ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/MoleculeCreator.cpp
(Generate patch)

Comparing:
trunk/src/brains/MoleculeCreator.cpp (file contents), Revision 273 by tim, Tue Jan 25 17:45:23 2005 UTC vs.
branches/development/src/brains/MoleculeCreator.cpp (file contents), Revision 1710 by gezelter, Fri May 18 21:44:02 2012 UTC

# Line 1 | Line 1
1 < /*
1 > /*
2   * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42    
43 < /**
44 <  * @file MoleculeCreator.cpp
45 <  * @author tlin
46 <  * @date 11/04/2004
47 <  * @time 13:44am
48 <  * @version 1.0
49 <  */
43 > /**
44 > * @file MoleculeCreator.cpp
45 > * @author tlin
46 > * @date 11/04/2004
47 > * @time 13:44am
48 > * @version 1.0
49 > */
50  
51   #include <cassert>
52 + #include <typeinfo>
53   #include <set>
54  
55   #include "brains/MoleculeCreator.hpp"
56   #include "primitives/GhostBend.hpp"
57   #include "primitives/GhostTorsion.hpp"
58 < #include "types/DirectionalAtomType.hpp"
58 > #include "types/AtomType.hpp"
59   #include "types/FixedBondType.hpp"
60   #include "utils/simError.h"
61   #include "utils/StringUtils.hpp"
62  
63 < namespace oopse {
64 <
65 < Molecule* MoleculeCreator::createMolecule(ForceField* ff, MoleculeStamp *molStamp,
66 <    int stampId, int globalIndex, LocalIndexManager* localIndexMan) {
67 <
68 <    Molecule* mol = new Molecule(stampId, globalIndex, molStamp->getID());
63 > namespace OpenMD {
64 >  
65 >  Molecule* MoleculeCreator::createMolecule(ForceField* ff,
66 >                                            MoleculeStamp *molStamp,
67 >                                            int stampId, int globalIndex,
68 >                                            LocalIndexManager* localIndexMan) {
69 >    Molecule* mol = new Molecule(stampId, globalIndex, molStamp->getName());
70      
71      //create atoms
72      Atom* atom;
73      AtomStamp* currentAtomStamp;
74      int nAtom = molStamp->getNAtoms();
75      for (int i = 0; i < nAtom; ++i) {
76 <        currentAtomStamp = molStamp->getAtom(i);
77 <        atom = createAtom(ff, mol, currentAtomStamp, localIndexMan);
78 <        mol->addAtom(atom);
76 >      currentAtomStamp = molStamp->getAtomStamp(i);
77 >      atom = createAtom(ff, mol, currentAtomStamp, localIndexMan);
78 >      mol->addAtom(atom);
79      }
80  
81      //create rigidbodies
# Line 81 | Line 84 | Molecule* MoleculeCreator::createMolecule(ForceField*
84      int nRigidbodies = molStamp->getNRigidBodies();
85  
86      for (int i = 0; i < nRigidbodies; ++i) {
87 <        currentRigidBodyStamp = molStamp->getRigidBody(i);
88 <        rb = createRigidBody(molStamp, mol, currentRigidBodyStamp, localIndexMan);
89 <        mol->addRigidBody(rb);
87 >      currentRigidBodyStamp = molStamp->getRigidBodyStamp(i);
88 >      rb = createRigidBody(molStamp, mol, currentRigidBodyStamp,
89 >                           localIndexMan);
90 >      mol->addRigidBody(rb);
91      }
92 <
92 >    
93      //create bonds
94      Bond* bond;
95      BondStamp* currentBondStamp;
96      int nBonds = molStamp->getNBonds();
97  
98      for (int i = 0; i < nBonds; ++i) {
99 <        currentBondStamp = molStamp->getBond(i);
100 <        bond = createBond(ff, mol, currentBondStamp);
101 <        mol->addBond(bond);
99 >      currentBondStamp = molStamp->getBondStamp(i);
100 >      bond = createBond(ff, mol, currentBondStamp);
101 >      mol->addBond(bond);
102      }
103  
104      //create bends
# Line 102 | Line 106 | Molecule* MoleculeCreator::createMolecule(ForceField*
106      BendStamp* currentBendStamp;
107      int nBends = molStamp->getNBends();
108      for (int i = 0; i < nBends; ++i) {
109 <        currentBendStamp = molStamp->getBend(i);
110 <        bend = createBend(ff, mol, currentBendStamp);
111 <        mol->addBend(bend);
109 >      currentBendStamp = molStamp->getBendStamp(i);
110 >      bend = createBend(ff, mol, currentBendStamp);
111 >      mol->addBend(bend);
112      }
113  
114      //create torsions
# Line 112 | Line 116 | Molecule* MoleculeCreator::createMolecule(ForceField*
116      TorsionStamp* currentTorsionStamp;
117      int nTorsions = molStamp->getNTorsions();
118      for (int i = 0; i < nTorsions; ++i) {
119 <        currentTorsionStamp = molStamp->getTorsion(i);
120 <        torsion = createTorsion(ff, mol, currentTorsionStamp);
121 <        mol->addTorsion(torsion);
119 >      currentTorsionStamp = molStamp->getTorsionStamp(i);
120 >      torsion = createTorsion(ff, mol, currentTorsionStamp);
121 >      mol->addTorsion(torsion);
122      }
123  
124 +    //create inversions
125 +    Inversion* inversion;
126 +    InversionStamp* currentInversionStamp;
127 +    int nInversions = molStamp->getNInversions();
128 +    for (int i = 0; i < nInversions; ++i) {
129 +      currentInversionStamp = molStamp->getInversionStamp(i);
130 +      inversion = createInversion(ff, mol, currentInversionStamp);
131 +      if (inversion != NULL ) {
132 +        mol->addInversion(inversion);
133 +      }
134 +    }
135 +
136      //create cutoffGroups
137      CutoffGroup* cutoffGroup;
138      CutoffGroupStamp* currentCutoffGroupStamp;
139      int nCutoffGroups = molStamp->getNCutoffGroups();
140      for (int i = 0; i < nCutoffGroups; ++i) {
141 <        currentCutoffGroupStamp = molStamp->getCutoffGroup(i);
142 <        cutoffGroup = createCutoffGroup(mol, currentCutoffGroupStamp);
143 <        mol->addCutoffGroup(cutoffGroup);
141 >      currentCutoffGroupStamp = molStamp->getCutoffGroupStamp(i);
142 >      cutoffGroup = createCutoffGroup(mol, currentCutoffGroupStamp, localIndexMan);
143 >      mol->addCutoffGroup(cutoffGroup);
144      }
145  
146      //every free atom is a cutoff group    
147 <    std::set<Atom*> allAtoms;
148 <     Molecule::AtomIterator ai;
147 >    std::vector<Atom*> freeAtoms;
148 >    std::vector<Atom*>::iterator ai;
149 >    std::vector<Atom*>::iterator fai;
150  
151      //add all atoms into allAtoms set
152 <    for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
153 <        allAtoms.insert(atom);
152 >    for(atom = mol->beginAtom(fai); atom != NULL; atom = mol->nextAtom(fai)) {
153 >      freeAtoms.push_back(atom);
154      }
155  
156      Molecule::CutoffGroupIterator ci;
157      CutoffGroup* cg;
141    std::set<Atom*> cutoffAtoms;    
158      
159 <    //add all of the atoms belong to cutoff groups into cutoffAtoms set
160 <    for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
161 <
162 <        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
163 <            cutoffAtoms.insert(atom);
164 <        }
165 <
159 >    for (cg = mol->beginCutoffGroup(ci); cg != NULL;
160 >         cg = mol->nextCutoffGroup(ci)) {
161 >      
162 >      for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
163 >        //erase the atoms belong to cutoff groups from freeAtoms vector
164 >        freeAtoms.erase(std::remove(freeAtoms.begin(), freeAtoms.end(), atom),
165 >                        freeAtoms.end());
166 >      }      
167      }      
168      
169 <    //find all free atoms (which do not belong to cutoff groups)  
170 <    //performs the "difference" operation from set theory,  the output range contains a copy of every
171 <    //element that is contained in [allAtoms.begin(), allAtoms.end()) and not contained in
155 <    //[cutoffAtoms.begin(), cutoffAtoms.end()).
156 <    std::vector<Atom*> freeAtoms;    
157 <    std::set_difference(allAtoms.begin(), allAtoms.end(), cutoffAtoms.begin(), cutoffAtoms.end(),
158 <                            std::back_inserter(freeAtoms));
159 <
160 <    if (freeAtoms.size() != allAtoms.size() - cutoffAtoms.size()) {
161 <        //Some atoms in rigidAtoms are not in allAtoms, something must be wrong
162 <        sprintf(painCave.errMsg, "Atoms in cutoff groups are not in the atom list of the same molecule");
163 <
164 <        painCave.isFatal = 1;
165 <        simError();        
166 <    }
167 <
168 <    //loop over the free atoms and then create one cutoff group for every single free atom
169 <    std::vector<Atom*>::iterator fai;
170 <
169 >    // loop over the free atoms and then create one cutoff group for
170 >    // every single free atom
171 >    
172      for (fai = freeAtoms.begin(); fai != freeAtoms.end(); ++fai) {
173 <        cutoffGroup = createCutoffGroup(mol, *fai);
174 <        mol->addCutoffGroup(cutoffGroup);
173 >      cutoffGroup = createCutoffGroup(mol, *fai, localIndexMan);
174 >      mol->addCutoffGroup(cutoffGroup);
175      }
176      //create constraints
177      createConstraintPair(mol);
# Line 178 | Line 179 | Molecule* MoleculeCreator::createMolecule(ForceField*
179      
180      //the construction of this molecule is finished
181      mol->complete();
182 <
182 >    
183      return mol;
184 < }    
184 >  }    
185  
186  
187 < Atom* MoleculeCreator::createAtom(ForceField* ff, Molecule* mol, AtomStamp* stamp,
188 <                                                                  LocalIndexManager* localIndexMan) {
187 >  Atom* MoleculeCreator::createAtom(ForceField* ff, Molecule* mol,
188 >                                    AtomStamp* stamp,
189 >                                    LocalIndexManager* localIndexMan) {
190      AtomType * atomType;
191      Atom* atom;
192  
193      atomType =  ff->getAtomType(stamp->getType());
194 <
194 >    
195      if (atomType == NULL) {
196 <        sprintf(painCave.errMsg, "Can not find Matching Atom Type for[%s]",
197 <                   stamp->getType());
196 >      sprintf(painCave.errMsg, "Can not find Matching Atom Type for[%s]",
197 >              stamp->getType().c_str());
198  
199 <        painCave.isFatal = 1;
200 <        simError();
199 >      painCave.isFatal = 1;
200 >      simError();
201      }
202      
203      //below code still have some kind of hard-coding smell
204      if (atomType->isDirectional()){
205 <    
206 <        DirectionalAtomType* dAtomType = dynamic_cast<DirectionalAtomType*>(atomType);
207 <        
206 <        if (dAtomType == NULL) {
207 <            sprintf(painCave.errMsg, "Can not cast AtomType to DirectionalAtomType");
208 <
209 <            painCave.isFatal = 1;
210 <            simError();
211 <        }
212 <
213 <        DirectionalAtom* dAtom;
214 <        dAtom = new DirectionalAtom(dAtomType);
215 <        atom = dAtom;    
205 >      DirectionalAtom* dAtom;
206 >      dAtom = new DirectionalAtom(atomType);
207 >      atom = dAtom;    
208      }
209      else{
210 <        atom = new Atom(atomType);
210 >      atom = new Atom(atomType);
211      }
212  
213      atom->setLocalIndex(localIndexMan->getNextAtomIndex());
214  
215      return atom;
216 < }
217 <
218 < RigidBody* MoleculeCreator::createRigidBody(MoleculeStamp *molStamp, Molecule* mol,
219 <                                                                                    RigidBodyStamp* rbStamp,
220 <                                                                                    LocalIndexManager* localIndexMan) {
216 >  }
217 >  
218 >  RigidBody* MoleculeCreator::createRigidBody(MoleculeStamp *molStamp,
219 >                                              Molecule* mol,
220 >                                              RigidBodyStamp* rbStamp,
221 >                                              LocalIndexManager* localIndexMan) {
222      Atom* atom;
223      int nAtoms;
224      Vector3d refCoor;
# Line 234 | Line 227 | RigidBody* MoleculeCreator::createRigidBody(MoleculeSt
227      RigidBody* rb = new RigidBody();
228      nAtoms = rbStamp->getNMembers();    
229      for (int i = 0; i < nAtoms; ++i) {
230 <        //rbStamp->getMember(i) return the local index of current atom inside the molecule.
231 <        //It is not the same as local index of atom which is the index of atom at DataStorage class
232 <        atom = mol->getAtomAt(rbStamp->getMember(i));
233 <        atomStamp= molStamp->getAtom(rbStamp->getMember(i));    
234 <        rb->addAtom(atom, atomStamp);
230 >      //rbStamp->getMember(i) return the local index of current atom
231 >      //inside the molecule.  It is not the same as local index of
232 >      //atom which is the index of atom at DataStorage class
233 >      atom = mol->getAtomAt(rbStamp->getMemberAt(i));
234 >      atomStamp= molStamp->getAtomStamp(rbStamp->getMemberAt(i));    
235 >      rb->addAtom(atom, atomStamp);
236      }
237  
238 <    //after all of the atoms are added, we need to calculate the reference coordinates
238 >    //after all of the atoms are added, we need to calculate the
239 >    //reference coordinates
240      rb->calcRefCoords();
241  
242      //set the local index of this rigid body, global index will be set later
# Line 253 | Line 248 | RigidBody* MoleculeCreator::createRigidBody(MoleculeSt
248      //The third part is the index of the rigidbody defined in meta-data file
249      //For example, Butane_RB_0 is a valid rigid body name of butane molecule
250      /**@todo replace itoa by lexi_cast */
251 <    rb->setType(mol->getType() + "_RB_" + toString(mol->getNRigidBodies()));
252 <    
251 >    std::string s = OpenMD_itoa(mol->getNRigidBodies(), 10);
252 >    rb->setType(mol->getType() + "_RB_" + s.c_str());
253 >
254      return rb;
255 < }    
255 >  }    
256  
257 < Bond* MoleculeCreator::createBond(ForceField* ff, Molecule* mol, BondStamp* stamp) {
257 >  Bond* MoleculeCreator::createBond(ForceField* ff, Molecule* mol,
258 >                                    BondStamp* stamp) {
259      BondType* bondType;
260      Atom* atomA;
261      Atom* atomB;
262 <
262 >    
263      atomA = mol->getAtomAt(stamp->getA());
264      atomB = mol->getAtomAt(stamp->getB());
265 <
265 >    
266      assert( atomA && atomB);
267      
268      bondType = ff->getBondType(atomA->getType(), atomB->getType());
269  
270      if (bondType == NULL) {
271 <        sprintf(painCave.errMsg, "Can not find Matching Bond Type for[%s, %s]",
272 <                   atomA->getType().c_str(),
273 <                   atomB->getType().c_str());
274 <
275 <        painCave.isFatal = 1;
276 <        simError();
271 >      sprintf(painCave.errMsg, "Can not find Matching Bond Type for[%s, %s]",
272 >              atomA->getType().c_str(),
273 >              atomB->getType().c_str());
274 >      
275 >      painCave.isFatal = 1;
276 >      simError();
277      }
278      return new Bond(atomA, atomB, bondType);    
279 < }    
279 >  }    
280 >  
281 >  Bend* MoleculeCreator::createBend(ForceField* ff, Molecule* mol,
282 >                                    BendStamp* stamp) {
283 >    Bend* bend = NULL;
284 >    std::vector<int> bendAtoms = stamp->getMembers();
285 >    if (bendAtoms.size() == 3) {
286 >      Atom* atomA = mol->getAtomAt(bendAtoms[0]);
287 >      Atom* atomB = mol->getAtomAt(bendAtoms[1]);
288 >      Atom* atomC = mol->getAtomAt(bendAtoms[2]);
289 >      
290 >      assert( atomA && atomB && atomC);
291 >      
292 >      BendType* bendType = ff->getBendType(atomA->getType().c_str(),
293 >                                           atomB->getType().c_str(),
294 >                                           atomC->getType().c_str());
295 >      
296 >      if (bendType == NULL) {
297 >        sprintf(painCave.errMsg, "Can not find Matching Bend Type for[%s, %s, %s]",
298 >                atomA->getType().c_str(),
299 >                atomB->getType().c_str(),
300 >                atomC->getType().c_str());
301 >        
302 >        painCave.isFatal = 1;
303 >        simError();
304 >      }
305 >      
306 >      bend = new Bend(atomA, atomB, atomC, bendType);
307 >    } else if ( bendAtoms.size() == 2 && stamp->haveGhostVectorSource()) {
308 >      int ghostIndex = stamp->getGhostVectorSource();
309 >      int normalIndex = ghostIndex != bendAtoms[0] ? bendAtoms[0] : bendAtoms[1];
310 >      Atom* normalAtom = mol->getAtomAt(normalIndex) ;        
311 >      DirectionalAtom* ghostAtom = dynamic_cast<DirectionalAtom*>(mol->getAtomAt(ghostIndex));
312 >      if (ghostAtom == NULL) {
313 >        sprintf(painCave.errMsg, "Can not cast Atom to DirectionalAtom");
314 >        painCave.isFatal = 1;
315 >        simError();
316 >      }
317 >                
318 >      BendType* bendType = ff->getBendType(normalAtom->getType(), ghostAtom->getType(), "GHOST");
319  
320 < Bend* MoleculeCreator::createBend(ForceField* ff, Molecule* mol, BendStamp* stamp) {
321 <    bool isGhostBend = false;
322 <    int ghostIndex;
320 >      if (bendType == NULL) {
321 >        sprintf(painCave.errMsg, "Can not find Matching Bend Type for[%s, %s, %s]",
322 >                normalAtom->getType().c_str(),
323 >                ghostAtom->getType().c_str(),
324 >                "GHOST");
325  
326 +        painCave.isFatal = 1;
327 +        simError();
328 +      }
329 +      
330 +      bend = new GhostBend(normalAtom, ghostAtom, bendType);      
331 +      
332 +    }
333      
334 <    //
335 <    if (stamp->haveExtras()){
291 <        LinkedAssign* extras = stamp->getExtras();
292 <        LinkedAssign* currentExtra = extras;
334 >    return bend;
335 >  }    
336  
337 <        while (currentExtra != NULL){
338 <            if (!strcmp(currentExtra->getlhs(), "ghostVectorSource")){
296 <                switch (currentExtra->getType()){
297 <                case 0:
298 <                    ghostIndex = currentExtra->getInt();
299 <                    isGhostBend = true;
300 <                    break;
337 >  Torsion* MoleculeCreator::createTorsion(ForceField* ff, Molecule* mol,
338 >                                          TorsionStamp* stamp) {
339  
340 <                default:
341 <                sprintf(painCave.errMsg,
342 <                "SimSetup Error: ghostVectorSource must be an int.\n");
343 <                painCave.isFatal = 1;
306 <                simError();
307 <                }
308 <            } else{
309 <                sprintf(painCave.errMsg,
310 <                "SimSetup Error: unhandled bend assignment:\n");
311 <                painCave.isFatal = 1;
312 <                simError();
313 <            }
314 <            currentExtra = currentExtra->getNext();
315 <        }
316 <        
340 >    Torsion* torsion = NULL;
341 >    std::vector<int> torsionAtoms = stamp->getMembers();
342 >    if (torsionAtoms.size() < 3) {
343 >        return torsion;
344      }
345  
346 <    if (isGhostBend) {
346 >    Atom* atomA = mol->getAtomAt(torsionAtoms[0]);
347 >    Atom* atomB = mol->getAtomAt(torsionAtoms[1]);
348 >    Atom* atomC = mol->getAtomAt(torsionAtoms[2]);
349  
350 <        int indexA = stamp->getA();
351 <        int indexB= stamp->getB();
350 >    if (torsionAtoms.size() == 4) {
351 >      Atom* atomD = mol->getAtomAt(torsionAtoms[3]);
352  
353 <        assert(indexA != indexB);
325 <
326 <        int normalIndex;
327 <        if (indexA == ghostIndex) {
328 <            normalIndex = indexB;
329 <        } else if (indexB == ghostIndex) {
330 <            normalIndex = indexA;
331 <        }
353 >      assert(atomA && atomB && atomC && atomD);
354          
355 <        Atom* normalAtom = mol->getAtomAt(normalIndex) ;        
356 <        DirectionalAtom* ghostAtom = dynamic_cast<DirectionalAtom*>(mol->getAtomAt(ghostIndex));
357 <        if (ghostAtom == NULL) {
358 <            sprintf(painCave.errMsg, "Can not cast Atom to DirectionalAtom");
359 <            painCave.isFatal = 1;
360 <            simError();
361 <        }
362 <                
363 <        BendType* bendType = ff->getBendType(normalAtom->getType(), ghostAtom->getType(), "GHOST");
364 <
343 <        if (bendType == NULL) {
344 <            sprintf(painCave.errMsg, "Can not find Matching Bend Type for[%s, %s, %s]",
345 <                       normalAtom->getType().c_str(),
346 <                       ghostAtom->getType().c_str(),
347 <                       "GHOST");
348 <
349 <            painCave.isFatal = 1;
350 <            simError();
351 <        }
355 >      TorsionType* torsionType = ff->getTorsionType(atomA->getType(),
356 >                                                    atomB->getType(),
357 >                                                    atomC->getType(),
358 >                                                    atomD->getType());
359 >      if (torsionType == NULL) {
360 >        sprintf(painCave.errMsg, "Can not find Matching Torsion Type for[%s, %s, %s, %s]",
361 >                atomA->getType().c_str(),
362 >                atomB->getType().c_str(),
363 >                atomC->getType().c_str(),
364 >                atomD->getType().c_str());
365          
366 <        return new GhostBend(normalAtom, ghostAtom, bendType);      
367 <
368 <    } else {
369 <            
370 <        Atom* atomA = mol->getAtomAt(stamp->getA());
371 <        Atom* atomB = mol->getAtomAt(stamp->getB());
372 <        Atom* atomC = mol->getAtomAt(stamp->getC());
373 <
374 <        assert( atomA && atomB && atomC);
366 >        painCave.isFatal = 1;
367 >        simError();
368 >      }
369 >      
370 >      torsion = new Torsion(atomA, atomB, atomC, atomD, torsionType);      
371 >    }
372 >    else {
373 >      
374 >      DirectionalAtom* dAtom = dynamic_cast<DirectionalAtom*>(mol->getAtomAt(stamp->getGhostVectorSource()));
375 >      if (dAtom == NULL) {
376 >        sprintf(painCave.errMsg, "Can not cast Atom to DirectionalAtom");
377 >        painCave.isFatal = 1;
378 >        simError();
379 >      }        
380 >      
381 >      TorsionType* torsionType = ff->getTorsionType(atomA->getType(), atomB->getType(),
382 >                                                    atomC->getType(), "GHOST");
383 >      
384 >      if (torsionType == NULL) {
385 >        sprintf(painCave.errMsg, "Can not find Matching Torsion Type for[%s, %s, %s, %s]",
386 >                atomA->getType().c_str(),
387 >                atomB->getType().c_str(),
388 >                atomC->getType().c_str(),
389 >                "GHOST");
390          
391 <        BendType* bendType = ff->getBendType(atomA->getType(), atomB->getType(), atomC->getType());
392 <
393 <        if (bendType == NULL) {
394 <            sprintf(painCave.errMsg, "Can not find Matching Bend Type for[%s, %s, %s]",
395 <                       atomA->getType().c_str(),
368 <                       atomB->getType().c_str(),
369 <                       atomC->getType().c_str());
370 <
371 <            painCave.isFatal = 1;
372 <            simError();
373 <        }
374 <
375 <        return new Bend(atomA, atomB, atomC, bendType);      
391 >        painCave.isFatal = 1;
392 >        simError();
393 >      }
394 >      
395 >      torsion = new GhostTorsion(atomA, atomB, dAtom, torsionType);              
396      }
397 < }    
397 >    
398 >    return torsion;
399 >  }    
400  
401 < Torsion* MoleculeCreator::createTorsion(ForceField* ff, Molecule* mol, TorsionStamp* stamp) {
402 <
403 <    Atom* atomA = mol->getAtomAt(stamp->getA());
404 <    Atom* atomB = mol->getAtomAt(stamp->getB());
405 <    Atom* atomC = mol->getAtomAt(stamp->getC());
406 <    Torsion* torsion;
407 <
408 <    if (stamp->getD() != -1) {
387 <        Atom* atomD = mol->getAtomAt(stamp->getD());
388 <
389 <        assert(atomA && atomB && atomC && atomD);
390 <        
391 <        TorsionType* torsionType = ff->getTorsionType(atomA->getType(), atomB->getType(),
392 <                                                           atomC->getType(), atomD->getType());
393 <
394 <        if (torsionType == NULL) {
395 <            sprintf(painCave.errMsg, "Can not find Matching Torsion Type for[%s, %s, %s, %s]",
396 <                       atomA->getType().c_str(),
397 <                       atomB->getType().c_str(),
398 <                       atomC->getType().c_str(),
399 <                       atomD->getType().c_str());
400 <
401 <            painCave.isFatal = 1;
402 <            simError();
403 <        }
404 <        
405 <        torsion = new Torsion(atomA, atomB, atomC, atomD, torsionType);      
401 >  Inversion* MoleculeCreator::createInversion(ForceField* ff, Molecule* mol,
402 >                                              InversionStamp* stamp) {
403 >    
404 >    Inversion* inversion = NULL;
405 >    int center = stamp->getCenter();
406 >    std::vector<int> satellites = stamp->getSatellites();
407 >    if (satellites.size() != 3) {
408 >        return inversion;
409      }
407    else {
410  
411 <        DirectionalAtom* dAtom = dynamic_cast<DirectionalAtom*>(atomC);
412 <        if (dAtom == NULL) {
413 <            sprintf(painCave.errMsg, "Can not cast Atom to DirectionalAtom");
414 <            painCave.isFatal = 1;
415 <            simError();
416 <        }        
411 >    Atom* atomA = mol->getAtomAt(center);
412 >    Atom* atomB = mol->getAtomAt(satellites[0]);
413 >    Atom* atomC = mol->getAtomAt(satellites[1]);
414 >    Atom* atomD = mol->getAtomAt(satellites[2]);
415 >      
416 >    assert(atomA && atomB && atomC && atomD);
417 >    
418 >    InversionType* inversionType = ff->getInversionType(atomA->getType(),
419 >                                                        atomB->getType(),
420 >                                                        atomC->getType(),
421 >                                                        atomD->getType());
422  
423 <        TorsionType* torsionType = ff->getTorsionType(atomA->getType(), atomB->getType(),
424 <                                                           atomC->getType(), "GHOST");
425 <
426 <        if (torsionType == NULL) {
427 <            sprintf(painCave.errMsg, "Can not find Matching Torsion Type for[%s, %s, %s, %s]",
428 <                       atomA->getType().c_str(),
429 <                       atomB->getType().c_str(),
430 <                       atomC->getType().c_str(),
431 <                       "GHOST");
432 <
433 <            painCave.isFatal = 1;
434 <            simError();
435 <        }
436 <        
437 <        torsion = new GhostTorsion(atomA, atomB, dAtom, torsionType);              
423 >    if (inversionType == NULL) {
424 >      sprintf(painCave.errMsg, "No Matching Inversion Type for[%s, %s, %s, %s]\n"
425 >              "\t(May not be a problem: not all inversions are parametrized)\n",
426 >              atomA->getType().c_str(),
427 >              atomB->getType().c_str(),
428 >              atomC->getType().c_str(),
429 >              atomD->getType().c_str());
430 >      
431 >      painCave.isFatal = 0;
432 >      painCave.severity = OPENMD_INFO;
433 >      simError();
434 >      return NULL;
435 >    } else {
436 >      
437 >      inversion = new Inversion(atomA, atomB, atomC, atomD, inversionType);
438 >      return inversion;
439      }
440 +  }
441 +  
442  
443 <    return torsion;
444 < }    
445 <
436 < CutoffGroup* MoleculeCreator::createCutoffGroup(Molecule* mol, CutoffGroupStamp* stamp) {
443 >  CutoffGroup* MoleculeCreator::createCutoffGroup(Molecule* mol,
444 >                                                  CutoffGroupStamp* stamp,
445 >                                                  LocalIndexManager* localIndexMan) {
446      int nAtoms;
447      CutoffGroup* cg;
448      Atom* atom;
# Line 441 | Line 450 | CutoffGroup* MoleculeCreator::createCutoffGroup(Molecu
450      
451      nAtoms = stamp->getNMembers();
452      for (int i =0; i < nAtoms; ++i) {
453 <        atom = mol->getAtomAt(stamp->getMember(i));
454 <        assert(atom);
455 <        cg->addAtom(atom);
453 >      atom = mol->getAtomAt(stamp->getMemberAt(i));
454 >      assert(atom);
455 >      cg->addAtom(atom);
456      }
457 <
457 >    
458 >    //set the local index of this cutoffGroup, global index will be set later
459 >    cg->setLocalIndex(localIndexMan->getNextCutoffGroupIndex());
460 >    
461      return cg;
462 < }    
463 <
464 < CutoffGroup* MoleculeCreator::createCutoffGroup(Molecule * mol, Atom* atom) {
462 >  }    
463 >  
464 >  CutoffGroup* MoleculeCreator::createCutoffGroup(Molecule * mol, Atom* atom,
465 >                                                  LocalIndexManager* localIndexMan) {
466      CutoffGroup* cg;
467      cg  = new CutoffGroup();
468      cg->addAtom(atom);
469 +
470 +    //set the local index of this cutoffGroup, global index will be set later
471 +    cg->setLocalIndex(localIndexMan->getNextCutoffGroupIndex());
472 +
473      return cg;
474 < }
474 >  }
475  
476 < void MoleculeCreator::createConstraintPair(Molecule* mol) {
476 >  void MoleculeCreator::createConstraintPair(Molecule* mol) {
477  
478      //add bond constraints
479      Molecule::BondIterator bi;
480      Bond* bond;
481      for (bond = mol->beginBond(bi); bond != NULL; bond = mol->nextBond(bi)) {
482          
483 <        BondType* bt = bond->getBondType();
483 >      BondType* bt = bond->getBondType();
484  
485 <        //class Parent1 {};
486 <        //class Child1 : public Parent {};
487 <        //class Child2 : public Parent {};
488 <        //Child1* ch1 = new Child1();
489 <        //Child2* ch2 = dynamic_cast<Child2*>(ch1);
490 <        //the dynamic_cast is succeed in above line. A compiler bug?        
485 >      //class Parent1 {};
486 >      //class Child1 : public Parent {};
487 >      //class Child2 : public Parent {};
488 >      //Child1* ch1 = new Child1();
489 >      //Child2* ch2 = dynamic_cast<Child2*>(ch1);
490 >      //the dynamic_cast is succeed in above line. A compiler bug?        
491  
492 <        if (typeid(FixedBondType) == typeid(*bt)) {
493 <            FixedBondType* fbt = dynamic_cast<FixedBondType*>(bt);
492 >      if (typeid(FixedBondType) == typeid(*bt)) {
493 >        FixedBondType* fbt = dynamic_cast<FixedBondType*>(bt);
494  
495 <            ConstraintElem* consElemA = new ConstraintElem(bond->getAtomA());
496 <            ConstraintElem* consElemB = new ConstraintElem(bond->getAtomB());            
497 <            ConstraintPair* consPair = new ConstraintPair(consElemA, consElemB, fbt->getEquilibriumBondLength());
498 <            mol->addConstraintPair(consPair);
499 <        }
495 >        ConstraintElem* consElemA = new ConstraintElem(bond->getAtomA());
496 >        ConstraintElem* consElemB = new ConstraintElem(bond->getAtomB());            
497 >        ConstraintPair* consPair = new ConstraintPair(consElemA, consElemB, fbt->getEquilibriumBondLength());
498 >        mol->addConstraintPair(consPair);
499 >      }
500      }
501  
502      //rigidbody -- rigidbody constraint is not support yet
503 < }
503 >  }
504  
505 < void MoleculeCreator::createConstraintElem(Molecule* mol) {
505 >  void MoleculeCreator::createConstraintElem(Molecule* mol) {
506  
507      ConstraintPair* consPair;
508      Molecule::ConstraintPairIterator cpi;
509      std::set<StuntDouble*> sdSet;
510      for (consPair = mol->beginConstraintPair(cpi); consPair != NULL; consPair = mol->nextConstraintPair(cpi)) {
511  
512 <        StuntDouble* sdA = consPair->getConsElem1()->getStuntDouble();            
513 <        if (sdSet.find(sdA) == sdSet.end()){
514 <            sdSet.insert(sdA);
515 <            mol->addConstraintElem(new ConstraintElem(sdA));
516 <        }
512 >      StuntDouble* sdA = consPair->getConsElem1()->getStuntDouble();            
513 >      if (sdSet.find(sdA) == sdSet.end()){
514 >        sdSet.insert(sdA);
515 >        mol->addConstraintElem(new ConstraintElem(sdA));
516 >      }
517  
518 <        StuntDouble* sdB = consPair->getConsElem2()->getStuntDouble();            
519 <        if (sdSet.find(sdB) == sdSet.end()){
520 <            sdSet.insert(sdB);
521 <            mol->addConstraintElem(new ConstraintElem(sdB));
522 <        }
518 >      StuntDouble* sdB = consPair->getConsElem2()->getStuntDouble();            
519 >      if (sdSet.find(sdB) == sdSet.end()){
520 >        sdSet.insert(sdB);
521 >        mol->addConstraintElem(new ConstraintElem(sdB));
522 >      }
523          
524      }
525  
526 < }
526 >  }
527      
528   }

Comparing:
trunk/src/brains/MoleculeCreator.cpp (property svn:keywords), Revision 273 by tim, Tue Jan 25 17:45:23 2005 UTC vs.
branches/development/src/brains/MoleculeCreator.cpp (property svn:keywords), Revision 1710 by gezelter, Fri May 18 21:44:02 2012 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines