543 >        d_grp  = fDecomp_->getIntergroupVector(cg1, cg2);
544 >        curSnapshot->wrapVector(d_grp);        
545 >        rgrpsq = d_grp.lengthSquare();
546 >
547 >        rCutSq = cuts.second;
548 >
549 >        if (rgrpsq < rCutSq) {
550 >          *(idat.rcut) = cuts.first;
551 >          if (iLoop == PAIR_LOOP) {
552 >            vij *= 0.0;
553 >            fij = V3Zero;
554 >          }
555 >          
556 >          in_switching_region = switcher_->getSwitch(rgrpsq, *(idat.sw), dswdr,
557 >                                                     rgrp);
558 >              
559 >          atomListRow = fDecomp_->getAtomsInGroupRow(cg1);
560 >          atomListColumn = fDecomp_->getAtomsInGroupColumn(cg2);
561 >
562 >          for (vector<int>::iterator ia = atomListRow.begin();
563 >               ia != atomListRow.end(); ++ia) {            
564 >            atom1 = (*ia);
565 >            
566 >            for (vector<int>::iterator jb = atomListColumn.begin();
567 >                 jb != atomListColumn.end(); ++jb) {              
568 >              atom2 = (*jb);
569 >              
570 >              if (!fDecomp_->skipAtomPair(atom1, atom2)) {
571 >                
572 >                pot *= 0.0;
573 >
574 >                idat = fDecomp_->fillInteractionData(atom1, atom2);
575 >                *(idat.pot) = pot;
576 >
577 >                if (atomListRow.size() == 1 && atomListColumn.size() == 1) {
578 >                  *(idat.d) = d_grp;
579 >                  *(idat.r2) = rgrpsq;
580 >                } else {
581 >                  *(idat.d) = fDecomp_->getInteratomicVector(atom1, atom2);
582 >                  curSnapshot->wrapVector( *(idat.d) );
583 >                  *(idat.r2) = idat.d->lengthSquare();
584 >                }
585 >                
586 >                *(idat.rij) = sqrt( *(idat.r2) );
587 >              
588 >                if (iLoop == PREPAIR_LOOP) {
589 >                  interactionMan_->doPrePair(idat);
590 >                } else {
591 >                  interactionMan_->doPair(idat);
592 >                  fDecomp_->unpackInteractionData(idat, atom1, atom2);
593 >                  vij += *(idat.vpair);
594 >                  fij += *(idat.f1);
595 >                  tau -= outProduct( *(idat.d), *(idat.f1));
596 >                }
597 >              }
598 >            }
599 >          }
600 >
601 >          if (iLoop == PAIR_LOOP) {
602 >            if (in_switching_region) {
603 >              swderiv = vij * dswdr / rgrp;
604 >              fg = swderiv * d_grp;
605 >
606 >              fij += fg;
607 >
608 >              if (atomListRow.size() == 1 && atomListColumn.size() == 1) {
609 >                tau -= outProduct( *(idat.d), fg);
610 >              }
611 >          
612 >              for (vector<int>::iterator ia = atomListRow.begin();
613 >                   ia != atomListRow.end(); ++ia) {            
614 >                atom1 = (*ia);                
615 >                mf = fDecomp_->getMassFactorRow(atom1);
616 >                // fg is the force on atom ia due to cutoff group's
617 >                // presence in switching region
618 >                fg = swderiv * d_grp * mf;
619 >                fDecomp_->addForceToAtomRow(atom1, fg);
620 >
621 >                if (atomListRow.size() > 1) {
622 >                  if (info_->usesAtomicVirial()) {
623 >                    // find the distance between the atom
624 >                    // and the center of the cutoff group:
625 >                    dag = fDecomp_->getAtomToGroupVectorRow(atom1, cg1);
626 >                    tau -= outProduct(dag, fg);
627 >                  }
628 >                }
629 >              }
630 >              for (vector<int>::iterator jb = atomListColumn.begin();
631 >                   jb != atomListColumn.end(); ++jb) {              
632 >                atom2 = (*jb);
633 >                mf = fDecomp_->getMassFactorColumn(atom2);
634 >                // fg is the force on atom jb due to cutoff group's
635 >                // presence in switching region
636 >                fg = -swderiv * d_grp * mf;
637 >                fDecomp_->addForceToAtomColumn(atom2, fg);
638 >
639 >                if (atomListColumn.size() > 1) {
640 >                  if (info_->usesAtomicVirial()) {
641 >                    // find the distance between the atom
642 >                    // and the center of the cutoff group:
643 >                    dag = fDecomp_->getAtomToGroupVectorColumn(atom2, cg2);
644 >                    tau -= outProduct(dag, fg);
645 >                  }
646 >                }
647 >              }
648 >            }
649 >            //if (!SIM_uses_AtomicVirial) {
650 >            //  tau -= outProduct(d_grp, fij);
651 >            //}
652 >          }
653          }
654 <      }// end for (mol)
655 <      
656 <      rc = rcGroup[0].getArrayPointer();
657 <    } else {
658 <      // center of mass of the group is the same as position of the atom  if cutoff group does not exist
659 <      rc = pos;
654 >      }
655 >
656 >      if (iLoop == PREPAIR_LOOP) {
657 >        if (info_->requiresPrepair()) {            
658 >          fDecomp_->collectIntermediateData();
659 >
660 >          for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) {
661 >            sdat = fDecomp_->fillSelfData(atom1);
662 >            interactionMan_->doPreForce(sdat);
663 >          }
664 >
665 >          fDecomp_->distributeIntermediateData();        
666 >        }
667 >      }
668 >
669      }
273  
274    //initialize data before passing to fortran
275    RealType longRangePotential[LR_POT_TYPES];
276    RealType lrPot = 0.0;
670      
671 <    Mat3x3d tau;
672 <    short int passedCalcPot = needPotential;
673 <    short int passedCalcStress = needStress;
674 <    int isError = 0;
671 >    fDecomp_->collectData();
672 >    
673 >    if ( info_->requiresSkipCorrection() ) {
674 >      
675 >      for (int atom1 = 0; atom1 < fDecomp_->getNAtomsInRow(); atom1++) {
676  
677 <    for (int i=0; i<LR_POT_TYPES;i++){
678 <      longRangePotential[i]=0.0; //Initialize array
677 >        vector<int> skipList = fDecomp_->getSkipsForRowAtom( atom1 );
678 >        
679 >        for (vector<int>::iterator jb = skipList.begin();
680 >             jb != skipList.end(); ++jb) {        
681 >    
682 >          atom2 = (*jb);
683 >          idat = fDecomp_->fillSkipData(atom1, atom2);
684 >          interactionMan_->doSkipCorrection(idat);
685 >
686 >        }
687 >      }
688      }
689 +    
690 +    if (info_->requiresSelfCorrection()) {
691  
692 <    doForceLoop( pos,
693 <                 rc,
694 <                 A,
695 <                 electroFrame,
291 <                 frc,
292 <                 trq,
293 <                 tau.getArrayPointer(),
294 <                 longRangePotential,
295 <                 &passedCalcPot,
296 <                 &passedCalcStress,
297 <                 &isError );
692 >      for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) {          
693 >        sdat = fDecomp_->fillSelfData(atom1);
694 >        interactionMan_->doSelfCorrection(sdat);
695 >      }
696  
299    if( isError ){
300      sprintf( painCave.errMsg,
301               "Error returned from the fortran force calculation.\n" );
302      painCave.isFatal = 1;
303      simError();
697      }
305    for (int i=0; i<LR_POT_TYPES;i++){
306      lrPot += longRangePotential[i]; //Quick hack
307    }
698  
699 +    longRangePotential = fDecomp_->getLongRangePotential();
700 +    lrPot = longRangePotential.sum();
701 +
702      //store the tau and long range potential    
703      curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot;
704 <    curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VDW_POT];
705 <    curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_POT];
313 <
314 <    curSnapshot->statData.setTau(tau);
704 >    curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VANDERWAALS_FAMILY];
705 >    curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_FAMILY];
706    }
707  
708 <
708 >  
709    void ForceManager::postCalculation() {
710      SimInfo::MoleculeIterator mi;
711      Molecule* mol;
712      Molecule::RigidBodyIterator rbIter;
713      RigidBody* rb;
714 +    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
715      
716      // collect the atomic forces onto rigid bodies
717 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
718 <      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
719 <        rb->calcForcesAndTorques();
717 >    
718 >    for (mol = info_->beginMolecule(mi); mol != NULL;
719 >         mol = info_->nextMolecule(mi)) {
720 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
721 >           rb = mol->nextRigidBody(rbIter)) {
722 >        Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial();
723 >        tau += rbTau;
724        }
725      }
726 <
726 >    
727 > #ifdef IS_MPI
728 >    Mat3x3d tmpTau(tau);
729 >    MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(),
730 >                  9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
731 > #endif
732 >    curSnapshot->statData.setTau(tau);
733    }
734  
735 < } //end namespace oopse
735 > } //end namespace OpenMD

Comparing:
trunk/src/brains/ForceManager.cpp (property svn:keywords), Revision 963 by tim, Wed May 17 21:51:42 2006 UTC vs.
branches/development/src/brains/ForceManager.cpp (property svn:keywords), Revision 1577 by gezelter, Wed Jun 8 20:26:56 2011 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines