6 |
|
* redistribute this software in source and binary code form, provided |
7 |
|
* that the following conditions are met: |
8 |
|
* |
9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
10 |
< |
* publication of scientific results based in part on use of the |
11 |
< |
* program. An acceptable form of acknowledgement is citation of |
12 |
< |
* the article in which the program was described (Matthew |
13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
< |
* |
18 |
< |
* 2. Redistributions of source code must retain the above copyright |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
* |
12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
* documentation and/or other materials provided with the |
15 |
|
* distribution. |
28 |
|
* arising out of the use of or inability to use software, even if the |
29 |
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
+ |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
|
*/ |
41 |
|
|
42 |
|
/** |
50 |
|
#include "brains/ForceManager.hpp" |
51 |
|
#include "primitives/Molecule.hpp" |
52 |
|
#include "UseTheForce/doForces_interface.h" |
53 |
< |
#define __C |
53 |
> |
#define __OPENMD_C |
54 |
|
#include "UseTheForce/DarkSide/fInteractionMap.h" |
55 |
|
#include "utils/simError.h" |
56 |
+ |
#include "primitives/Bond.hpp" |
57 |
|
#include "primitives/Bend.hpp" |
58 |
< |
#include "primitives/Bend.hpp" |
59 |
< |
namespace oopse { |
58 |
> |
#include "primitives/Torsion.hpp" |
59 |
> |
#include "primitives/Inversion.hpp" |
60 |
|
|
61 |
< |
/* |
62 |
< |
struct BendOrderStruct { |
63 |
< |
Bend* bend; |
64 |
< |
BendDataSet dataSet; |
65 |
< |
}; |
66 |
< |
struct TorsionOrderStruct { |
66 |
< |
Torsion* torsion; |
67 |
< |
TorsionDataSet dataSet; |
68 |
< |
}; |
61 |
> |
namespace OpenMD { |
62 |
> |
|
63 |
> |
ForceManager::ForceManager(SimInfo * info) : info_(info), |
64 |
> |
NBforcesInitialized_(false) { |
65 |
> |
lj_ = LJ::Instance(); |
66 |
> |
lj_->setForceField(info_->getForceField()); |
67 |
|
|
68 |
< |
bool BendSortFunctor(const BendOrderStruct& b1, const BendOrderStruct& b2) { |
69 |
< |
return b1.dataSet.deltaV < b2.dataSet.deltaV; |
72 |
< |
} |
68 |
> |
gb_ = GB::Instance(); |
69 |
> |
gb_->setForceField(info_->getForceField()); |
70 |
|
|
71 |
< |
bool TorsionSortFunctor(const TorsionOrderStruct& t1, const TorsionOrderStruct& t2) { |
72 |
< |
return t1.dataSet.deltaV < t2.dataSet.deltaV; |
76 |
< |
} |
77 |
< |
*/ |
78 |
< |
void ForceManager::calcForces(bool needPotential, bool needStress) { |
71 |
> |
sticky_ = Sticky::Instance(); |
72 |
> |
sticky_->setForceField(info_->getForceField()); |
73 |
|
|
74 |
+ |
eam_ = EAM::Instance(); |
75 |
+ |
eam_->setForceField(info_->getForceField()); |
76 |
+ |
} |
77 |
+ |
|
78 |
+ |
void ForceManager::calcForces() { |
79 |
+ |
|
80 |
|
if (!info_->isFortranInitialized()) { |
81 |
|
info_->update(); |
82 |
|
} |
83 |
< |
|
83 |
> |
|
84 |
|
preCalculation(); |
85 |
|
|
86 |
|
calcShortRangeInteraction(); |
87 |
|
|
88 |
< |
calcLongRangeInteraction(needPotential, needStress); |
88 |
> |
calcLongRangeInteraction(); |
89 |
|
|
90 |
|
postCalculation(); |
91 |
– |
|
92 |
– |
/* |
93 |
– |
std::vector<BendOrderStruct> bendOrderStruct; |
94 |
– |
for(std::map<Bend*, BendDataSet>::iterator i = bendDataSets.begin(); i != bendDataSets.end(); ++i) { |
95 |
– |
BendOrderStruct tmp; |
96 |
– |
tmp.bend= const_cast<Bend*>(i->first); |
97 |
– |
tmp.dataSet = i->second; |
98 |
– |
bendOrderStruct.push_back(tmp); |
99 |
– |
} |
100 |
– |
|
101 |
– |
std::vector<TorsionOrderStruct> torsionOrderStruct; |
102 |
– |
for(std::map<Torsion*, TorsionDataSet>::iterator j = torsionDataSets.begin(); j != torsionDataSets.end(); ++j) { |
103 |
– |
TorsionOrderStruct tmp; |
104 |
– |
tmp.torsion = const_cast<Torsion*>(j->first); |
105 |
– |
tmp.dataSet = j->second; |
106 |
– |
torsionOrderStruct.push_back(tmp); |
107 |
– |
} |
91 |
|
|
109 |
– |
std::sort(bendOrderStruct.begin(), bendOrderStruct.end(), std::ptr_fun(BendSortFunctor)); |
110 |
– |
std::sort(torsionOrderStruct.begin(), torsionOrderStruct.end(), std::ptr_fun(TorsionSortFunctor)); |
111 |
– |
for (std::vector<BendOrderStruct>::iterator k = bendOrderStruct.begin(); k != bendOrderStruct.end(); ++k) { |
112 |
– |
Bend* bend = k->bend; |
113 |
– |
std::cout << "Bend: atom1=" <<bend->getAtomA()->getGlobalIndex() << ",atom2 = "<< bend->getAtomB()->getGlobalIndex() << ",atom3="<<bend->getAtomC()->getGlobalIndex() << " "; |
114 |
– |
std::cout << "deltaV=" << k->dataSet.deltaV << ",p_theta=" << k->dataSet.prev.angle <<",p_pot=" << k->dataSet.prev.potential<< ",c_theta=" << k->dataSet.curr.angle << ", c_pot = " << k->dataSet.curr.potential <<std::endl; |
115 |
– |
} |
116 |
– |
for (std::vector<TorsionOrderStruct>::iterator l = torsionOrderStruct.begin(); l != torsionOrderStruct.end(); ++l) { |
117 |
– |
Torsion* torsion = l->torsion; |
118 |
– |
std::cout << "Torsion: atom1=" <<torsion->getAtomA()->getGlobalIndex() << ",atom2 = "<< torsion->getAtomB()->getGlobalIndex() << ",atom3="<<torsion->getAtomC()->getGlobalIndex() << ",atom4="<<torsion->getAtomD()->getGlobalIndex()<< " "; |
119 |
– |
std::cout << "deltaV=" << l->dataSet.deltaV << ",p_theta=" << l->dataSet.prev.angle <<",p_pot=" << l->dataSet.prev.potential<< ",c_theta=" << l->dataSet.curr.angle << ", c_pot = " << l->dataSet.curr.potential <<std::endl; |
120 |
– |
} |
121 |
– |
*/ |
92 |
|
} |
93 |
< |
|
93 |
> |
|
94 |
|
void ForceManager::preCalculation() { |
95 |
|
SimInfo::MoleculeIterator mi; |
96 |
|
Molecule* mol; |
101 |
|
|
102 |
|
// forces are zeroed here, before any are accumulated. |
103 |
|
// NOTE: do not rezero the forces in Fortran. |
104 |
< |
for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) { |
104 |
> |
|
105 |
> |
for (mol = info_->beginMolecule(mi); mol != NULL; |
106 |
> |
mol = info_->nextMolecule(mi)) { |
107 |
|
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
108 |
|
atom->zeroForcesAndTorques(); |
109 |
|
} |
110 |
< |
|
110 |
> |
|
111 |
|
//change the positions of atoms which belong to the rigidbodies |
112 |
< |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
112 |
> |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
113 |
> |
rb = mol->nextRigidBody(rbIter)) { |
114 |
|
rb->zeroForcesAndTorques(); |
115 |
|
} |
116 |
+ |
|
117 |
|
} |
118 |
|
|
119 |
+ |
// Zero out the stress tensor |
120 |
+ |
tau *= 0.0; |
121 |
+ |
|
122 |
|
} |
123 |
< |
|
123 |
> |
|
124 |
|
void ForceManager::calcShortRangeInteraction() { |
125 |
|
Molecule* mol; |
126 |
|
RigidBody* rb; |
127 |
|
Bond* bond; |
128 |
|
Bend* bend; |
129 |
|
Torsion* torsion; |
130 |
+ |
Inversion* inversion; |
131 |
|
SimInfo::MoleculeIterator mi; |
132 |
|
Molecule::RigidBodyIterator rbIter; |
133 |
|
Molecule::BondIterator bondIter;; |
134 |
|
Molecule::BendIterator bendIter; |
135 |
|
Molecule::TorsionIterator torsionIter; |
136 |
+ |
Molecule::InversionIterator inversionIter; |
137 |
|
RealType bondPotential = 0.0; |
138 |
|
RealType bendPotential = 0.0; |
139 |
|
RealType torsionPotential = 0.0; |
140 |
+ |
RealType inversionPotential = 0.0; |
141 |
|
|
142 |
|
//calculate short range interactions |
143 |
< |
for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) { |
143 |
> |
for (mol = info_->beginMolecule(mi); mol != NULL; |
144 |
> |
mol = info_->nextMolecule(mi)) { |
145 |
|
|
146 |
|
//change the positions of atoms which belong to the rigidbodies |
147 |
< |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
148 |
< |
rb->updateAtoms(); |
147 |
> |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
148 |
> |
rb = mol->nextRigidBody(rbIter)) { |
149 |
> |
rb->updateAtoms(); |
150 |
|
} |
151 |
|
|
152 |
< |
for (bond = mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) { |
152 |
> |
for (bond = mol->beginBond(bondIter); bond != NULL; |
153 |
> |
bond = mol->nextBond(bondIter)) { |
154 |
|
bond->calcForce(); |
155 |
|
bondPotential += bond->getPotential(); |
156 |
|
} |
157 |
|
|
158 |
< |
|
159 |
< |
for (bend = mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) { |
160 |
< |
|
178 |
< |
RealType angle; |
179 |
< |
bend->calcForce(angle); |
180 |
< |
RealType currBendPot = bend->getPotential(); |
181 |
< |
bendPotential += bend->getPotential(); |
182 |
< |
std::map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend); |
183 |
< |
if (i == bendDataSets.end()) { |
184 |
< |
BendDataSet dataSet; |
185 |
< |
dataSet.prev.angle = dataSet.curr.angle = angle; |
186 |
< |
dataSet.prev.potential = dataSet.curr.potential = currBendPot; |
187 |
< |
dataSet.deltaV = 0.0; |
188 |
< |
bendDataSets.insert(std::map<Bend*, BendDataSet>::value_type(bend, dataSet)); |
189 |
< |
}else { |
190 |
< |
i->second.prev.angle = i->second.curr.angle; |
191 |
< |
i->second.prev.potential = i->second.curr.potential; |
192 |
< |
i->second.curr.angle = angle; |
193 |
< |
i->second.curr.potential = currBendPot; |
194 |
< |
i->second.deltaV = fabs(i->second.curr.potential - i->second.prev.potential); |
195 |
< |
} |
196 |
< |
} |
197 |
< |
|
198 |
< |
for (torsion = mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) { |
158 |
> |
for (bend = mol->beginBend(bendIter); bend != NULL; |
159 |
> |
bend = mol->nextBend(bendIter)) { |
160 |
> |
|
161 |
|
RealType angle; |
162 |
< |
torsion->calcForce(angle); |
163 |
< |
RealType currTorsionPot = torsion->getPotential(); |
164 |
< |
torsionPotential += torsion->getPotential(); |
165 |
< |
std::map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion); |
166 |
< |
if (i == torsionDataSets.end()) { |
167 |
< |
TorsionDataSet dataSet; |
168 |
< |
dataSet.prev.angle = dataSet.curr.angle = angle; |
169 |
< |
dataSet.prev.potential = dataSet.curr.potential = currTorsionPot; |
170 |
< |
dataSet.deltaV = 0.0; |
171 |
< |
torsionDataSets.insert(std::map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet)); |
172 |
< |
}else { |
173 |
< |
i->second.prev.angle = i->second.curr.angle; |
174 |
< |
i->second.prev.potential = i->second.curr.potential; |
175 |
< |
i->second.curr.angle = angle; |
176 |
< |
i->second.curr.potential = currTorsionPot; |
177 |
< |
i->second.deltaV = fabs(i->second.curr.potential - i->second.prev.potential); |
178 |
< |
} |
162 |
> |
bend->calcForce(angle); |
163 |
> |
RealType currBendPot = bend->getPotential(); |
164 |
> |
|
165 |
> |
bendPotential += bend->getPotential(); |
166 |
> |
std::map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend); |
167 |
> |
if (i == bendDataSets.end()) { |
168 |
> |
BendDataSet dataSet; |
169 |
> |
dataSet.prev.angle = dataSet.curr.angle = angle; |
170 |
> |
dataSet.prev.potential = dataSet.curr.potential = currBendPot; |
171 |
> |
dataSet.deltaV = 0.0; |
172 |
> |
bendDataSets.insert(std::map<Bend*, BendDataSet>::value_type(bend, dataSet)); |
173 |
> |
}else { |
174 |
> |
i->second.prev.angle = i->second.curr.angle; |
175 |
> |
i->second.prev.potential = i->second.curr.potential; |
176 |
> |
i->second.curr.angle = angle; |
177 |
> |
i->second.curr.potential = currBendPot; |
178 |
> |
i->second.deltaV = fabs(i->second.curr.potential - |
179 |
> |
i->second.prev.potential); |
180 |
> |
} |
181 |
|
} |
182 |
+ |
|
183 |
+ |
for (torsion = mol->beginTorsion(torsionIter); torsion != NULL; |
184 |
+ |
torsion = mol->nextTorsion(torsionIter)) { |
185 |
+ |
RealType angle; |
186 |
+ |
torsion->calcForce(angle); |
187 |
+ |
RealType currTorsionPot = torsion->getPotential(); |
188 |
+ |
torsionPotential += torsion->getPotential(); |
189 |
+ |
std::map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion); |
190 |
+ |
if (i == torsionDataSets.end()) { |
191 |
+ |
TorsionDataSet dataSet; |
192 |
+ |
dataSet.prev.angle = dataSet.curr.angle = angle; |
193 |
+ |
dataSet.prev.potential = dataSet.curr.potential = currTorsionPot; |
194 |
+ |
dataSet.deltaV = 0.0; |
195 |
+ |
torsionDataSets.insert(std::map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet)); |
196 |
+ |
}else { |
197 |
+ |
i->second.prev.angle = i->second.curr.angle; |
198 |
+ |
i->second.prev.potential = i->second.curr.potential; |
199 |
+ |
i->second.curr.angle = angle; |
200 |
+ |
i->second.curr.potential = currTorsionPot; |
201 |
+ |
i->second.deltaV = fabs(i->second.curr.potential - |
202 |
+ |
i->second.prev.potential); |
203 |
+ |
} |
204 |
+ |
} |
205 |
|
|
206 |
+ |
for (inversion = mol->beginInversion(inversionIter); |
207 |
+ |
inversion != NULL; |
208 |
+ |
inversion = mol->nextInversion(inversionIter)) { |
209 |
+ |
RealType angle; |
210 |
+ |
inversion->calcForce(angle); |
211 |
+ |
RealType currInversionPot = inversion->getPotential(); |
212 |
+ |
inversionPotential += inversion->getPotential(); |
213 |
+ |
std::map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion); |
214 |
+ |
if (i == inversionDataSets.end()) { |
215 |
+ |
InversionDataSet dataSet; |
216 |
+ |
dataSet.prev.angle = dataSet.curr.angle = angle; |
217 |
+ |
dataSet.prev.potential = dataSet.curr.potential = currInversionPot; |
218 |
+ |
dataSet.deltaV = 0.0; |
219 |
+ |
inversionDataSets.insert(std::map<Inversion*, InversionDataSet>::value_type(inversion, dataSet)); |
220 |
+ |
}else { |
221 |
+ |
i->second.prev.angle = i->second.curr.angle; |
222 |
+ |
i->second.prev.potential = i->second.curr.potential; |
223 |
+ |
i->second.curr.angle = angle; |
224 |
+ |
i->second.curr.potential = currInversionPot; |
225 |
+ |
i->second.deltaV = fabs(i->second.curr.potential - |
226 |
+ |
i->second.prev.potential); |
227 |
+ |
} |
228 |
+ |
} |
229 |
|
} |
230 |
|
|
231 |
< |
RealType shortRangePotential = bondPotential + bendPotential + torsionPotential; |
231 |
> |
RealType shortRangePotential = bondPotential + bendPotential + |
232 |
> |
torsionPotential + inversionPotential; |
233 |
|
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
234 |
|
curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential; |
235 |
|
curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential; |
236 |
|
curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential; |
237 |
|
curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential; |
238 |
+ |
curSnapshot->statData[Stats::INVERSION_POTENTIAL] = inversionPotential; |
239 |
|
|
240 |
|
} |
241 |
< |
|
242 |
< |
void ForceManager::calcLongRangeInteraction(bool needPotential, bool needStress) { |
241 |
> |
|
242 |
> |
void ForceManager::calcLongRangeInteraction() { |
243 |
|
Snapshot* curSnapshot; |
244 |
|
DataStorage* config; |
245 |
|
RealType* frc; |
248 |
|
RealType* A; |
249 |
|
RealType* electroFrame; |
250 |
|
RealType* rc; |
251 |
+ |
RealType* particlePot; |
252 |
|
|
253 |
|
//get current snapshot from SimInfo |
254 |
|
curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
255 |
< |
|
255 |
> |
|
256 |
|
//get array pointers |
257 |
|
config = &(curSnapshot->atomData); |
258 |
|
frc = config->getArrayPointer(DataStorage::dslForce); |
260 |
|
trq = config->getArrayPointer(DataStorage::dslTorque); |
261 |
|
A = config->getArrayPointer(DataStorage::dslAmat); |
262 |
|
electroFrame = config->getArrayPointer(DataStorage::dslElectroFrame); |
263 |
+ |
particlePot = config->getArrayPointer(DataStorage::dslParticlePot); |
264 |
|
|
265 |
|
//calculate the center of mass of cutoff group |
266 |
|
SimInfo::MoleculeIterator mi; |
269 |
|
CutoffGroup* cg; |
270 |
|
Vector3d com; |
271 |
|
std::vector<Vector3d> rcGroup; |
272 |
< |
|
272 |
> |
|
273 |
|
if(info_->getNCutoffGroups() > 0){ |
274 |
< |
|
275 |
< |
for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) { |
276 |
< |
for(cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { |
274 |
> |
|
275 |
> |
for (mol = info_->beginMolecule(mi); mol != NULL; |
276 |
> |
mol = info_->nextMolecule(mi)) { |
277 |
> |
for(cg = mol->beginCutoffGroup(ci); cg != NULL; |
278 |
> |
cg = mol->nextCutoffGroup(ci)) { |
279 |
|
cg->getCOM(com); |
280 |
|
rcGroup.push_back(com); |
281 |
|
} |
283 |
|
|
284 |
|
rc = rcGroup[0].getArrayPointer(); |
285 |
|
} else { |
286 |
< |
// center of mass of the group is the same as position of the atom if cutoff group does not exist |
286 |
> |
// center of mass of the group is the same as position of the atom |
287 |
> |
// if cutoff group does not exist |
288 |
|
rc = pos; |
289 |
|
} |
290 |
< |
|
290 |
> |
|
291 |
|
//initialize data before passing to fortran |
292 |
|
RealType longRangePotential[LR_POT_TYPES]; |
293 |
|
RealType lrPot = 0.0; |
294 |
|
Vector3d totalDipole; |
278 |
– |
Mat3x3d tau; |
279 |
– |
short int passedCalcPot = needPotential; |
280 |
– |
short int passedCalcStress = needStress; |
295 |
|
int isError = 0; |
296 |
|
|
297 |
|
for (int i=0; i<LR_POT_TYPES;i++){ |
298 |
|
longRangePotential[i]=0.0; //Initialize array |
299 |
|
} |
300 |
< |
|
301 |
< |
doForceLoop( pos, |
302 |
< |
rc, |
303 |
< |
A, |
304 |
< |
electroFrame, |
305 |
< |
frc, |
306 |
< |
trq, |
307 |
< |
tau.getArrayPointer(), |
308 |
< |
longRangePotential, |
309 |
< |
&passedCalcPot, |
310 |
< |
&passedCalcStress, |
311 |
< |
&isError ); |
298 |
< |
|
300 |
> |
|
301 |
> |
doForceLoop(pos, |
302 |
> |
rc, |
303 |
> |
A, |
304 |
> |
electroFrame, |
305 |
> |
frc, |
306 |
> |
trq, |
307 |
> |
tau.getArrayPointer(), |
308 |
> |
longRangePotential, |
309 |
> |
particlePot, |
310 |
> |
&isError ); |
311 |
> |
|
312 |
|
if( isError ){ |
313 |
|
sprintf( painCave.errMsg, |
314 |
|
"Error returned from the fortran force calculation.\n" ); |
318 |
|
for (int i=0; i<LR_POT_TYPES;i++){ |
319 |
|
lrPot += longRangePotential[i]; //Quick hack |
320 |
|
} |
321 |
< |
|
321 |
> |
|
322 |
|
// grab the simulation box dipole moment if specified |
323 |
|
if (info_->getCalcBoxDipole()){ |
324 |
|
getAccumulatedBoxDipole(totalDipole.getArrayPointer()); |
325 |
< |
|
325 |
> |
|
326 |
|
curSnapshot->statData[Stats::BOX_DIPOLE_X] = totalDipole(0); |
327 |
|
curSnapshot->statData[Stats::BOX_DIPOLE_Y] = totalDipole(1); |
328 |
|
curSnapshot->statData[Stats::BOX_DIPOLE_Z] = totalDipole(2); |
329 |
|
} |
330 |
< |
|
330 |
> |
|
331 |
|
//store the tau and long range potential |
332 |
|
curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot; |
333 |
|
curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VDW_POT]; |
334 |
|
curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_POT]; |
322 |
– |
|
323 |
– |
curSnapshot->statData.setTau(tau); |
335 |
|
} |
336 |
|
|
337 |
< |
|
337 |
> |
|
338 |
|
void ForceManager::postCalculation() { |
339 |
|
SimInfo::MoleculeIterator mi; |
340 |
|
Molecule* mol; |
341 |
|
Molecule::RigidBodyIterator rbIter; |
342 |
|
RigidBody* rb; |
343 |
+ |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
344 |
|
|
345 |
|
// collect the atomic forces onto rigid bodies |
346 |
< |
for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) { |
347 |
< |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
348 |
< |
rb->calcForcesAndTorques(); |
346 |
> |
|
347 |
> |
for (mol = info_->beginMolecule(mi); mol != NULL; |
348 |
> |
mol = info_->nextMolecule(mi)) { |
349 |
> |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
350 |
> |
rb = mol->nextRigidBody(rbIter)) { |
351 |
> |
Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial(); |
352 |
> |
tau += rbTau; |
353 |
|
} |
354 |
< |
} |
355 |
< |
|
354 |
> |
} |
355 |
> |
|
356 |
> |
#ifdef IS_MPI |
357 |
> |
Mat3x3d tmpTau(tau); |
358 |
> |
MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(), |
359 |
> |
9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
360 |
> |
#endif |
361 |
> |
curSnapshot->statData.setTau(tau); |
362 |
|
} |
363 |
|
|
364 |
< |
} //end namespace oopse |
364 |
> |
} //end namespace OpenMD |