ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimCreator.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimCreator.cpp (file contents), Revision 397 by gezelter, Fri Mar 4 15:29:03 2005 UTC vs.
branches/development/src/brains/SimCreator.cpp (file contents), Revision 1808 by gezelter, Mon Oct 22 20:42:10 2012 UTC

# Line 1 | Line 1
1 < /*
2 < * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 < *
4 < * The University of Notre Dame grants you ("Licensee") a
5 < * non-exclusive, royalty free, license to use, modify and
6 < * redistribute this software in source and binary code form, provided
7 < * that the following conditions are met:
8 < *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
19 < *    notice, this list of conditions and the following disclaimer.
20 < *
21 < * 3. Redistributions in binary form must reproduce the above copyright
22 < *    notice, this list of conditions and the following disclaimer in the
23 < *    documentation and/or other materials provided with the
24 < *    distribution.
25 < *
26 < * This software is provided "AS IS," without a warranty of any
27 < * kind. All express or implied conditions, representations and
28 < * warranties, including any implied warranty of merchantability,
29 < * fitness for a particular purpose or non-infringement, are hereby
30 < * excluded.  The University of Notre Dame and its licensors shall not
31 < * be liable for any damages suffered by licensee as a result of
32 < * using, modifying or distributing the software or its
33 < * derivatives. In no event will the University of Notre Dame or its
34 < * licensors be liable for any lost revenue, profit or data, or for
35 < * direct, indirect, special, consequential, incidental or punitive
36 < * damages, however caused and regardless of the theory of liability,
37 < * arising out of the use of or inability to use software, even if the
38 < * University of Notre Dame has been advised of the possibility of
39 < * such damages.
40 < */
41 <
42 < /**
43 < * @file SimCreator.cpp
44 < * @author tlin
45 < * @date 11/03/2004
46 < * @time 13:51am
47 < * @version 1.0
48 < */
49 <
50 < #include "brains/MoleculeCreator.hpp"
51 < #include "brains/SimCreator.hpp"
52 < #include "brains/SimSnapshotManager.hpp"
53 < #include "io/DumpReader.hpp"
54 < #include "io/parse_me.h"
55 < #include "UseTheForce/ForceFieldFactory.hpp"
56 < #include "utils/simError.h"
57 < #include "utils/StringUtils.hpp"
58 < #include "math/SeqRandNumGen.hpp"
59 < #ifdef IS_MPI
60 < #include "io/mpiBASS.h"
61 < #include "math/ParallelRandNumGen.hpp"
62 < #endif
63 <
64 < namespace oopse {
65 <
66 < void SimCreator::parseFile(const std::string mdFileName,  MakeStamps* stamps, Globals* simParams){
67 <
68 < #ifdef IS_MPI
69 <
70 <    if (worldRank == 0) {
71 < #endif // is_mpi
72 <
73 <        simParams->initalize();
74 <        set_interface_stamps(stamps, simParams);
75 <
76 < #ifdef IS_MPI
77 <
78 <        mpiEventInit();
79 <
80 < #endif
81 <
82 <        yacc_BASS(mdFileName.c_str());
83 <
84 < #ifdef IS_MPI
85 <
86 <        throwMPIEvent(NULL);
87 <    } else {
88 <        set_interface_stamps(stamps, simParams);
89 <        mpiEventInit();
90 <        MPIcheckPoint();
91 <        mpiEventLoop();
92 <    }
93 <
94 < #endif
95 <
96 < }
97 <
98 < SimInfo*  SimCreator::createSim(const std::string & mdFileName, bool loadInitCoords) {
99 <    
100 <    MakeStamps * stamps = new MakeStamps();
101 <
102 <    Globals * simParams = new Globals();
103 <
104 <    //parse meta-data file
105 <    parseFile(mdFileName, stamps, simParams);
106 <
107 <    //create the force field
108 <    ForceField * ff = ForceFieldFactory::getInstance()->createForceField(
109 <                          simParams->getForceField());
110 <    
111 <    if (ff == NULL) {
112 <        sprintf(painCave.errMsg, "ForceField Factory can not create %s force field\n",
113 <                simParams->getForceField());
114 <        painCave.isFatal = 1;
115 <        simError();
116 <    }
117 <
118 <    if (simParams->haveForceFieldFileName()) {
119 <        ff->setForceFieldFileName(simParams->getForceFieldFileName());
120 <    }
121 <    
122 <    std::string forcefieldFileName;
123 <    forcefieldFileName = ff->getForceFieldFileName();
124 <
125 <    if (simParams->haveForceFieldVariant()) {
126 <        //If the force field has variant, the variant force field name will be
127 <        //Base.variant.frc. For exampel EAM.u6.frc
128 <        
129 <        std::string variant = simParams->getForceFieldVariant();
130 <
131 <        std::string::size_type pos = forcefieldFileName.rfind(".frc");
132 <        variant = "." + variant;
133 <        if (pos != std::string::npos) {
134 <            forcefieldFileName.insert(pos, variant);
135 <        } else {
136 <            //If the default force field file name does not containt .frc suffix, just append the .variant
137 <            forcefieldFileName.append(variant);
138 <        }
139 <    }
140 <    
141 <    ff->parse(forcefieldFileName);
142 <    
143 <    //extract the molecule stamps
144 <    std::vector < std::pair<MoleculeStamp *, int> > moleculeStampPairs;
145 <    compList(stamps, simParams, moleculeStampPairs);
146 <
147 <    //create SimInfo
148 <    SimInfo * info = new SimInfo(moleculeStampPairs, ff, simParams);
149 <
150 <    //gather parameters (SimCreator only retrieves part of the parameters)
151 <    gatherParameters(info, mdFileName);
152 <
153 <    //divide the molecules and determine the global index of molecules
154 < #ifdef IS_MPI
155 <    divideMolecules(info);
156 < #endif
157 <
158 <    //create the molecules
159 <    createMolecules(info);
160 <
161 <
162 <    //allocate memory for DataStorage(circular reference, need to break it)
163 <    info->setSnapshotManager(new SimSnapshotManager(info));
164 <    
165 <    //set the global index of atoms, rigidbodies and cutoffgroups (only need to be set once, the
166 <    //global index will never change again). Local indices of atoms and rigidbodies are already set by
167 <    //MoleculeCreator class which actually delegates the responsibility to LocalIndexManager.
168 <    setGlobalIndex(info);
169 <
170 <    //Alought addExculdePairs is called inside SimInfo's addMolecule method, at that point
171 <    //atoms don't have the global index yet  (their global index are all initialized to -1).
172 <    //Therefore we have to call addExcludePairs explicitly here. A way to work around is that
173 <    //we can determine the beginning global indices of atoms before they get created.
174 <    SimInfo::MoleculeIterator mi;
175 <    Molecule* mol;
176 <    for (mol= info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {
177 <        info->addExcludePairs(mol);
178 <    }
179 <    
180 <
181 <    //load initial coordinates, some extra information are pushed into SimInfo's property map ( such as
182 <    //eta, chi for NPT integrator)
183 <    if (loadInitCoords)
184 <        loadCoordinates(info);    
185 <    
186 <    return info;
187 < }
188 <
189 < void SimCreator::gatherParameters(SimInfo *info, const std::string& mdfile) {
190 <
191 <    //figure out the ouput file names
192 <    std::string prefix;
193 <
194 < #ifdef IS_MPI
195 <
196 <    if (worldRank == 0) {
197 < #endif // is_mpi
198 <        Globals * simParams = info->getSimParams();
199 <        if (simParams->haveFinalConfig()) {
200 <            prefix = getPrefix(simParams->getFinalConfig());
201 <        } else {
202 <            prefix = getPrefix(mdfile);
203 <        }
204 <
205 <        info->setFinalConfigFileName(prefix + ".eor");
206 <        info->setDumpFileName(prefix + ".dump");
207 <        info->setStatFileName(prefix + ".stat");
208 <
209 < #ifdef IS_MPI
210 <
211 <    }
212 <
213 < #endif
214 <
215 < }
216 <
217 < #ifdef IS_MPI
218 < void SimCreator::divideMolecules(SimInfo *info) {
219 <    double numerator;
220 <    double denominator;
221 <    double precast;
222 <    double x;
223 <    double y;
224 <    double a;
225 <    int old_atoms;
226 <    int add_atoms;
227 <    int new_atoms;
228 <    int nTarget;
229 <    int done;
230 <    int i;
231 <    int j;
232 <    int loops;
233 <    int which_proc;
234 <    int nProcessors;
235 <    std::vector<int> atomsPerProc;
236 <    int nGlobalMols = info->getNGlobalMolecules();
237 <    std::vector<int> molToProcMap(nGlobalMols, -1); // default to an error condition:
238 <    
239 <    MPI_Comm_size(MPI_COMM_WORLD, &nProcessors);
240 <
241 <    if (nProcessors > nGlobalMols) {
242 <        sprintf(painCave.errMsg,
243 <                "nProcessors (%d) > nMol (%d)\n"
244 <                    "\tThe number of processors is larger than\n"
245 <                    "\tthe number of molecules.  This will not result in a \n"
246 <                    "\tusable division of atoms for force decomposition.\n"
247 <                    "\tEither try a smaller number of processors, or run the\n"
248 <                    "\tsingle-processor version of OOPSE.\n", nProcessors, nGlobalMols);
249 <
250 <        painCave.isFatal = 1;
251 <        simError();
252 <    }
253 <
254 <    int seedValue;
255 <    Globals * simParams = info->getSimParams();
256 <    SeqRandNumGen* myRandom; //divide labor does not need Parallel random number generator
257 <    if (simParams->haveSeed()) {
258 <        seedValue = simParams->getSeed();
259 <        myRandom = new SeqRandNumGen(seedValue);
260 <    }else {
261 <        myRandom = new SeqRandNumGen();
262 <    }  
263 <
264 <
265 <    a = 3.0 * nGlobalMols / info->getNGlobalAtoms();
266 <
267 <    //initialize atomsPerProc
268 <    atomsPerProc.insert(atomsPerProc.end(), nProcessors, 0);
269 <
270 <    if (worldRank == 0) {
271 <        numerator = info->getNGlobalAtoms();
272 <        denominator = nProcessors;
273 <        precast = numerator / denominator;
274 <        nTarget = (int)(precast + 0.5);
275 <
276 <        for(i = 0; i < nGlobalMols; i++) {
277 <            done = 0;
278 <            loops = 0;
279 <
280 <            while (!done) {
281 <                loops++;
282 <
283 <                // Pick a processor at random
284 <
285 <                which_proc = (int) (myRandom->rand() * nProcessors);
286 <
287 <                //get the molecule stamp first
288 <                int stampId = info->getMoleculeStampId(i);
289 <                MoleculeStamp * moleculeStamp = info->getMoleculeStamp(stampId);
290 <
291 <                // How many atoms does this processor have so far?
292 <                old_atoms = atomsPerProc[which_proc];
293 <                add_atoms = moleculeStamp->getNAtoms();
294 <                new_atoms = old_atoms + add_atoms;
295 <
296 <                // If we've been through this loop too many times, we need
297 <                // to just give up and assign the molecule to this processor
298 <                // and be done with it.
299 <
300 <                if (loops > 100) {
301 <                    sprintf(painCave.errMsg,
302 <                            "I've tried 100 times to assign molecule %d to a "
303 <                                " processor, but can't find a good spot.\n"
304 <                                "I'm assigning it at random to processor %d.\n",
305 <                            i, which_proc);
306 <
307 <                    painCave.isFatal = 0;
308 <                    simError();
309 <
310 <                    molToProcMap[i] = which_proc;
311 <                    atomsPerProc[which_proc] += add_atoms;
312 <
313 <                    done = 1;
314 <                    continue;
315 <                }
316 <
317 <                // If we can add this molecule to this processor without sending
318 <                // it above nTarget, then go ahead and do it:
319 <
320 <                if (new_atoms <= nTarget) {
321 <                    molToProcMap[i] = which_proc;
322 <                    atomsPerProc[which_proc] += add_atoms;
323 <
324 <                    done = 1;
325 <                    continue;
326 <                }
327 <
328 <                // The only situation left is when new_atoms > nTarget.  We
329 <                // want to accept this with some probability that dies off the
330 <                // farther we are from nTarget
331 <
332 <                // roughly:  x = new_atoms - nTarget
333 <                //           Pacc(x) = exp(- a * x)
334 <                // where a = penalty / (average atoms per molecule)
335 <
336 <                x = (double)(new_atoms - nTarget);
337 <                y = myRandom->rand();
338 <
339 <                if (y < exp(- a * x)) {
340 <                    molToProcMap[i] = which_proc;
341 <                    atomsPerProc[which_proc] += add_atoms;
342 <
343 <                    done = 1;
344 <                    continue;
345 <                } else {
346 <                    continue;
347 <                }
348 <            }
349 <        }
350 <
351 <        delete myRandom;
352 <        
353 <        // Spray out this nonsense to all other processors:
354 <
355 <        MPI_Bcast(&molToProcMap[0], nGlobalMols, MPI_INT, 0, MPI_COMM_WORLD);
356 <    } else {
357 <
358 <        // Listen to your marching orders from processor 0:
359 <
360 <        MPI_Bcast(&molToProcMap[0], nGlobalMols, MPI_INT, 0, MPI_COMM_WORLD);
361 <    }
362 <
363 <    info->setMolToProcMap(molToProcMap);
364 <    sprintf(checkPointMsg,
365 <            "Successfully divided the molecules among the processors.\n");
366 <    MPIcheckPoint();
367 < }
368 <
369 < #endif
370 <
371 < void SimCreator::createMolecules(SimInfo *info) {
372 <    MoleculeCreator molCreator;
373 <    int stampId;
374 <
375 <    for(int i = 0; i < info->getNGlobalMolecules(); i++) {
376 <
377 < #ifdef IS_MPI
378 <
379 <        if (info->getMolToProc(i) == worldRank) {
380 < #endif
381 <
382 <            stampId = info->getMoleculeStampId(i);
383 <            Molecule * mol = molCreator.createMolecule(info->getForceField(), info->getMoleculeStamp(stampId),
384 <                                                                                    stampId, i, info->getLocalIndexManager());
385 <
386 <            info->addMolecule(mol);
387 <
388 < #ifdef IS_MPI
389 <
390 <        }
391 <
392 < #endif
393 <
394 <    } //end for(int i=0)  
395 < }
396 <
397 < void SimCreator::compList(MakeStamps *stamps, Globals* simParams,
398 <                        std::vector < std::pair<MoleculeStamp *, int> > &moleculeStampPairs) {
399 <    int i;
400 <    char * id;
401 <    MoleculeStamp * currentStamp;
402 <    Component** the_components = simParams->getComponents();
403 <    int n_components = simParams->getNComponents();
404 <
405 <    if (!simParams->haveNMol()) {
406 <        // we don't have the total number of molecules, so we assume it is
407 <        // given in each component
408 <
409 <        for(i = 0; i < n_components; i++) {
410 <            if (!the_components[i]->haveNMol()) {
411 <                // we have a problem
412 <                sprintf(painCave.errMsg,
413 <                        "SimCreator Error. No global NMol or component NMol given.\n"
414 <                            "\tCannot calculate the number of atoms.\n");
415 <
416 <                painCave.isFatal = 1;
417 <                simError();
418 <            }
419 <
420 <            id = the_components[i]->getType();
421 <            currentStamp = (stamps->extractMolStamp(id))->getStamp();
422 <
423 <            if (currentStamp == NULL) {
424 <                sprintf(painCave.errMsg,
425 <                        "SimCreator error: Component \"%s\" was not found in the "
426 <                            "list of declared molecules\n", id);
427 <
428 <                painCave.isFatal = 1;
429 <                simError();
430 <            }
431 <
432 <            moleculeStampPairs.push_back(
433 <                std::make_pair(currentStamp, the_components[i]->getNMol()));
434 <        } //end for (i = 0; i < n_components; i++)
435 <    } else {
436 <        sprintf(painCave.errMsg, "SimSetup error.\n"
437 <                                     "\tSorry, the ability to specify total"
438 <                                     " nMols and then give molfractions in the components\n"
439 <                                     "\tis not currently supported."
440 <                                     " Please give nMol in the components.\n");
441 <
442 <        painCave.isFatal = 1;
443 <        simError();
444 <    }
445 <
446 < #ifdef IS_MPI
447 <
448 <    strcpy(checkPointMsg, "Component stamps successfully extracted\n");
449 <    MPIcheckPoint();
450 <
451 < #endif // is_mpi
452 <
453 < }
454 <
455 < void SimCreator::setGlobalIndex(SimInfo *info) {
456 <    SimInfo::MoleculeIterator mi;
457 <    Molecule::AtomIterator ai;
458 <    Molecule::RigidBodyIterator ri;
459 <    Molecule::CutoffGroupIterator ci;
460 <    Molecule * mol;
461 <    Atom * atom;
462 <    RigidBody * rb;
463 <    CutoffGroup * cg;
464 <    int beginAtomIndex;
465 <    int beginRigidBodyIndex;
466 <    int beginCutoffGroupIndex;
467 <    int nGlobalAtoms = info->getNGlobalAtoms();
468 <    
469 < #ifndef IS_MPI
470 <
471 <    beginAtomIndex = 0;
472 <    beginRigidBodyIndex = 0;
473 <    beginCutoffGroupIndex = 0;
474 <
475 < #else
476 <
477 <    int nproc;
478 <    int myNode;
479 <
480 <    myNode = worldRank;
481 <    MPI_Comm_size(MPI_COMM_WORLD, &nproc);
482 <
483 <    std::vector < int > tmpAtomsInProc(nproc, 0);
484 <    std::vector < int > tmpRigidBodiesInProc(nproc, 0);
485 <    std::vector < int > tmpCutoffGroupsInProc(nproc, 0);
486 <    std::vector < int > NumAtomsInProc(nproc, 0);
487 <    std::vector < int > NumRigidBodiesInProc(nproc, 0);
488 <    std::vector < int > NumCutoffGroupsInProc(nproc, 0);
489 <
490 <    tmpAtomsInProc[myNode] = info->getNAtoms();
491 <    tmpRigidBodiesInProc[myNode] = info->getNRigidBodies();
492 <    tmpCutoffGroupsInProc[myNode] = info->getNCutoffGroups();
493 <
494 <    //do MPI_ALLREDUCE to exchange the total number of atoms, rigidbodies and cutoff groups
495 <    MPI_Allreduce(&tmpAtomsInProc[0], &NumAtomsInProc[0], nproc, MPI_INT,
496 <                  MPI_SUM, MPI_COMM_WORLD);
497 <    MPI_Allreduce(&tmpRigidBodiesInProc[0], &NumRigidBodiesInProc[0], nproc,
498 <                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
499 <    MPI_Allreduce(&tmpCutoffGroupsInProc[0], &NumCutoffGroupsInProc[0], nproc,
500 <                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
501 <
502 <    beginAtomIndex = 0;
503 <    beginRigidBodyIndex = 0;
504 <    beginCutoffGroupIndex = 0;
505 <
506 <    for(int i = 0; i < myNode; i++) {
507 <        beginAtomIndex += NumAtomsInProc[i];
508 <        beginRigidBodyIndex += NumRigidBodiesInProc[i];
509 <        beginCutoffGroupIndex += NumCutoffGroupsInProc[i];
510 <    }
511 <
512 < #endif
513 <
514 <    //rigidbody's index begins right after atom's
515 <    beginRigidBodyIndex += info->getNGlobalAtoms();
516 <
517 <    for(mol = info->beginMolecule(mi); mol != NULL;
518 <        mol = info->nextMolecule(mi)) {
519 <
520 <        //local index(index in DataStorge) of atom is important
521 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
522 <            atom->setGlobalIndex(beginAtomIndex++);
523 <        }
524 <
525 <        for(rb = mol->beginRigidBody(ri); rb != NULL;
526 <            rb = mol->nextRigidBody(ri)) {
527 <            rb->setGlobalIndex(beginRigidBodyIndex++);
528 <        }
529 <
530 <        //local index of cutoff group is trivial, it only depends on the order of travesing
531 <        for(cg = mol->beginCutoffGroup(ci); cg != NULL;
532 <            cg = mol->nextCutoffGroup(ci)) {
533 <            cg->setGlobalIndex(beginCutoffGroupIndex++);
534 <        }
535 <    }
536 <
537 <    //fill globalGroupMembership
538 <    std::vector<int> globalGroupMembership(info->getNGlobalAtoms(), 0);
539 <    for(mol = info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {        
540 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
541 <
542 <            for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
543 <                globalGroupMembership[atom->getGlobalIndex()] = cg->getGlobalIndex();
544 <            }
545 <
546 <        }      
547 <    }
548 <
549 < #ifdef IS_MPI    
550 <    // Since the globalGroupMembership has been zero filled and we've only
551 <    // poked values into the atoms we know, we can do an Allreduce
552 <    // to get the full globalGroupMembership array (We think).
553 <    // This would be prettier if we could use MPI_IN_PLACE like the MPI-2
554 <    // docs said we could.
555 <    std::vector<int> tmpGroupMembership(nGlobalAtoms, 0);
556 <    MPI_Allreduce(&globalGroupMembership[0], &tmpGroupMembership[0], nGlobalAtoms,
557 <                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
558 <     info->setGlobalGroupMembership(tmpGroupMembership);
559 < #else
560 <    info->setGlobalGroupMembership(globalGroupMembership);
561 < #endif
562 <
563 <    //fill molMembership
564 <    std::vector<int> globalMolMembership(info->getNGlobalAtoms(), 0);
565 <    
566 <    for(mol = info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {
567 <
568 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
569 <            globalMolMembership[atom->getGlobalIndex()] = mol->getGlobalIndex();
570 <        }
571 <    }
572 <
573 < #ifdef IS_MPI
574 <    std::vector<int> tmpMolMembership(nGlobalAtoms, 0);
575 <
576 <    MPI_Allreduce(&globalMolMembership[0], &tmpMolMembership[0], nGlobalAtoms,
577 <                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
578 <    
579 <    info->setGlobalMolMembership(tmpMolMembership);
580 < #else
581 <    info->setGlobalMolMembership(globalMolMembership);
582 < #endif
583 <
584 < }
585 <
586 < void SimCreator::loadCoordinates(SimInfo* info) {
587 <    Globals* simParams;
588 <    simParams = info->getSimParams();
589 <    
590 <    if (!simParams->haveInitialConfig()) {
591 <        sprintf(painCave.errMsg,
592 <                "Cannot intialize a simulation without an initial configuration file.\n");
593 <        painCave.isFatal = 1;;
594 <        simError();
595 <    }
596 <        
597 <    DumpReader reader(info, simParams->getInitialConfig());
598 <    int nframes = reader.getNFrames();
599 <
600 <    if (nframes > 0) {
601 <        reader.readFrame(nframes - 1);
602 <    } else {
603 <        //invalid initial coordinate file
604 <        sprintf(painCave.errMsg, "Initial configuration file %s should at least contain one frame\n",
605 <                simParams->getInitialConfig());
606 <        painCave.isFatal = 1;
607 <        simError();
608 <    }
609 <
610 <    //copy the current snapshot to previous snapshot
611 <    info->getSnapshotManager()->advance();
612 < }
613 <
614 < } //end namespace oopse
615 <
616 <
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Redistributions of source code must retain the above copyright
10 > *    notice, this list of conditions and the following disclaimer.
11 > *
12 > * 2. Redistributions in binary form must reproduce the above copyright
13 > *    notice, this list of conditions and the following disclaimer in the
14 > *    documentation and/or other materials provided with the
15 > *    distribution.
16 > *
17 > * This software is provided "AS IS," without a warranty of any
18 > * kind. All express or implied conditions, representations and
19 > * warranties, including any implied warranty of merchantability,
20 > * fitness for a particular purpose or non-infringement, are hereby
21 > * excluded.  The University of Notre Dame and its licensors shall not
22 > * be liable for any damages suffered by licensee as a result of
23 > * using, modifying or distributing the software or its
24 > * derivatives. In no event will the University of Notre Dame or its
25 > * licensors be liable for any lost revenue, profit or data, or for
26 > * direct, indirect, special, consequential, incidental or punitive
27 > * damages, however caused and regardless of the theory of liability,
28 > * arising out of the use of or inability to use software, even if the
29 > * University of Notre Dame has been advised of the possibility of
30 > * such damages.
31 > *
32 > * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 > * research, please cite the appropriate papers when you publish your
34 > * work.  Good starting points are:
35 > *                                                                      
36 > * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 > * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 > */
42 >
43 > /**
44 > * @file SimCreator.cpp
45 > * @author tlin
46 > * @date 11/03/2004
47 > * @version 1.0
48 > */
49 > #include <exception>
50 > #include <iostream>
51 > #include <sstream>
52 > #include <string>
53 >
54 > #include "brains/MoleculeCreator.hpp"
55 > #include "brains/SimCreator.hpp"
56 > #include "brains/SimSnapshotManager.hpp"
57 > #include "io/DumpReader.hpp"
58 > #include "brains/ForceField.hpp"
59 > #include "utils/simError.h"
60 > #include "utils/StringUtils.hpp"
61 > #include "math/SeqRandNumGen.hpp"
62 > #include "mdParser/MDLexer.hpp"
63 > #include "mdParser/MDParser.hpp"
64 > #include "mdParser/MDTreeParser.hpp"
65 > #include "mdParser/SimplePreprocessor.hpp"
66 > #include "antlr/ANTLRException.hpp"
67 > #include "antlr/TokenStreamRecognitionException.hpp"
68 > #include "antlr/TokenStreamIOException.hpp"
69 > #include "antlr/TokenStreamException.hpp"
70 > #include "antlr/RecognitionException.hpp"
71 > #include "antlr/CharStreamException.hpp"
72 >
73 > #include "antlr/MismatchedCharException.hpp"
74 > #include "antlr/MismatchedTokenException.hpp"
75 > #include "antlr/NoViableAltForCharException.hpp"
76 > #include "antlr/NoViableAltException.hpp"
77 >
78 > #include "types/DirectionalAdapter.hpp"
79 > #include "types/MultipoleAdapter.hpp"
80 > #include "types/EAMAdapter.hpp"
81 > #include "types/SuttonChenAdapter.hpp"
82 > #include "types/PolarizableAdapter.hpp"
83 > #include "types/FixedChargeAdapter.hpp"
84 > #include "types/FluctuatingChargeAdapter.hpp"
85 >
86 > #ifdef IS_MPI
87 > #include "mpi.h"
88 > #include "math/ParallelRandNumGen.hpp"
89 > #endif
90 >
91 > namespace OpenMD {
92 >  
93 >  Globals* SimCreator::parseFile(std::istream& rawMetaDataStream, const std::string& filename, int mdFileVersion, int startOfMetaDataBlock ){
94 >    Globals* simParams = NULL;
95 >    try {
96 >
97 >      // Create a preprocessor that preprocesses md file into an ostringstream
98 >      std::stringstream ppStream;
99 > #ifdef IS_MPI            
100 >      int streamSize;
101 >      const int masterNode = 0;
102 >      int commStatus;
103 >      if (worldRank == masterNode) {
104 >        commStatus = MPI_Bcast(&mdFileVersion, 1, MPI_INT, masterNode, MPI_COMM_WORLD);
105 > #endif                
106 >        SimplePreprocessor preprocessor;
107 >        preprocessor.preprocess(rawMetaDataStream, filename, startOfMetaDataBlock, ppStream);
108 >                
109 > #ifdef IS_MPI            
110 >        //brocasting the stream size
111 >        streamSize = ppStream.str().size() +1;
112 >        commStatus = MPI_Bcast(&streamSize, 1, MPI_LONG, masterNode, MPI_COMM_WORLD);                  
113 >
114 >        commStatus = MPI_Bcast(static_cast<void*>(const_cast<char*>(ppStream.str().c_str())), streamSize, MPI_CHAR, masterNode, MPI_COMM_WORLD);
115 >            
116 >                
117 >      } else {
118 >
119 >        commStatus = MPI_Bcast(&mdFileVersion, 1, MPI_INT, masterNode, MPI_COMM_WORLD);
120 >
121 >        //get stream size
122 >        commStatus = MPI_Bcast(&streamSize, 1, MPI_LONG, masterNode, MPI_COMM_WORLD);  
123 >
124 >        char* buf = new char[streamSize];
125 >        assert(buf);
126 >                
127 >        //receive file content
128 >        commStatus = MPI_Bcast(buf, streamSize, MPI_CHAR, masterNode, MPI_COMM_WORLD);
129 >                
130 >        ppStream.str(buf);
131 >        delete [] buf;
132 >
133 >      }
134 > #endif            
135 >      // Create a scanner that reads from the input stream
136 >      MDLexer lexer(ppStream);
137 >      lexer.setFilename(filename);
138 >      lexer.initDeferredLineCount();
139 >    
140 >      // Create a parser that reads from the scanner
141 >      MDParser parser(lexer);
142 >      parser.setFilename(filename);
143 >
144 >      // Create an observer that synchorizes file name change
145 >      FilenameObserver observer;
146 >      observer.setLexer(&lexer);
147 >      observer.setParser(&parser);
148 >      lexer.setObserver(&observer);
149 >    
150 >      antlr::ASTFactory factory;
151 >      parser.initializeASTFactory(factory);
152 >      parser.setASTFactory(&factory);
153 >      parser.mdfile();
154 >
155 >      // Create a tree parser that reads information into Globals
156 >      MDTreeParser treeParser;
157 >      treeParser.initializeASTFactory(factory);
158 >      treeParser.setASTFactory(&factory);
159 >      simParams = treeParser.walkTree(parser.getAST());
160 >    }
161 >
162 >      
163 >    catch(antlr::MismatchedCharException& e) {
164 >      sprintf(painCave.errMsg,
165 >              "parser exception: %s %s:%d:%d\n",
166 >              e.getMessage().c_str(),e.getFilename().c_str(), e.getLine(), e.getColumn());
167 >      painCave.isFatal = 1;
168 >      simError();          
169 >    }
170 >    catch(antlr::MismatchedTokenException &e) {
171 >      sprintf(painCave.errMsg,
172 >              "parser exception: %s %s:%d:%d\n",
173 >              e.getMessage().c_str(),e.getFilename().c_str(), e.getLine(), e.getColumn());
174 >      painCave.isFatal = 1;
175 >      simError();  
176 >    }
177 >    catch(antlr::NoViableAltForCharException &e) {
178 >      sprintf(painCave.errMsg,
179 >              "parser exception: %s %s:%d:%d\n",
180 >              e.getMessage().c_str(),e.getFilename().c_str(), e.getLine(), e.getColumn());
181 >      painCave.isFatal = 1;
182 >      simError();  
183 >    }
184 >    catch(antlr::NoViableAltException &e) {
185 >      sprintf(painCave.errMsg,
186 >              "parser exception: %s %s:%d:%d\n",
187 >              e.getMessage().c_str(),e.getFilename().c_str(), e.getLine(), e.getColumn());
188 >      painCave.isFatal = 1;
189 >      simError();  
190 >    }
191 >      
192 >    catch(antlr::TokenStreamRecognitionException& e) {
193 >      sprintf(painCave.errMsg,
194 >              "parser exception: %s %s:%d:%d\n",
195 >              e.getMessage().c_str(),e.getFilename().c_str(), e.getLine(), e.getColumn());
196 >      painCave.isFatal = 1;
197 >      simError();  
198 >    }
199 >        
200 >    catch(antlr::TokenStreamIOException& e) {
201 >      sprintf(painCave.errMsg,
202 >              "parser exception: %s\n",
203 >              e.getMessage().c_str());
204 >      painCave.isFatal = 1;
205 >      simError();
206 >    }
207 >        
208 >    catch(antlr::TokenStreamException& e) {
209 >      sprintf(painCave.errMsg,
210 >              "parser exception: %s\n",
211 >              e.getMessage().c_str());
212 >      painCave.isFatal = 1;
213 >      simError();
214 >    }        
215 >    catch (antlr::RecognitionException& e) {
216 >      sprintf(painCave.errMsg,
217 >              "parser exception: %s %s:%d:%d\n",
218 >              e.getMessage().c_str(),e.getFilename().c_str(), e.getLine(), e.getColumn());
219 >      painCave.isFatal = 1;
220 >      simError();          
221 >    }
222 >    catch (antlr::CharStreamException& e) {
223 >      sprintf(painCave.errMsg,
224 >              "parser exception: %s\n",
225 >              e.getMessage().c_str());
226 >      painCave.isFatal = 1;
227 >      simError();        
228 >    }
229 >    catch (OpenMDException& e) {
230 >      sprintf(painCave.errMsg,
231 >              "%s\n",
232 >              e.getMessage().c_str());
233 >      painCave.isFatal = 1;
234 >      simError();
235 >    }
236 >    catch (std::exception& e) {
237 >      sprintf(painCave.errMsg,
238 >              "parser exception: %s\n",
239 >              e.what());
240 >      painCave.isFatal = 1;
241 >      simError();
242 >    }
243 >
244 >    simParams->setMDfileVersion(mdFileVersion);
245 >    return simParams;
246 >  }
247 >  
248 >  SimInfo*  SimCreator::createSim(const std::string & mdFileName,
249 >                                  bool loadInitCoords) {
250 >    
251 >    const int bufferSize = 65535;
252 >    char buffer[bufferSize];
253 >    int lineNo = 0;
254 >    std::string mdRawData;
255 >    int metaDataBlockStart = -1;
256 >    int metaDataBlockEnd = -1;
257 >    int i;
258 >    streamoff mdOffset;
259 >    int mdFileVersion;
260 >
261 >
262 > #ifdef IS_MPI            
263 >    const int masterNode = 0;
264 >    if (worldRank == masterNode) {
265 > #endif
266 >
267 >      std::ifstream mdFile_;
268 >      mdFile_.open(mdFileName.c_str(), ifstream::in | ifstream::binary);
269 >      
270 >      if (mdFile_.fail()) {
271 >        sprintf(painCave.errMsg,
272 >                "SimCreator: Cannot open file: %s\n",
273 >                mdFileName.c_str());
274 >        painCave.isFatal = 1;
275 >        simError();
276 >      }
277 >
278 >      mdFile_.getline(buffer, bufferSize);
279 >      ++lineNo;
280 >      std::string line = trimLeftCopy(buffer);
281 >      i = CaseInsensitiveFind(line, "<OpenMD");
282 >      if (static_cast<size_t>(i) == string::npos) {
283 >        // try the older file strings to see if that works:
284 >        i = CaseInsensitiveFind(line, "<OOPSE");
285 >      }
286 >      
287 >      if (static_cast<size_t>(i) == string::npos) {
288 >        // still no luck!
289 >        sprintf(painCave.errMsg,
290 >                "SimCreator: File: %s is not a valid OpenMD file!\n",
291 >                mdFileName.c_str());
292 >        painCave.isFatal = 1;
293 >        simError();
294 >      }
295 >      
296 >      // found the correct opening string, now try to get the file
297 >      // format version number.
298 >
299 >      StringTokenizer tokenizer(line, "=<> \t\n\r");
300 >      std::string fileType = tokenizer.nextToken();
301 >      toUpper(fileType);
302 >
303 >      mdFileVersion = 0;
304 >
305 >      if (fileType == "OPENMD") {
306 >        while (tokenizer.hasMoreTokens()) {
307 >          std::string token(tokenizer.nextToken());
308 >          toUpper(token);
309 >          if (token == "VERSION") {
310 >            mdFileVersion = tokenizer.nextTokenAsInt();
311 >            break;
312 >          }
313 >        }
314 >      }
315 >            
316 >      //scan through the input stream and find MetaData tag        
317 >      while(mdFile_.getline(buffer, bufferSize)) {
318 >        ++lineNo;
319 >        
320 >        std::string line = trimLeftCopy(buffer);
321 >        if (metaDataBlockStart == -1) {
322 >          i = CaseInsensitiveFind(line, "<MetaData>");
323 >          if (i != string::npos) {
324 >            metaDataBlockStart = lineNo;
325 >            mdOffset = mdFile_.tellg();
326 >          }
327 >        } else {
328 >          i = CaseInsensitiveFind(line, "</MetaData>");
329 >          if (i != string::npos) {
330 >            metaDataBlockEnd = lineNo;
331 >          }
332 >        }
333 >      }
334 >
335 >      if (metaDataBlockStart == -1) {
336 >        sprintf(painCave.errMsg,
337 >                "SimCreator: File: %s did not contain a <MetaData> tag!\n",
338 >                mdFileName.c_str());
339 >        painCave.isFatal = 1;
340 >        simError();
341 >      }
342 >      if (metaDataBlockEnd == -1) {
343 >        sprintf(painCave.errMsg,
344 >                "SimCreator: File: %s did not contain a closed MetaData block!\n",
345 >                mdFileName.c_str());
346 >        painCave.isFatal = 1;
347 >        simError();
348 >      }
349 >        
350 >      mdFile_.clear();
351 >      mdFile_.seekg(0);
352 >      mdFile_.seekg(mdOffset);
353 >
354 >      mdRawData.clear();
355 >
356 >      for (int i = 0; i < metaDataBlockEnd - metaDataBlockStart - 1; ++i) {
357 >        mdFile_.getline(buffer, bufferSize);
358 >        mdRawData += buffer;
359 >        mdRawData += "\n";
360 >      }
361 >
362 >      mdFile_.close();
363 >
364 > #ifdef IS_MPI
365 >    }
366 > #endif
367 >
368 >    std::stringstream rawMetaDataStream(mdRawData);
369 >
370 >    //parse meta-data file
371 >    Globals* simParams = parseFile(rawMetaDataStream, mdFileName, mdFileVersion,
372 >                                   metaDataBlockStart + 1);
373 >    
374 >    //create the force field
375 >    ForceField * ff = new ForceField(simParams->getForceField());
376 >
377 >    if (ff == NULL) {
378 >      sprintf(painCave.errMsg,
379 >              "ForceField Factory can not create %s force field\n",
380 >              simParams->getForceField().c_str());
381 >      painCave.isFatal = 1;
382 >      simError();
383 >    }
384 >    
385 >    if (simParams->haveForceFieldFileName()) {
386 >      ff->setForceFieldFileName(simParams->getForceFieldFileName());
387 >    }
388 >    
389 >    std::string forcefieldFileName;
390 >    forcefieldFileName = ff->getForceFieldFileName();
391 >    
392 >    if (simParams->haveForceFieldVariant()) {
393 >      //If the force field has variant, the variant force field name will be
394 >      //Base.variant.frc. For exampel EAM.u6.frc
395 >      
396 >      std::string variant = simParams->getForceFieldVariant();
397 >      
398 >      std::string::size_type pos = forcefieldFileName.rfind(".frc");
399 >      variant = "." + variant;
400 >      if (pos != std::string::npos) {
401 >        forcefieldFileName.insert(pos, variant);
402 >      } else {
403 >        //If the default force field file name does not containt .frc suffix, just append the .variant
404 >        forcefieldFileName.append(variant);
405 >      }
406 >    }
407 >    
408 >    ff->parse(forcefieldFileName);
409 >    //create SimInfo
410 >    SimInfo * info = new SimInfo(ff, simParams);
411 >
412 >    info->setRawMetaData(mdRawData);
413 >    
414 >    //gather parameters (SimCreator only retrieves part of the
415 >    //parameters)
416 >    gatherParameters(info, mdFileName);
417 >    
418 >    //divide the molecules and determine the global index of molecules
419 > #ifdef IS_MPI
420 >    divideMolecules(info);
421 > #endif
422 >    
423 >    //create the molecules
424 >    createMolecules(info);
425 >    
426 >    //find the storage layout
427 >
428 >    int storageLayout = computeStorageLayout(info);
429 >
430 >    //allocate memory for DataStorage(circular reference, need to
431 >    //break it)
432 >    info->setSnapshotManager(new SimSnapshotManager(info, storageLayout));
433 >    
434 >    //set the global index of atoms, rigidbodies and cutoffgroups
435 >    //(only need to be set once, the global index will never change
436 >    //again). Local indices of atoms and rigidbodies are already set
437 >    //by MoleculeCreator class which actually delegates the
438 >    //responsibility to LocalIndexManager.
439 >    setGlobalIndex(info);
440 >    
441 >    //Although addInteractionPairs is called inside SimInfo's addMolecule
442 >    //method, at that point atoms don't have the global index yet
443 >    //(their global index are all initialized to -1).  Therefore we
444 >    //have to call addInteractionPairs explicitly here. A way to work
445 >    //around is that we can determine the beginning global indices of
446 >    //atoms before they get created.
447 >    SimInfo::MoleculeIterator mi;
448 >    Molecule* mol;
449 >    for (mol= info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {
450 >      info->addInteractionPairs(mol);
451 >    }
452 >    
453 >    if (loadInitCoords)
454 >      loadCoordinates(info, mdFileName);    
455 >    return info;
456 >  }
457 >  
458 >  void SimCreator::gatherParameters(SimInfo *info, const std::string& mdfile) {
459 >    
460 >    //figure out the output file names
461 >    std::string prefix;
462 >    
463 > #ifdef IS_MPI
464 >    
465 >    if (worldRank == 0) {
466 > #endif // is_mpi
467 >      Globals * simParams = info->getSimParams();
468 >      if (simParams->haveFinalConfig()) {
469 >        prefix = getPrefix(simParams->getFinalConfig());
470 >      } else {
471 >        prefix = getPrefix(mdfile);
472 >      }
473 >      
474 >      info->setFinalConfigFileName(prefix + ".eor");
475 >      info->setDumpFileName(prefix + ".dump");
476 >      info->setStatFileName(prefix + ".stat");
477 >      info->setRestFileName(prefix + ".zang");
478 >      
479 > #ifdef IS_MPI
480 >      
481 >    }
482 >    
483 > #endif
484 >    
485 >  }
486 >  
487 > #ifdef IS_MPI
488 >  void SimCreator::divideMolecules(SimInfo *info) {
489 >    RealType numerator;
490 >    RealType denominator;
491 >    RealType precast;
492 >    RealType x;
493 >    RealType y;
494 >    RealType a;
495 >    int old_atoms;
496 >    int add_atoms;
497 >    int new_atoms;
498 >    int nTarget;
499 >    int done;
500 >    int i;
501 >    int j;
502 >    int loops;
503 >    int which_proc;
504 >    int nProcessors;
505 >    std::vector<int> atomsPerProc;
506 >    int nGlobalMols = info->getNGlobalMolecules();
507 >    std::vector<int> molToProcMap(nGlobalMols, -1); // default to an error condition:
508 >    
509 >    nProcessors = MPI::COMM_WORLD.Get_size();
510 >    
511 >    if (nProcessors > nGlobalMols) {
512 >      sprintf(painCave.errMsg,
513 >              "nProcessors (%d) > nMol (%d)\n"
514 >              "\tThe number of processors is larger than\n"
515 >              "\tthe number of molecules.  This will not result in a \n"
516 >              "\tusable division of atoms for force decomposition.\n"
517 >              "\tEither try a smaller number of processors, or run the\n"
518 >              "\tsingle-processor version of OpenMD.\n", nProcessors, nGlobalMols);
519 >      
520 >      painCave.isFatal = 1;
521 >      simError();
522 >    }
523 >    
524 >    int seedValue;
525 >    Globals * simParams = info->getSimParams();
526 >    SeqRandNumGen* myRandom; //divide labor does not need Parallel random number generator
527 >    if (simParams->haveSeed()) {
528 >      seedValue = simParams->getSeed();
529 >      myRandom = new SeqRandNumGen(seedValue);
530 >    }else {
531 >      myRandom = new SeqRandNumGen();
532 >    }  
533 >    
534 >    
535 >    a = 3.0 * nGlobalMols / info->getNGlobalAtoms();
536 >    
537 >    //initialize atomsPerProc
538 >    atomsPerProc.insert(atomsPerProc.end(), nProcessors, 0);
539 >    
540 >    if (worldRank == 0) {
541 >      numerator = info->getNGlobalAtoms();
542 >      denominator = nProcessors;
543 >      precast = numerator / denominator;
544 >      nTarget = (int)(precast + 0.5);
545 >      
546 >      for(i = 0; i < nGlobalMols; i++) {
547 >
548 >        done = 0;
549 >        loops = 0;
550 >        
551 >        while (!done) {
552 >          loops++;
553 >          
554 >          // Pick a processor at random
555 >          
556 >          which_proc = (int) (myRandom->rand() * nProcessors);
557 >          
558 >          //get the molecule stamp first
559 >          int stampId = info->getMoleculeStampId(i);
560 >          MoleculeStamp * moleculeStamp = info->getMoleculeStamp(stampId);
561 >          
562 >          // How many atoms does this processor have so far?
563 >          old_atoms = atomsPerProc[which_proc];
564 >          add_atoms = moleculeStamp->getNAtoms();
565 >          new_atoms = old_atoms + add_atoms;
566 >          
567 >          // If we've been through this loop too many times, we need
568 >          // to just give up and assign the molecule to this processor
569 >          // and be done with it.
570 >          
571 >          if (loops > 100) {
572 >
573 >            sprintf(painCave.errMsg,
574 >                    "There have been 100 attempts to assign molecule %d to an\n"
575 >                    "\tunderworked processor, but there's no good place to\n"
576 >                    "\tleave it.  OpenMD is assigning it at random to processor %d.\n",
577 >                    i, which_proc);
578 >          
579 >            painCave.isFatal = 0;
580 >            painCave.severity = OPENMD_INFO;
581 >            simError();
582 >            
583 >            molToProcMap[i] = which_proc;
584 >            atomsPerProc[which_proc] += add_atoms;
585 >            
586 >            done = 1;
587 >            continue;
588 >          }
589 >          
590 >          // If we can add this molecule to this processor without sending
591 >          // it above nTarget, then go ahead and do it:
592 >          
593 >          if (new_atoms <= nTarget) {
594 >            molToProcMap[i] = which_proc;
595 >            atomsPerProc[which_proc] += add_atoms;
596 >            
597 >            done = 1;
598 >            continue;
599 >          }
600 >          
601 >          // The only situation left is when new_atoms > nTarget.  We
602 >          // want to accept this with some probability that dies off the
603 >          // farther we are from nTarget
604 >          
605 >          // roughly:  x = new_atoms - nTarget
606 >          //           Pacc(x) = exp(- a * x)
607 >          // where a = penalty / (average atoms per molecule)
608 >          
609 >          x = (RealType)(new_atoms - nTarget);
610 >          y = myRandom->rand();
611 >          
612 >          if (y < exp(- a * x)) {
613 >            molToProcMap[i] = which_proc;
614 >            atomsPerProc[which_proc] += add_atoms;
615 >            
616 >            done = 1;
617 >            continue;
618 >          } else {
619 >            continue;
620 >          }
621 >        }
622 >      }
623 >      
624 >      delete myRandom;
625 >
626 >      // Spray out this nonsense to all other processors:
627 >      MPI::COMM_WORLD.Bcast(&molToProcMap[0], nGlobalMols, MPI::INT, 0);
628 >    } else {
629 >      
630 >      // Listen to your marching orders from processor 0:
631 >      MPI::COMM_WORLD.Bcast(&molToProcMap[0], nGlobalMols, MPI::INT, 0);
632 >
633 >    }
634 >    
635 >    info->setMolToProcMap(molToProcMap);
636 >    sprintf(checkPointMsg,
637 >            "Successfully divided the molecules among the processors.\n");
638 >    errorCheckPoint();
639 >  }
640 >  
641 > #endif
642 >  
643 >  void SimCreator::createMolecules(SimInfo *info) {
644 >    MoleculeCreator molCreator;
645 >    int stampId;
646 >    
647 >    for(int i = 0; i < info->getNGlobalMolecules(); i++) {
648 >      
649 > #ifdef IS_MPI
650 >      
651 >      if (info->getMolToProc(i) == worldRank) {
652 > #endif
653 >        
654 >        stampId = info->getMoleculeStampId(i);
655 >        Molecule * mol = molCreator.createMolecule(info->getForceField(),
656 >                                                   info->getMoleculeStamp(stampId),
657 >                                                   stampId, i,
658 >                                                   info->getLocalIndexManager());
659 >        
660 >        info->addMolecule(mol);
661 >        
662 > #ifdef IS_MPI
663 >        
664 >      }
665 >      
666 > #endif
667 >      
668 >    } //end for(int i=0)  
669 >  }
670 >    
671 >  int SimCreator::computeStorageLayout(SimInfo* info) {
672 >
673 >    Globals* simParams = info->getSimParams();
674 >    int nRigidBodies = info->getNGlobalRigidBodies();
675 >    set<AtomType*> atomTypes = info->getSimulatedAtomTypes();
676 >    set<AtomType*>::iterator i;
677 >    bool hasDirectionalAtoms = false;
678 >    bool hasFixedCharge = false;
679 >    bool hasDipoles = false;    
680 >    bool hasQuadrupoles = false;    
681 >    bool hasPolarizable = false;    
682 >    bool hasFluctuatingCharge = false;    
683 >    bool hasMetallic = false;
684 >    int storageLayout = 0;
685 >    storageLayout |= DataStorage::dslPosition;
686 >    storageLayout |= DataStorage::dslVelocity;
687 >    storageLayout |= DataStorage::dslForce;
688 >
689 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
690 >
691 >      DirectionalAdapter da = DirectionalAdapter( (*i) );
692 >      MultipoleAdapter ma = MultipoleAdapter( (*i) );
693 >      EAMAdapter ea = EAMAdapter( (*i) );
694 >      SuttonChenAdapter sca = SuttonChenAdapter( (*i) );
695 >      PolarizableAdapter pa = PolarizableAdapter( (*i) );
696 >      FixedChargeAdapter fca = FixedChargeAdapter( (*i) );
697 >      FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter( (*i) );
698 >
699 >      if (da.isDirectional()){
700 >        hasDirectionalAtoms = true;
701 >      }
702 >      if (ma.isDipole()){
703 >        hasDipoles = true;
704 >      }
705 >      if (ma.isQuadrupole()){
706 >        hasQuadrupoles = true;
707 >      }
708 >      if (ea.isEAM() || sca.isSuttonChen()){
709 >        hasMetallic = true;
710 >      }
711 >      if ( fca.isFixedCharge() ){
712 >        hasFixedCharge = true;
713 >      }
714 >      if ( fqa.isFluctuatingCharge() ){
715 >        hasFluctuatingCharge = true;
716 >      }
717 >      if ( pa.isPolarizable() ){
718 >        hasPolarizable = true;
719 >      }
720 >    }
721 >    
722 >    if (nRigidBodies > 0 || hasDirectionalAtoms) {
723 >      storageLayout |= DataStorage::dslAmat;
724 >      if(storageLayout & DataStorage::dslVelocity) {
725 >        storageLayout |= DataStorage::dslAngularMomentum;
726 >      }
727 >      if (storageLayout & DataStorage::dslForce) {
728 >        storageLayout |= DataStorage::dslTorque;
729 >      }
730 >    }
731 >    if (hasDipoles) {
732 >      storageLayout |= DataStorage::dslDipole;
733 >    }
734 >    if (hasQuadrupoles) {
735 >      storageLayout |= DataStorage::dslQuadrupole;
736 >    }
737 >    if (hasFixedCharge || hasFluctuatingCharge) {
738 >      storageLayout |= DataStorage::dslSkippedCharge;
739 >    }
740 >    if (hasMetallic) {
741 >      storageLayout |= DataStorage::dslDensity;
742 >      storageLayout |= DataStorage::dslFunctional;
743 >      storageLayout |= DataStorage::dslFunctionalDerivative;
744 >    }
745 >    if (hasPolarizable) {
746 >      storageLayout |= DataStorage::dslElectricField;
747 >    }
748 >    if (hasFluctuatingCharge){
749 >      storageLayout |= DataStorage::dslFlucQPosition;
750 >      if(storageLayout & DataStorage::dslVelocity) {
751 >        storageLayout |= DataStorage::dslFlucQVelocity;
752 >      }
753 >      if (storageLayout & DataStorage::dslForce) {
754 >        storageLayout |= DataStorage::dslFlucQForce;
755 >      }
756 >    }
757 >    
758 >    // if the user has asked for them, make sure we've got the memory for the
759 >    // objects defined.
760 >
761 >    if (simParams->getOutputParticlePotential()) {
762 >      storageLayout |= DataStorage::dslParticlePot;
763 >    }
764 >
765 >    if (simParams->havePrintHeatFlux()) {
766 >      if (simParams->getPrintHeatFlux()) {
767 >        storageLayout |= DataStorage::dslParticlePot;
768 >      }
769 >    }
770 >
771 >    if (simParams->getOutputElectricField()) {
772 >      storageLayout |= DataStorage::dslElectricField;
773 >    }
774 >
775 >    if (simParams->getOutputFluctuatingCharges()) {
776 >      storageLayout |= DataStorage::dslFlucQPosition;
777 >      storageLayout |= DataStorage::dslFlucQVelocity;
778 >      storageLayout |= DataStorage::dslFlucQForce;
779 >    }
780 >
781 >    return storageLayout;
782 >  }
783 >
784 >  void SimCreator::setGlobalIndex(SimInfo *info) {
785 >    SimInfo::MoleculeIterator mi;
786 >    Molecule::AtomIterator ai;
787 >    Molecule::RigidBodyIterator ri;
788 >    Molecule::CutoffGroupIterator ci;
789 >    Molecule::IntegrableObjectIterator  ioi;
790 >    Molecule * mol;
791 >    Atom * atom;
792 >    RigidBody * rb;
793 >    CutoffGroup * cg;
794 >    int beginAtomIndex;
795 >    int beginRigidBodyIndex;
796 >    int beginCutoffGroupIndex;
797 >    int nGlobalAtoms = info->getNGlobalAtoms();
798 >    int nGlobalRigidBodies = info->getNGlobalRigidBodies();
799 >    
800 >    beginAtomIndex = 0;
801 >    //rigidbody's index begins right after atom's
802 >    beginRigidBodyIndex = info->getNGlobalAtoms();
803 >    beginCutoffGroupIndex = 0;
804 >
805 >    for(int i = 0; i < info->getNGlobalMolecules(); i++) {
806 >      
807 > #ifdef IS_MPI      
808 >      if (info->getMolToProc(i) == worldRank) {
809 > #endif        
810 >        // stuff to do if I own this molecule
811 >        mol = info->getMoleculeByGlobalIndex(i);
812 >
813 >        //local index(index in DataStorge) of atom is important
814 >        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
815 >          atom->setGlobalIndex(beginAtomIndex++);
816 >        }
817 >        
818 >        for(rb = mol->beginRigidBody(ri); rb != NULL;
819 >            rb = mol->nextRigidBody(ri)) {
820 >          rb->setGlobalIndex(beginRigidBodyIndex++);
821 >        }
822 >        
823 >        //local index of cutoff group is trivial, it only depends on
824 >        //the order of travesing
825 >        for(cg = mol->beginCutoffGroup(ci); cg != NULL;
826 >            cg = mol->nextCutoffGroup(ci)) {
827 >          cg->setGlobalIndex(beginCutoffGroupIndex++);
828 >        }        
829 >        
830 > #ifdef IS_MPI        
831 >      }  else {
832 >
833 >        // stuff to do if I don't own this molecule
834 >        
835 >        int stampId = info->getMoleculeStampId(i);
836 >        MoleculeStamp* stamp = info->getMoleculeStamp(stampId);
837 >
838 >        beginAtomIndex += stamp->getNAtoms();
839 >        beginRigidBodyIndex += stamp->getNRigidBodies();
840 >        beginCutoffGroupIndex += stamp->getNCutoffGroups() + stamp->getNFreeAtoms();
841 >      }
842 > #endif          
843 >
844 >    } //end for(int i=0)  
845 >
846 >    //fill globalGroupMembership
847 >    std::vector<int> globalGroupMembership(info->getNGlobalAtoms(), 0);
848 >    for(mol = info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {        
849 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
850 >        
851 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
852 >          globalGroupMembership[atom->getGlobalIndex()] = cg->getGlobalIndex();
853 >        }
854 >        
855 >      }      
856 >    }
857 >  
858 > #ifdef IS_MPI    
859 >    // Since the globalGroupMembership has been zero filled and we've only
860 >    // poked values into the atoms we know, we can do an Allreduce
861 >    // to get the full globalGroupMembership array (We think).
862 >    // This would be prettier if we could use MPI_IN_PLACE like the MPI-2
863 >    // docs said we could.
864 >    std::vector<int> tmpGroupMembership(info->getNGlobalAtoms(), 0);
865 >    MPI::COMM_WORLD.Allreduce(&globalGroupMembership[0],
866 >                              &tmpGroupMembership[0], nGlobalAtoms,
867 >                              MPI::INT, MPI::SUM);
868 >    info->setGlobalGroupMembership(tmpGroupMembership);
869 > #else
870 >    info->setGlobalGroupMembership(globalGroupMembership);
871 > #endif
872 >    
873 >    //fill molMembership
874 >    std::vector<int> globalMolMembership(info->getNGlobalAtoms() +
875 >                                         info->getNGlobalRigidBodies(), 0);
876 >    
877 >    for(mol = info->beginMolecule(mi); mol != NULL;
878 >        mol = info->nextMolecule(mi)) {
879 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
880 >        globalMolMembership[atom->getGlobalIndex()] = mol->getGlobalIndex();
881 >      }
882 >      for (rb = mol->beginRigidBody(ri); rb != NULL;
883 >           rb = mol->nextRigidBody(ri)) {
884 >        globalMolMembership[rb->getGlobalIndex()] = mol->getGlobalIndex();
885 >      }
886 >    }
887 >    
888 > #ifdef IS_MPI
889 >    std::vector<int> tmpMolMembership(info->getNGlobalAtoms() +
890 >                                      info->getNGlobalRigidBodies(), 0);
891 >    MPI::COMM_WORLD.Allreduce(&globalMolMembership[0], &tmpMolMembership[0],
892 >                              nGlobalAtoms + nGlobalRigidBodies,
893 >                              MPI::INT, MPI::SUM);
894 >    
895 >    info->setGlobalMolMembership(tmpMolMembership);
896 > #else
897 >    info->setGlobalMolMembership(globalMolMembership);
898 > #endif
899 >
900 >    // nIOPerMol holds the number of integrable objects per molecule
901 >    // here the molecules are listed by their global indices.
902 >
903 >    std::vector<int> nIOPerMol(info->getNGlobalMolecules(), 0);
904 >    for (mol = info->beginMolecule(mi); mol != NULL;
905 >         mol = info->nextMolecule(mi)) {
906 >      nIOPerMol[mol->getGlobalIndex()] = mol->getNIntegrableObjects();      
907 >    }
908 >    
909 > #ifdef IS_MPI
910 >    std::vector<int> numIntegrableObjectsPerMol(info->getNGlobalMolecules(), 0);
911 >    MPI::COMM_WORLD.Allreduce(&nIOPerMol[0], &numIntegrableObjectsPerMol[0],
912 >                              info->getNGlobalMolecules(), MPI::INT, MPI::SUM);
913 > #else
914 >    std::vector<int> numIntegrableObjectsPerMol = nIOPerMol;
915 > #endif    
916 >
917 >    std::vector<int> startingIOIndexForMol(info->getNGlobalMolecules());
918 >    
919 >    int startingIndex = 0;
920 >    for (int i = 0; i < info->getNGlobalMolecules(); i++) {
921 >      startingIOIndexForMol[i] = startingIndex;
922 >      startingIndex += numIntegrableObjectsPerMol[i];
923 >    }
924 >    
925 >    std::vector<StuntDouble*> IOIndexToIntegrableObject(info->getNGlobalIntegrableObjects(), (StuntDouble*)NULL);
926 >    for (mol = info->beginMolecule(mi); mol != NULL;
927 >         mol = info->nextMolecule(mi)) {
928 >      int myGlobalIndex = mol->getGlobalIndex();
929 >      int globalIO = startingIOIndexForMol[myGlobalIndex];
930 >      for (StuntDouble* sd = mol->beginIntegrableObject(ioi); sd != NULL;
931 >           sd = mol->nextIntegrableObject(ioi)) {
932 >        sd->setGlobalIntegrableObjectIndex(globalIO);
933 >        IOIndexToIntegrableObject[globalIO] = sd;
934 >        globalIO++;
935 >      }
936 >    }
937 >      
938 >    info->setIOIndexToIntegrableObject(IOIndexToIntegrableObject);
939 >    
940 >  }
941 >  
942 >  void SimCreator::loadCoordinates(SimInfo* info, const std::string& mdFileName) {
943 >    Globals* simParams;
944 >
945 >    simParams = info->getSimParams();
946 >    
947 >    DumpReader reader(info, mdFileName);
948 >    int nframes = reader.getNFrames();
949 >
950 >    if (nframes > 0) {
951 >      reader.readFrame(nframes - 1);
952 >    } else {
953 >      //invalid initial coordinate file
954 >      sprintf(painCave.errMsg,
955 >              "Initial configuration file %s should at least contain one frame\n",
956 >              mdFileName.c_str());
957 >      painCave.isFatal = 1;
958 >      simError();
959 >    }
960 >    //copy the current snapshot to previous snapshot
961 >    info->getSnapshotManager()->advance();
962 >  }
963 >  
964 > } //end namespace OpenMD
965 >
966 >

Comparing:
trunk/src/brains/SimCreator.cpp (property svn:keywords), Revision 397 by gezelter, Fri Mar 4 15:29:03 2005 UTC vs.
branches/development/src/brains/SimCreator.cpp (property svn:keywords), Revision 1808 by gezelter, Mon Oct 22 20:42:10 2012 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines